FLOSS Project Planets

#! code: Drupal 9: Removing Base64 Encoded Files From Content

Planet Drupal - Sun, 2022-06-19 15:07

Occasionally, I have come across Drupal sites that have base64 encoded images embedded into content fields. This is the approach of taking the binary data contained in a file and converting it into a string of characters. The original binary data can then be re-created using this string and the data is understood by lots of different technologies (including web browsers).

Whilst this is technically possible, it massively balloons the size of the database and can often slow down page load times due to the database being slow to respond to the request. Instead of fetching a few kilobytes of data from the table the database is forced to fetch many megabytes of data, which can create a bottleneck for other requests.

When you download a file from the web your browser can make a decision on whether to fetch that file a second time. By injecting files into the content you are forcing your users to download very large pages every time they want to request a page. It isn't possible for the browser to make that decision any more and that can lead to more slowdown for the user.

If you can't tell, I really dislike this method of image storage. Whilst it is technically possible, it creates more problems than it solves and even sites with a couple of thousand nodes can have databases of many gigabytes in size due to this issue. It can also put unnecessary strain on the database due to the increased time taken to return data.

Let's say that when you embed an image into some copy on a Drupal site using the normal media or file embed features. You might see an image element that looks like this.

In certain situations it is possible to embed images directly into content. The image element would look something like this.

Read more.

Categories: FLOSS Project Planets

Dirk Eddelbuettel: #38: Faster Feedback Systems

Planet Debian - Sun, 2022-06-19 11:46

Engineers build systems. Good engineers always stress and focus efficiency of these systems.

Two recent examples of engineering thinking follow. One was in a video / podcast interview with Martin Thompson (who is a noted high-performance code expert) I came across recently. The overall focus of the hour-long interview is on ‘managing software complexity’. Around minute twenty-two, the conversation turns to feedback loops and systems, and a strong preference for simple and fast systems for more immediate feedback. An important topic indeed.

The second example connects to this and permeates many tweets and other writings by Erik Bernhardsson. He had an earlier 2017 post on ‘Optimizing for iteration speed’, as well as a 17 May 2022 tweet on minimizing feedback loop size, another 28 Mar 2022 tweet reply on shorter feedback loops, then a 14 Feb 2022 post on problems with slow feedback loops, as well as a 13 Jan 2022 post on a priority for tighter feedback loops, and lastly a 23 Jul 2021 post on fast feedback cycles. You get the idea: Erik really digs faster feedback loops. Nobody likes to wait: immediatecy wins each time.

A few years ago, I had touched on this topic with two posts on how to make (R) package compilation (and hence installation) faster. One idea (which I still use whenever I must compile) was in post #11 on caching compilation. Another idea was in post #13: make it faster by not doing it, in this case via binary installation which skip the need for compilation (and which is what I aim for with, say, CI dependencies). Several subsequent posts can be found by scrolling down the r^4 blog section: we stressed the use of the amazing Rutter PPA ‘c2d4u’ for CRAN binaries (often via Rocker containers, the (post #28) promise of RSPM, and the (post #29) awesomeness of bspm. And then in the more recent post #34 from last December we got back to a topic which ties all these things together: Dependencies. We quoted Mies van der Rohe: Less is more. Especially when it comes to dependencies as these elongate the feedback loop and thereby delay feedback.

Our most recent post #37 on r2u connects these dots. Access to a complete set of CRAN binaries with full-dependency resolution accelerates use and installation. This of course also covers testing and continuous integration. Why wait minutes to recompile the same packages over and over when you can install the full Tidyverse in 18 seconds or the brms package and all it needs in 13 seconds as shown in the two gifs also on the r2u documentation site.

You can even power up the example setup of the second gif via this gitpod link giving you a full Ubuntu 22.04 session in your browser to try this: so go forth and install something from CRAN with ease! The benefit of a system such our r2u CRAN binaries is clear: faster feedback loops. This holds whether you work with few or many dependencies, tiny or tidy. Faster matters, and feedback can be had sooner.

And with the title of this post we now get a rallying cry to advocate for faster feedback systems: “FFS”.

This post by Dirk Eddelbuettel originated on his Thinking inside the box blog. Please report excessive re-aggregation in third-party for-profit settings.

Categories: FLOSS Project Planets

Python Software Foundation: The PSF Board Election is Open!

Planet Python - Sun, 2022-06-19 04:04

It’s time to cast your vote! Voting takes place from Monday, June 20 AoE, through Friday, June 30, 2022 AoE. Check here to see how much time you have left to vote. If you are a voting member of the PSF, you will get an email from “Helios Voting Bot <no-reply@mail.heliosvoting.org>” with your ballot, subject line will read “Vote: Python Software Foundation Board of Directors Election 2022”. If you haven’t seen your ballot by Tuesday, please 1) check your spam folder for a message from “no-reply@mail.heliosvoting.org” and if you don’t see anything 2) get in touch by emailing psf-elections@python.org so we can make sure we have the most up to date email for you.

This might be the largest number of nominees we’ve ever had! Make sure you schedule some time to look at all their statements. We’re overwhelmed by how many of you are willing to contribute to the Python community by serving on the PSF board.

Who can vote? You need to be a Contributing, Managing, Supporting, or Fellow member as of June 15, 2022 to vote in this election. Read more about our membership types here or if you have questions about your membership status please email psf-elections@python.org

#toc, .toc, .mw-warning { border: 1px solid #aaa; background-color: #f9f9f9; padding: 5px; font-size: 95%; }#toc h2, .toc h2 { display: inline; border: none; padding: 0; font-size: 100%; font-weight: bold; }#toc #toctitle, .toc #toctitle, #toc .toctitle, .toc .toctitle { text-align: center; }#toc ul, .toc ul { list-style-type: none; list-style-image: none; margin-left: 0; padding-left: 0; text-align: left; }#toc ul ul, .toc ul ul { margin: 0 0 0 2em; }#toc .toctoggle, .toc .toctoggle { font-size: 94%; }p, h1, h2, h3, li { }body{ padding-top : 1in; padding-bottom : 1in; padding-left : 1in; padding-right : 1in; }

Categories: FLOSS Project Planets

John Goerzen: Pipes, deadlocks, and strace annoyingly fixing them

Planet Debian - Sat, 2022-06-18 23:46

This is a complex tale I will attempt to make simple(ish). I’ve (re)learned more than I cared to about the details of pipes, signals, and certain system calls – and the solution is still elusive.

For some time now, I have been using NNCP to back up my files. These backups are sent to my backup system, which effectively does this to process them (each ZFS send is piped to a shell script that winds up running this):

gpg -q -d | zstdcat -T0 | zfs receive -u -o readonly=on "$STORE/$DEST"

This processes tens of thousands of zfs sends per week. Recently, having written Filespooler, I switched to sending the backups using Filespooler over NNCP. Now fspl (the Filespooler executable) opens the file for each stream and then connects it to what amounts to this pipeline:

bash -c 'gpg -q -d 2>/dev/null | zstdcat -T0' | zfs receive -u -o readonly=on "$STORE/$DEST"

Actually, to be more precise, it spins up the bash part of it, reads a few bytes from it, and then connects it to the zfs receive.

And this works well — almost always. In something like 1/1000 of the cases, it deadlocks, and I still don’t know why. But I can talk about the journey of trying to figure it out (and maybe some of you will have some ideas).

Filespooler is written in Rust, and uses Rust’s Command system. Effectively what happens is this:

  1. The fspl process has a File handle, which after forking but before invoking bash, it dup2’s to stdin.
  2. The connection between bash and zfs receive is a standard Unix pipe.

I cannot get the problem to duplicate when I run the entire thing under strace -f. So I am left trying to peek at it from the outside. What happens if I try to attach to each component with strace -p?

  • bash is blocking in wait4(), which is expected.
  • gpg is blocking in write().
  • If I attach to zstdcat with strace -p, then all of a sudden the deadlock is cleared and everything resumes and completes normally.
  • Attaching to zfs receive with strace -p causes no output at all from strace for a few seconds, then zfs just writes “cannot receive incremental stream: incomplete stream” and exits with error code 1.

So the plot thickens! Why would connecting to zstdcat and zfs receive cause them to actually change behavior? strace works by using the ptrace system call, and ptrace in a number of cases requires sending SIGSTOP to a process. In a complicated set of circumstances, a system call may return EINTR when a SIGSTOP is received, with the idea that the system call should be retried. I can’t see, from either zstdcat or zfs, if this is happening, though.

So I thought, “how about having Filespooler manually copy data from bash to zfs receive in a read/write loop instead of having them connected directly via a pipe?” That is, there would be two pipes going there: one where Filespooler reads from the bash command, and one where it writes to zfs. If nothing else, I could instrument it with debugging.

And so I did, and I found that when it deadlocked, it was deadlocking on write — but with no discernible pattern as to where or when. So I went back to directly connected.

In analyzing straces, I found a Rust bug which I reported in which it is failing to close the read end of a pipe in the parent post-fork. However, having implemented a workaround for this, it doesn’t prevent the deadlock so this is orthogonal to the issue at hand.

Among the two strange things here are things returning to normal when I attach strace to zstdcat, and things crashing when I attach strace to zfs. I decided to investigate the latter.

It turns out that the ZFS code that is reading from stdin during zfs receive is in the kernel module, not userland. Here is the part that is triggering the “imcomplete stream” error:

int err = zfs_file_read(fp, (char *)buf + done, len - done, &resid); if (resid == len - done) { /* * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates * that the receive was interrupted and can * potentially be resumed. */ err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED); }

resid is an output parameter with the number of bytes remaining from a short read, so in this case, if the read produced zero bytes, then it sets that error. What’s zfs_file_read then?

It boils down to a thin wrapper around kernel_read(). This winds up calling __kernel_read(), which calls read_iter on the pipe, which is pipe_read(). That’s where I don’t have the knowledge to get into the weeds right now.

So it seems likely to me that the problem has something to do with zfs receive. But, what, and why does it only not work in this one very specific situation, and only so rarely? And why does attaching strace to zstdcat make it all work again? I’m indeed puzzled!

Categories: FLOSS Project Planets

The KDE Qt5 Patch Collection has been rebased on top of Qt 5.15.5

Planet KDE - Sat, 2022-06-18 19:36

 

Commit: https://invent.kde.org/qt/qt/qt5/-/commit/2ab84b12b09a6c642d7c16de392d85bbcd49bb6a

 

Commercial release announcement: https://www.qt.io/blog/commercial-lts-qt-5.15.5-released 


OpenSource release announcement: https://lists.qt-project.org/pipermail/development/2022-June/042659.html

 

I want to personally extend my gratitude to the Commercial users of Qt for beta testing Qt 5.15.5 for the rest of us.

 

The Commercial Qt 5.15.5 release introduced some bugs that have later been fixed. Thanks to that, our Patchset Collection has been able to incorporate the reverts for those  bugs [1] [2] [3] [4] and the Free Software users will never be affected by those!




Categories: FLOSS Project Planets

Bastian Venthur: blag is now available in Debian

Planet Debian - Sat, 2022-06-18 12:00

Last year, I wrote my own blog-aware static site generator in Python. I called it “blag” – named after the blag of the webcomic xkcd. Now I finally got around packaging- and uploading blag to Debian. It passed the NEW queue and is now part of the distribution. That means if you’re using Debian, you can install it via:

sudo aptitude install blag

Ubuntu will probably follow soon. For every other system, blag is also available on PyPI:

pip install blag

To get started, you can

mkdir blog && cd blog blag quickstart # fill out some info nvim content/hello-world.md # write some content blag build # build the website

Blag is aware of articles and pages: the difference is that articles are part of the blog and will be added to the atom feed, the archive and aggregated in the tag pages. Pages are just rendered out to HTML. Articles and pages can be freely mixed in the content directory, what differentiates an article from a page is the existence of the dade metadata element:

title: My first article description: Short description of the article date: 2022-06-18 23:00 tags: blogging, markdown ## Hello World! Lorem ipsum. [...]

blag also comes with a dev-server that rebuilds the website automatically on every change detected, you can start it using:

blag serve

The default theme looks quite ugly, and you probably want to create your own styling to make it more beautiful. The process is not very difficult if you’re familiar with jinja templating. Help on that can be found in the “Templating” section of the online documentation, the offline version in the blag-doc package, or the man page, respectively.

Speaking of the blag-doc package: packaging it was surprisingly tricky, and it also took me a lot of trial and error to realize that dh_sphinxdocs alone does not automatically put the generated html output into the appropriate package, you rather have to list them in the package.docs-file (i.e. blag-doc.docs) so dh_installdocs can install them properly.

Categories: FLOSS Project Planets

New KDE Goals: submission stage is now open!

Planet KDE - Sat, 2022-06-18 08:10

I’m super excited to finally announce the start of the submission process for the brand new KDE Goals!

Starting today, you can submit a new proposal on the workboard and shape the future direction of the KDE community.

This stage in the process lasts 4 weeks, but don’t wait until the last moment! Submit early, and use the remaining time to listen to feedback, refine and update the proposal. Only the submission with good descriptions will move to the next stage: the community vote.

To make things easier, a template ticket is provided that you have to copy and fill out with your content. This way, none of the important parts of a good proposal will be skipped, and there will be consistency between the different proposals.

You will need an account to create a new proposal, and then use the arrow in the “Not ready for voting” column to create a new task. Don’t forget to copy the description from the template!

Remember, by submitting a Goal proposal, you are also submitting yourself as the Goal Champion for it. A Goal Champion is sort of the face of the Goal and the motivator of the initiative, but not necessarily the one that implements most of the tasks. After all, this is a community Goal, so a good Champion will motivate others to join in and help achieve amazing things.

If you want to learn more about the whole process, see the wiki for more details.

Don’t wait, submit your proposal and who knows, perhaps your idea will be announced as one of the new Goals during Akademy 2022!

Categories: FLOSS Project Planets

Kushal Das: Tor 0.4.7.8 is ready

Planet Python - Sat, 2022-06-18 03:16

Last night I built and pushed the Tor RPM(s) for 0.4.7.8. This is a security update, so please make sure that you upgrade your relays and bridges.

You can know more about the Tor's RPM respository at https://support.torproject.org/rpm/

If you have any queries, feel free to find us over #tor channel on OFTC.

Categories: FLOSS Project Planets

Android Platform Calendar Access

Planet KDE - Sat, 2022-06-18 01:45

In a previous post about KDE Itinerary I mentioned Android platform calendar support for the KCalendarCore framework. This is meanwhile functional (code), and here are some more details about it.

Features

KCalendarCore not too long ago got a plugin interface for abstracting access to platform calendaring solutions. For this we now have an implementation for the Android platform calendaring API.

This allows:

  • Listing of platform calendars and their access permissions.
  • Listing all events or retrieving an event by a known id from a given calendar.
  • Listing all events in a given time range, including considering recurrence rules.
  • Adding a new event, updating or deleting existing events.
Limitations

However, as with any attempt to abstract cross-platform features, there are a number or limitations to be aware of.

Android’s platform calendar only supports events, while KCalendarCore implements the full iCalendar specification and also covers todos and journals. The corresponding KCalendarCore API is therefore non-functional on Android. Support for todos might be possible eventually, e.g. by building on top of the OpenTasks content provider.

Android’s event data model is only a subset of the iCalendar model. For properties beyond that there is a dedicated “extended properties” table, but that can only be written to by sync providers, not by regular applications, and it uses data formats specific to the sync provider. We can so far at least read the format of DAVx⁵ (which is used to access Nextcloud calendars for example), but writing events with properties outside the supported subset isn’t possible. Event attachments are also not supported.

Another aspect still missing is change monitoring (ie. being notified about calendar changes), it’s however unclear to what extend that is provided by the platform at all.

And finally, access to the calendar needs special permission on Android. This is something the application needs to take care of itself, as that’s an asynchronous process that can involve user interaction, which is hard to hide behind the synchronous KCalendarCore API.

Use cases

Given all these limitations, what can we actually do with this? It’s obviously not the best choice when trying to build a fully featured calendar application and hoping for a perfect platform abstraction. Neither will any KCalendarCore-based software just magically work on Android with this.

If access to calendar events or the creation of calendar events with limited complexity is needed for a secondary/extra feature of an application though, like it is in the case of KDE Itinerary, this is sufficient and makes it straightforward to access the corresponding platform calendar with (mostly) the same code.

Outlook

Right now the code lives in KDE Itinerary’s repository still, which isn’t ideal and isn’t really benefiting anyone else yet. So a few things still need to happen going forward:

  • KAndroidExtras, the JNI wrapping library this is built on top of needs to be extracted and turned into a separate framework.
  • The Android platform calendar plugin then can move to KCalendarCore, alongside the corresponding plugin loader class.
  • We need at least also an Akonadi plugin to cover Linux, otherwise there’s not much platform abstraction here (work in progress).

Testing beyond a DAVx⁵/Nextcloud setup would be interesting as well, we might need support for more extended event property formats there.

Categories: FLOSS Project Planets

This week in KDE: non-blurry XWayland apps!

Planet KDE - Sat, 2022-06-18 00:27

Plasma 5.26 will resolve a major pain point for users of the Wayland session with high DPI screens: you’ll now be able to choose how you want your XWayland-using apps to be scaled:

  • By the compositor–ensuring uniform scaling, but blurriness (this is the status quo)
  • By the apps themselves–allowing them to use their pre-existing X11 high DPI capabilities, if they have them, but leaving apps without such capabilities at the wrong scale

So if all the XWayland apps you use support high DPI scaling properly on X11, you can use this new setting to make them look nice and crisp at your chosen scale factor:

This setting is currently off by default in Plasma 5.26, but we’re considering turning it on by default after more testing. Big thanks to David Edmundson and Aleix Pol Gonzales for this work!

Beyond that, the focus was on fixing bugs discovered in Plasma 5.25, and you’ll see quite a few mentioned here.

15-Minute Bugs Resolved

Current number of bugs: 65, up from 64. 1 added and 0 resolved.

Current list of bugs

New Features

You can now optionally configure minimized tasks in your Task Switcher to be sorted last, after all unminimized tasks, which is the way things work in the MATE desktop environment (Rachel Mant, Plasma 5.26)

Animated images can now be used as wallpapers, either standalone, or even as a part of a slideshow (Fushan Wen, Plasma 5.26)

User Interface Improvements

When you drag-and-drop something onto an empty part of a Dolphin window that is showing Details view, the drop is once again interpreted as a drop into the visible view rather than the sub-folder on the row under the cursor (Felix Ernst, Dolphin 22.08)

When you open a PDF document externally in a sandboxed app, Okular now appears in the list of preferred apps that can open PDF files as expected (Harald Sitter, Okular 22.08)

It’s no longer possible to try (and fail) to remove distro-installed SDDM login screen themes on System Settings’ “Login Screen (SDDM)” page; now you can only remove SDDM themes there that you’ve downloaded yourself, same as on other similar pages (Alexander Lohnau, Plasma 5.25.1)

The “Cover Flip” and “Flip Switch” Task Switcher effects now use the same background appearance as the Overview and new Present Windows effects, which looks better and makes them all more consistent in visual styling (Ismael Asensio, Plasma 5.26):

In the Plasma X11 session, on System Settings’ “Display and Monitor” page, the message telling you that you need to restart the machine to make scaling changes take effect now includes a “Restart” button you can click to do it immediately (Fushan Wen, Plasma 5.26)

Okular’s Breeze theme icon now better matches its original icon (Carl Schwan, Frameworks 5.96):

Bugfixes & Performance Improvements

Fixed one way that Dolphin could crash when you use it to search for files (Ahmad Samir, Dolphin 22.04.3)

External screens once again work properly with multi-GPU setups (Xaver Hugl, Plasma 5.25.1)

Screen brightness is no longer stuck at 30% for people with laptop screens that declare a maximum brightness value high enough to cause an integer overflow when multiplied using 32-bit integers (Ivan Ratijas, Plasma 5.25.1)

Fixed a common way that KWin could crash when the screen setup changes (Vlad Zahorodnii, Plasma 5.25.1)

System Settings no longer crashes when you try to install a cursor theme from a local theme file, rather than the downloader window (Alexander Lohnau, Plasma 5.25.1)

Switching desktops no longer sometimes leaves windows visible as ghosts in rare circumstances (Vlad Zahorodnii, Plasma 5.25.1)

You can once again drag individual windows from one desktop to another in the Desktop Grid effect (Marco Martin, Plasma 5.25.1)

Fixed a memory leak in Klipper, the Plasma clipboard service (Jonathan Marten, Plasma 5.25.1)

Breeze-themed sliders no longer exhibit visual glitches when using a right-to-left language (Ivan Tkachenko, Plasma 5.25.1)

Activating the Overview, Present Windows, and Desktop Grid effects with a touchpad gesture should now be smoother, not jittery or stuttery (Vlad Zahorodnii, Plasma 5.25.1)

Tinting your titlebars with the active accent color no longer applies the wrong color for inactive window titlebars (Jan Blackquill, Plasma 5.25.1)

System Tray icons no longer scale strangely when your panel height is set to certain odd (as in non-even) numbers (Anthony Hung, Plasma 5.25.1)

While a fullscreen window is focused, KWin’s “edge highlight” effect is no longer shown when you move your cursor near a screen edge with an auto-hidden panel that wouldn’t appear anyway because showing auto-hidden panels is disabled while a fullscreen window has focus (Vlad Zahorodnii, Plasma 5.25.1)

In the Plasma Wayland session, videos viewed in the latest version of the MPV app will no longer appear with a small transparent border around them (Vlad Zahorodnii, Plasma 5.25.1)

Using the properties dialog or KMenuEdit to edit an application’s .desktop file that happens to be a symlink now works as expected (Ahmad Samir, Frameworks 5.96)

…And everything else

This blog only covers the tip of the iceberg! Tons of KDE apps whose development I don’t have time to follow aren’t represented here, and I also don’t mention backend refactoring, improved test coverage, and other changes that are generally not user-facing. If you’re hungry for more, check out https://planet.kde.org, where you can find more news from other KDE contributors.

How You Can Help

If you’re a developer, check out our 15-Minute Bug Initiative. Working on these issues makes a big difference quickly!

Otherwise, have a look at https://community.kde.org/Get_Involved to discover ways to be part of a project that really matters. Each contributor makes a huge difference in KDE; you are not a number or a cog in a machine! You don’t have to already be a programmer, either. I wasn’t when I got started. Try it, you’ll like it! We don’t bite!

Finally, consider making a tax-deductible donation to the KDE e.V. foundation.

Categories: FLOSS Project Planets

My week in KDE: Plasma, REUSE and Apps

Planet KDE - Fri, 2022-06-17 20:00

This week I mainly worked on making my apps REUSE compliant, a bit on Plasma and on some new apps.

Plasma

Plasma 5.25 was recently released, we added a lot of cool things, such as tinting windows with the accent color! check it out!

Digital Clock

The first thing I did was to name variables better in the digital clock “Copy to Clipboard” menu, hopefully this can make things more understandable and help making this bit of code more maintainable.

Commit

Touch Mode Keywords

Touch Mode configurability was added to System Settings but searching about it brought no results.

I added some keywords so now you can find this feature by searching in System Settings just fine.

Commit

REUSE

I added REUSE compliance to my projects, it makes it clearer for everyone which parts of your software are under which license

Apps Bravo

Bravo is a text replacement utility, just type in what you want to replace, what you want to replace with and your text.

Francis

Francis is a pomodoro utility, after the 25 minutes interval it automatically starts a 5 minutes break. You can also set a goal to remind you why you’re doing this.

Pause, resume and stop features aren’t implemented, so yeah I should add that.

Contributions are Welcomed

If you’re interested in helping me with my little projects I would love any help, be it with code or with bug reporting.

Thank you for reading! :)

Categories: FLOSS Project Planets

FSD meeting recap 2022-06-17

FSF Blogs - Fri, 2022-06-17 18:32
Categories: FLOSS Project Planets

Everyday Superpowers: A primier on password hashing

Planet Python - Fri, 2022-06-17 12:37

A short and quick explanation about why you need to hash passwords and how you do it.


Read more...
Categories: FLOSS Project Planets

Andre Roberge: friendly_idle is done!

Planet Python - Fri, 2022-06-17 12:28

friendly_idle is done!

I've found a better solution for the remaining issue I had mentioned in the previous blog post.

I also found a fix for an "annoyance" mentioned by Raymond Hettinger on Twitter!

I could have changed the version to 1.0 ... but decided to wait until I get more feedback from users.

Categories: FLOSS Project Planets

PyCharm: PyCharm 2022.2 EAP 3 Is Out!

Planet Python - Fri, 2022-06-17 12:05

A new PyCharm 2022.2 EAP 3 build is available from our website, via the Toolbox App, or as a snap package (if you are using Ubuntu). If you are on macOS, there is a separate build for Apple Silicon (M1 chip). 

Important: EAP builds are not fully tested and might be unstable.

Keyboard shortcut to change the font size globally 

For this release, we’ve resolved a long-standing feature request by introducing a keyboard shortcut that changes the font size across all editors. To increase the font size, press ⌃⇧. /Alt+Shift+Period. To decrease it, press ⌃⇧,/Alt+Shift+Comma.

New setting to control the insertion of automatic parentheses

We’ve added an option to choose whether you want the IDE to automatically insert parentheses on code completion or not. The setting was previously available for JavaScript only, but now you can use it for other languages, too. You’ll find the Insert parentheses automatically when applicable checkbox under Settings / Preferences | Editor | General | Code Completion.

WSL: Customize the names of your virtual environments

This is a small but very practical improvement. In PyCharm 2022.2, you will be able to name virtual environments inside WSL in whichever way you find most suitable. Just go to Settings / Preferences | Project, find Python Interpreter | Show all, select and edit the WSL interpreter. Read more about setting up an interpreter using WSL on our Help page.

WSL: Debugger for Docker Desktop running in WSL

We enabled proper debugger support for Docker running in WSL. Take a look at this page to learn how to create run/debug configurations for Docker.

Notable bug fixes:
  • Producing (displaying) plots using the WSL interpreter is now possible (no error appears) [PY-42827].
  • The Conda environment is activated for Powershell on Windows 11 [PY-53979].
  • Global components are now resolved in Vue Router projects [WEB-55665].
  • Tailwind CSS coding assistance now works in Angular inlineTemplate and inlineStyles [WEB-52742].
  • Support for the TypeScript typesVersions field in package.json files has been added [WEB-42898].

To see the full list of improvements, check out the release notes. We are looking forward to hearing your feedback in comments, on Twitter, or using our issue tracker.

Categories: FLOSS Project Planets

Anarcat: Matrix notes

Planet Python - Fri, 2022-06-17 11:34

I have some concerns about Matrix (the protocol, not the movie that came out recently, although I do have concerns about that as well). I've been watching the project for a long time, and it seems more a promising alternative to many protocols like IRC, XMPP, and Signal.

This review may sound a bit negative, because it focuses on those concerns. I am the operator of an IRC network and people keep asking me to bridge it with Matrix. I have myself considered just giving up on IRC and converting to Matrix. This space is a living document exploring my research of that problem space. The TL;DR: is that no, I'm not setting up a bridge just yet, and I'm still on IRC.

This article was written over the course of the last three months, but I have been watching the Matrix project for years (my logs seem to say 2016 at least). The article is rather long. It will likely take you half an hour to read, so copy this over to your ebook reader, your tablet, or dead trees, and lean back and relax as I show you around the Matrix. Or, alternatively, just jump to a section that interest you, most likely the conclusion.

Introduction to Matrix

Matrix is an "open standard for interoperable, decentralised, real-time communication over IP. It can be used to power Instant Messaging, VoIP/WebRTC signalling, Internet of Things communication - or anywhere you need a standard HTTP API for publishing and subscribing to data whilst tracking the conversation history".

It's also (when compared with XMPP) "an eventually consistent global JSON database with an HTTP API and pubsub semantics - whilst XMPP can be thought of as a message passing protocol."

According to their FAQ, the project started in 2014, has about 20,000 servers, and millions of users. Matrix works over HTTPS but over a special port: 8448.

Security and privacy

I have some concerns about the security promises of Matrix. It's advertised as a "secure" with "E2E [end-to-end] encryption", but how does it actually work?

Data retention defaults

One of my main concerns with Matrix is data retention, which is a key part of security in a threat model where (for example) an hostile state actor wants to surveil your communications and can seize your devices.

On IRC, servers don't actually keep messages all that long: they pass them along to other servers and clients as fast as they can, only keep them in memory, and move on to the next message. There are no concerns about data retention on messages (and their metadata) other than the network layer. (I'm ignoring the issues with user registration, which is a separate, if valid, concern.) Obviously, an hostile server could log everything passing through it, but IRC federations are normally tightly controlled. So, if you trust your IRC operators, you should be fairly safe. Obviously, clients can (and often do, even if OTR is configured!) log all messages, but this is generally not the default. Irssi, for example, does not log by default. IRC bouncers are more likely to log to disk, of course, to be able to do what they do.

Compare this to Matrix: when you send a message to a Matrix homeserver, that server first stores it in its internal SQL database. Then it will transmit that message to all clients connected to that server and room, and to all other servers that have clients connected to that room. Those remote servers, in turn, will keep a copy of that message and all its metadata in their own database, by default forever. On encrypted rooms those messages are encrypted, but not their metadata.

There is a mechanism to expire entries in Synapse, but it is not enabled by default. So one should generally assume that a message sent on Matrix is never expired.

GDPR in the federation

But even if that setting was enabled by default, how do you control it? This is a fundamental problem of the federation: if any user is allowed to join a room (which is the default), those user's servers will log all content and metadata from that room. That includes private, one-on-one conversations, since those are essentially rooms as well.

In the context of the GDPR, this is really tricky: who is the responsible party (known as the "data controller") here? It's basically any yahoo who fires up a home server and joins a room.

In a federated network, one has to wonder whether GDPR enforcement is even possible at all. But in Matrix in particular, if you want to enforce your right to be forgotten in a given room, you would have to:

  1. enumerate all the users that ever joined the room while you were there
  2. discover all their home servers
  3. start a GDPR procedure against all those servers

I recognize this is a hard problem to solve while still keeping an open ecosystem. But I believe that Matrix should have much stricter defaults towards data retention than right now. Message expiry should be enforced by default, for example. (Note that there are also redaction policies that could be used to implement part of the GDPR automatically, see the privacy policy discussion below on that.)

Also keep in mind that, in the brave new peer-to-peer world that Matrix is heading towards, the boundary between server and client is likely to be fuzzier, which would make applying the GDPR even more difficult.

In fact, maybe Synapse should be designed so that there's no configurable flag to turn off data retention. A bit like how most system loggers in UNIX (e.g. syslog) come with a log retention system that typically rotate logs after a few weeks or month. Historically, this was designed to keep hard drives from filling up, but it also has the added benefit of limiting the amount of personal information kept on disk in this modern day. (Arguably, syslog doesn't rotate logs on its own, but, say, Debian GNU/Linux, as an installed system, does have log retention policies well defined for installed packages, and those can be discussed. And "no expiry" is definitely a bug.

Matrix.org privacy policy

When I first looked at Matrix, five years ago, Element.io was called Riot.im and had a rather dubious privacy policy:

We currently use cookies to support our use of Google Analytics on the Website and Service. Google Analytics collects information about how you use the Website and Service.

[...]

This helps us to provide you with a good experience when you browse our Website and use our Service and also allows us to improve our Website and our Service.

When I asked Matrix people about why they were using Google Analytics, they explained this was for development purposes and they were aiming for velocity at the time, not privacy (paraphrasing here).

They also included a "free to snitch" clause:

If we are or believe that we are under a duty to disclose or share your personal data, we will do so in order to comply with any legal obligation, the instructions or requests of a governmental authority or regulator, including those outside of the UK.

Those are really broad terms, above and beyond what is typically expected legally.

Like the current retention policies, such user tracking and ... "liberal" collaboration practices with the state set a bad precedent for other home servers.

Thankfully, since the above policy was published (2017), the GDPR was "implemented" (2018) and it seems like both the Element.io privacy policy and the Matrix.org privacy policy have been somewhat improved since.

Notable points of the new privacy policies:

  • 2.3.1.1: the "federation" section actually outlines that "Federated homeservers and Matrix clients which respect the Matrix protocol are expected to honour these controls and redaction/erasure requests, but other federated homeservers are outside of the span of control of Element, and we cannot guarantee how this data will be processed"
  • 2.6: users under the age of 16 should not use the matrix.org service
  • 2.10: Upcloud, Mythic Beast, Amazon, and CloudFlare possibly have access to your data (it's nice to at least mention this in the privacy policy: many providers don't even bother admitting to this kind of delegation)
  • Element 2.2.1: mentions many more third parties (Twilio, Stripe, Quaderno, LinkedIn, Twitter, Google, Outplay, PipeDrive, HubSpot, Posthog, Sentry, and Matomo (phew!) used when you are paying Matrix.org for hosting

I'm not super happy with all the trackers they have on the Element platform, but then again you don't have to use that service. Your favorite homeserver (assuming you are not on Matrix.org) probably has their own Element deployment, hopefully without all that garbage.

Overall, this is all a huge improvement over the previous privacy policy, so hats off to the Matrix people for figuring out a reasonable policy in such a tricky context. I particularly like this bit:

We will forget your copy of your data upon your request. We will also forward your request to be forgotten onto federated homeservers. However - these homeservers are outside our span of control, so we cannot guarantee they will forget your data.

It's great they implemented those mechanisms and, after all, if there's an hostile party in there, nothing can prevent them from using screenshots to just exfiltrate your data away from the client side anyways, even with services typically seen as more secure, like Signal.

As an aside, I also appreciate that Matrix.org has a fairly decent code of conduct, based on the TODO CoC which checks all the boxes in the geekfeminism wiki.

Metadata handling

Overall, privacy protections in Matrix mostly concern message contents, not metadata. In other words, who's talking with who, when and from where is not well protected. Compared to a tool like Signal, which goes through great lengths to anonymize that data with features like private contact discovery, disappearing messages, sealed senders, and private groups, Matrix is definitely behind.

This is a known issue (opened in 2019) in Synapse, but this is not just an implementation issue, it's a flaw in the protocol itself. Home servers keep join/leave of all rooms, which gives clear text information about who is talking to. Synapse logs may also contain privately identifiable information that home server admins might not be aware of in the first place. Those log rotation policies are separate from the server-level retention policy, which may be confusing for a novice sysadmin.

Combine this with the federation: even if you trust your home server to do the right thing, the second you join a public room with third-party home servers, those ideas kind of get thrown out because those servers can do whatever they want with that information. Again, a problem that is hard to solve in any federation.

To be fair, IRC doesn't have a great story here either: any client knows not only who's talking to who in a room, but also typically their client IP address. Servers can (and often do) obfuscate this, but often that obfuscation is trivial to reverse. Some servers do provide "cloaks" (sometimes automatically), but that's kind of a "slap-on" solution that actually moves the problem elsewhere: now the server knows a little more about the user.

Overall, I would worry much more about a Matrix home server seizure than a IRC or Signal server seizure. Signal does get subpoenas, and they can only give out a tiny bit of information about their users: their phone number, and their registration, and last connection date. Matrix carries a lot more information in its database.

Amplification attacks on URL previews

I (still!) run an Icecast server and sometimes share links to it on IRC which, obviously, also ends up on (more than one!) Matrix home servers because some people connect to IRC using Matrix. This, in turn, means that Matrix will connect to that URL to generate a link preview.

I feel this outlines a security issue, especially because those sockets would be kept open seemingly forever. I tried to warn the Matrix security team but somehow, I don't think this issue was taken very seriously. Here's the disclosure timeline:

  • January 18: contacted Matrix security
  • January 19: response: already reported as a bug
  • January 20: response: can't reproduce
  • January 31: timeout added, considered solved
  • January 31: I respond that I believe the security issue is underestimated, ask for clearance to disclose
  • February 1: response: asking for two weeks delay after the next release (1.53.0) including another patch, presumably in two weeks' time
  • February 22: Matrix 1.53.0 released
  • April 14: I notice the release, ask for clearance again
  • April 14: response: referred to the public disclosure

There are a couple of problems here:

  1. the bug was publicly disclosed in September 2020, and not considered a security issue until I notified them, and even then, I had to insist

  2. no clear disclosure policy timeline was proposed or seems established in the project (there is a security disclosure policy but it doesn't include any predefined timeline)

  3. I wasn't informed of the disclosure

  4. the actual solution is a size limit (10MB, already implemented), a time limit (30 seconds, implemented in PR 11784), and a content type allow list (HTML, "media" or JSON, implemented in PR 11936), and I'm not sure it's adequate

  5. (pure vanity:) I did not make it to their Hall of fame

I'm not sure those solutions are adequate because they all seem to assume a single home server will pull that one URL for a little while then stop. But in a federated network, many (possibly thousands) home servers may be connected in a single room at once. If an attacker drops a link into such a room, all those servers would connect to that link all at once. This is an amplification attack: a small amount of traffic will generate a lot more traffic to a single target. It doesn't matter there are size or time limits: the amplification is what matters here.

It should also be noted that clients that generate link previews have more amplification because they are more numerous than servers. And of course, the default Matrix client (Element) does generate link previews as well.

That said, this is possibly not a problem specific to Matrix: any federated service that generates link previews may suffer from this.

I'm honestly not sure what the solution is here. Maybe moderation? Maybe link previews are just evil? All I know is there was this weird bug in my Icecast server and I tried to ring the bell about it, and it feels it was swept under the rug. Somehow I feel this is bound to blow up again in the future, even with the current mitigation.

Moderation

In Matrix like elsewhere, Moderation is a hard problem. There is a detailed moderation guide and much of this problem space is actively worked on in Matrix right now. A fundamental problem with moderating a federated space is that a user banned from a room can rejoin the room from another server. This is why spam is such a problem in Email, and why IRC networks have stopped federating ages ago (see the IRC history for that fascinating story).

The mjolnir bot

The mjolnir moderation bot is designed to help with some of those things. It can kick and ban users, redact all of a user's message (as opposed to one by one), all of this across multiple rooms. It can also subscribe to a federated block list published by matrix.org to block known abusers (users or servers). Bans are pretty flexible and can operate at the user, room, or server level.

Matrix people suggest making the bot admin of your channels, because you can't take back admin from a user once given.

The command-line tool

There's also a new command line tool designed to do things like:

  • System notify users (all users/users from a list, specific user)
  • delete sessions/devices not seen for X days
  • purge the remote media cache
  • select rooms with various criteria (external/local/empty/created by/encrypted/cleartext)
  • purge history of theses rooms
  • shutdown rooms

This tool and Mjolnir are based on the admin API built into Synapse.

Rate limiting

Synapse has pretty good built-in rate-limiting which blocks repeated login, registration, joining, or messaging attempts. It may also end up throttling servers on the federation based on those settings.

Fundamental federation problems

Because users joining a room may come from another server, room moderators are at the mercy of the registration and moderation policies of those servers. Matrix is like IRC's +R mode ("only registered users can join") by default, except that anyone can register their own homeserver, which makes this limited.

Server admins can block IP addresses and home servers, but those tools are not currently available to room admins. So it would be nice to have room admins have that capability, just like IRC channel admins can block users based on their IP address.

Matrix has the concept of guest accounts, but it is not used very much, and virtually no client supports it. This contrasts with the way IRC works: by default, anyone can join an IRC network even without authentication. Some channels require registration, but in general you are free to join and look around (until you get blocked, of course).

I have heard anecdotal evidence that "moderating bridges is hell", and I can imagine why. Moderation is already hard enough on one federation, when you bridge a room with another network, you inherit all the problems from that network but without the entire abuse control tools from the original network's API...

Room admins

Matrix, in particular, has the problem that room administrators (which have the power to redact messages, ban users, and promote other users) are bound to their Matrix ID which is, in turn, bound to their home servers. This implies that a home server administrators could (1) impersonate a given user and (2) use that to hijack the room. So in practice, the home server is the trust anchor for rooms, not the user themselves.

That said, if server B administrator hijack user joe on server B, they will hijack that room on that specific server. This will not (necessarily) affect users on the other servers, as servers could refuse parts of the updates or ban the compromised account (or server).

It does seem like a major flaw that room credentials are bound to Matrix identifiers, as opposed to the E2E encryption credentials. In an encrypted room even with fully verified members, a compromised or hostile home server can still take over the room by impersonating an admin. That admin (or even a newly minted user) can then send events or listen on the conversations.

This is even more frustrating when you consider that Matrix events are actually signed and therefore have some authentication attached to them, acting like some sort of Merkle tree (as it contains a link to previous events). That signature, however, is made from the homeserver PKI keys, not the client's E2E keys, which makes E2E feel like it has been "bolted on" later.

Availability

While Matrix has a strong advantage over Signal in that it's decentralized (so anyone can run their own homeserver,), I couldn't find an easy way to run a "multi-primary" setup, or even a "redundant" setup (even if with a single primary backend), short of going full-on "replicate PostgreSQL and Redis data", which is not typically for the faint of heart.

How this works in IRC

On IRC, it's quite easy to setup redundant nodes. All you need is:

  1. a new machine (with it's own public address with an open port)

  2. a shared secret (or certificate) between that machine and an existing one on the network

  3. a connect {} block on both servers

That's it: the node will join the network and people can connect to it as usual and share the same user/namespace as the rest of the network. The servers take care of synchronizing state: you do not need about replicating a database server.

(Now, experienced IRC people will know there's a catch here: IRC doesn't have authentication built in, and relies on "services" which are basically bots that authenticate users (I'm simplifying, don't nitpick). If that service goes down, the network still works, but then people can't authenticate, and they can start doing nasty things like steal people's identity if they get knocked offline. But still: basic functionality still works: you can talk in rooms and with users that are on the reachable network.)

User identities

Matrix is more complicated. Each "home server" has its own identity namespace: a specific user (say @anarcat:matrix.org) is bound to that specific home server. If that server goes down, that user is completely disconnected. They could register a new account elsewhere and reconnect, but then they basically lose all their configuration: contacts, joined channels are all lost.

(Also notice how the Matrix IDs don't look like a typical user address like an email in XMPP. They at least did their homework and got the allocation for the scheme.)

Rooms

Users talk to each other in "rooms", even in one-to-one communications. (Rooms are also used for other things like "spaces", they're basically used for everything, think "everything is a file" kind of tool.) For rooms, home servers act more like IRC nodes in that they keep a local state of the chat room and synchronize it with other servers. Users can keep talking inside a room if the server that originally hosts the room goes down. Rooms can have a local, server-specific "alias" so that, say, #room:matrix.org is also visible as #room:example.com on the example.com home server. Both addresses refer to the same room underlying room.

(Finding this in the Element settings is not obvious though, because that "alias" are actually called a "local address" there. So to create such an alias (in Element), you need to go in the room settings' "General" section, "Show more" in "Local address", then add the alias name (e.g. foo), and then that room will be available on your example.com homeserver as #foo:example.com.)

So a room doesn't belong to a server, it belongs to the federation, and anyone can join the room from any serer (if the room is public, or if invited otherwise). You can create a room on server A and when a user from server B joins, the room will be replicated on server B as well. If server A fails, server B will keep relaying traffic to connected users and servers.

A room is therefore not fundamentally addressed with the above alias, instead ,it has a internal Matrix ID, which basically a random string. It has a server name attached to it, but that was made just to avoid collisions. That can get a little confusing. For example, the #fractal:gnome.org room is an alias on the gnome.org server, but the room ID is !hwiGbsdSTZIwSRfybq:matrix.org. That's because the room was created on matrix.org, but the preferred branding is gnome.org now.

As an aside, rooms, by default, live forever, even after the last user quits. There's an admin API to delete rooms and a tombstone event to redirect to another one, but neither have a GUI yet. The latter is part of MSC1501 ("Room version upgrades") which allows a room admin to close a room, with a message and a pointer to another room.

Spaces

Discovering rooms can be tricky: there is a per-server room directory, but Matrix.org people are trying to deprecate it in favor of "Spaces". Room directories were ripe for abuse: anyone can create a room, so anyone can show up in there. It's possible to restrict who can add aliases, but anyways directories were seen as too limited.

In contrast, a "Space" is basically a room that's an index of other rooms (including other spaces), so existing moderation and administration mechanism that work in rooms can (somewhat) work in spaces as well. This enables a room directory that works across federation, regardless on which server they were originally created.

New users can be added to a space or room automatically in Synapse. (Existing users can be told about the space with a server notice.) This gives admins a way to pre-populate a list of rooms on a server, which is useful to build clusters of related home servers, providing some sort of redundancy, at the room -- not user -- level.

Home servers

So while you can workaround a home server going down at the room level, there's no such thing at the home server level, for user identities. So if you want those identities to be stable in the long term, you need to think about high availability. One limitation is that the domain name (e.g. matrix.example.com) must never change in the future, as renaming home servers is not supported.

The documentation used to say you could "run a hot spare" but that has been removed. Last I heard, it was not possible to run a high-availability setup where multiple, separate locations could replace each other automatically. You can have high performance setups where the load gets distributed among workers, but those are based on a shared database (Redis and PostgreSQL) backend.

So my guess is it would be possible to create a "warm" spare server of a matrix home server with regular PostgreSQL replication, but that is not documented in the Synapse manual. This sort of setup would also not be useful to deal with networking issues or denial of service attacks, as you will not be able to spread the load over multiple network locations easily. Redis and PostgreSQL heroes are welcome to provide their multi-primary solution in the comments. In the meantime, I'll just point out this is a solution that's handled somewhat more gracefully in IRC, by having the possibility of delegating the authentication layer.

Delegations

If you do not want to run a Matrix server yourself, it's possible to delegate the entire thing to another server. There's a server discovery API which uses the .well-known pattern (or SRV records, but that's "not recommended" and a bit confusing) to delegate that service to another server. Be warned that the server still needs to be explicitly configured for your domain. You can't just put:

{ "m.server": "matrix.org:443" }

... on https://example.com/.well-known/matrix/server and start using @you:example.com as a Matrix ID. That's because Matrix doesn't support "virtual hosting" and you'd still be connecting to rooms and people with your matrix.org identity, not example.com as you would normally expect. This is also why you cannot rename your home server.

The server discovery API is what allows servers to find each other. Clients, on the other hand, use the client-server discovery API: this is what allows a given client to find your home server when you type your Matrix ID on login.

Performance

The high availability discussion brushed over the performance of Matrix itself, but let's now dig into that.

Horizontal scalability

There were serious scalability issues of the main Matrix server, Synapse, in the past. So the Matrix team has been working hard to improve its design. Since Synapse 1.22 the home server can horizontally to multiple workers (see this blog post for details) which can make it easier to scale large servers.

Other implementations

There are other promising home servers implementations from a performance standpoint (dendrite, Golang, entered beta in late 2020; conduit, Rust, beta; others), but none of those are feature-complete so there's a trade-off to be made there. Synapse is also adding a lot of feature fast, so it's an open question whether the others will ever catch up. (I have heard that Dendrite might actually surpass Synapse in features within a few years, which would put Synapse in a more "LTS" situation.)

Latency

Matrix can feel slow sometimes. For example, joining the "Matrix HQ" room in Element (from matrix.debian.social) takes a few minutes and then fails. That is because the home server has to sync the entire room state when you join the room. There was promising work on this announced in the lengthy 2021 retrospective, and some of that work landed (partial sync) in the 1.53 release already. Other improvements coming include sliding sync, lazy loading over federation, and fast room joins. So that's actually something that could be fixed in the fairly short term.

But in general, communication in Matrix doesn't feel as "snappy" as on IRC or even Signal. It's hard to quantify this without instrumenting a full latency test bed (for example the tools I used in the terminal emulators latency tests), but even just typing in a web browser feels slower than typing in a xterm or Emacs for me.

Even in conversations, I "feel" people don't immediately respond as fast. In fact, this could be an interesting double-blind experiment to make: have people guess whether they are talking to a person on Matrix, XMPP, or IRC, for example. My theory would be that people could notice that Matrix users are slower, if only because of the TCP round-trip time each message has to take.

Transport

Some courageous person actually made some tests of various messaging platforms on a congested network. His evaluation was basically:

  • Briar: uses Tor, so unusable except locally
  • Matrix: "struggled to send and receive messages", joining a room takes forever as it has to sync all history, "took 20-30 seconds for my messages to be sent and another 20 seconds for further responses"
  • XMPP: "worked in real-time, full encryption, with nearly zero lag"

So that was interesting. I suspect IRC would have also fared better, but that's just a feeling.

Other improvements to the transport layer include support for websocket and the CoAP proxy work from 2019 (targeting 100bps links), but both seem stalled at the time of writing. The Matrix people have also announced the pinecone p2p overlay network which aims at solving large, internet-scale routing problems. See also this talk at FOSDEM 2022.

Usability Onboarding and workflow

The workflow for joining a room, when you use Element web, is not great:

  1. click on a link in a web browser
  2. land on (say) https://matrix.to/#/#matrix-dev:matrix.org
  3. offers "Element", yeah that's sounds great, let's click "Continue"
  4. land on https://app.element.io/#/room%2F%23matrix-dev%3Amatrix.org and then you need to register, aaargh

As you might have guessed by now, there is a specification to solve this, but web browsers need to adopt it as well, so that's far from actually being solved. At least browsers generally know about the matrix: scheme, it's just not exactly clear what they should do with it, especially when the handler is just another web page (e.g. Element web).

In general, when compared with tools like Signal or WhatsApp, Matrix doesn't fare so well in terms of user discovery. I probably have some of my normal contacts that have a Matrix account as well, but there's really no way to know. It's kind of creepy when Signal tells you "this person is on Signal!" but it's also pretty cool that it works, and they actually implemented it pretty well.

Registration is also less obvious: in Signal, the app confirms your phone number automatically. It's friction-less and quick. In Matrix, you need to learn about home servers, pick one, register (with a password! aargh!), and then setup encryption keys (not default), etc. It's a lot more friction.

And look, I understand: giving away your phone number is a huge trade-off. I don't like it either. But it solves a real problem and makes encryption accessible to a ton more people. Matrix does have "identity servers" that can serve that purpose, but I don't feel confident sharing my phone number there. It doesn't help that the identity servers don't have private contact discovery: giving them your phone number is a more serious security compromise than with Signal.

There's a catch-22 here too: because no one feels like giving away their phone numbers, no one does, and everyone assumes that stuff doesn't work anyways. Like it or not, Signal forcing people to divulge their phone number actually gives them critical mass that means actually a lot of my relatives are on Signal and I don't have to install crap like WhatsApp to talk with them.

5 minute clients evaluation

Throughout all my tests I evaluated a handful of Matrix clients, mostly from Flathub because almost none of them are packaged in Debian.

Right now I'm using Element, the flagship client from Matrix.org, in a web browser window, with the PopUp Window extension. This makes it look almost like a native app, and opens links in my main browser window (instead of a new tab in that separate window), which is nice. But I'm tired of buying memory to feed my web browser, so this indirection has to stop. Furthermore, I'm often getting completely logged off from Element, which means re-logging in, recovering my security keys, and reconfiguring my settings. That is extremely annoying.

Coming from Irssi, Element is really "GUI-y" (pronounced "gooey"). Lots of clickety happening. To mark conversations as read, in particular, I need to click-click-click on all the tabs that have some activity. There's no "jump to latest message" or "mark all as read" functionality as far as I could tell. In Irssi the former is built-in (alt-a) and I made a custom /READ command for the latter:

/ALIAS READ script exec \$_->activity(0) for Irssi::windows

And yes, that's a Perl script in my IRC client. I am not aware of any Matrix client that does stuff like that, except maybe Weechat, if we can call it a Matrix client, or Irssi itself, now that it has a Matrix plugin (!).

As for other clients, I have looked through the Matrix Client Matrix (confusing right?) to try to figure out which one to try, and, even after selecting Linux as a filter, the chart is just too wide to figure out anything. So I tried those, kind of randomly:

  • Fractal
  • Mirage
  • Nheko
  • Quaternion

Unfortunately, I lost my notes on those, I don't actually remember which one did what. I still have a session open with Mirage, so I guess that means it's the one I preferred, but I remember they were also all very GUI-y.

Maybe I need to look at weechat-matrix or gomuks. At least Weechat is scriptable so I could continue playing the power-user. Right now my strategy with messaging (and that includes microblogging like Twitter or Mastodon) is that everything goes through my IRC client, so Weechat could actually fit well in there. Going with gomuks, on the other hand, would mean running it in parallel with Irssi or ... ditching IRC, which is a leap I'm not quite ready to take just yet.

Oh, and basically none of those clients (except Nheko and Element) support VoIP, which is still kind of a second-class citizen in Matrix. It does not support large multimedia rooms, for example: Jitsi was used for FOSDEM instead of the native videoconferencing system.

Bots

This falls a little aside the "usability" section, but I didn't know where to put this... There's a few Matrix bots out there, and you are likely going to be able to replace your existing bots with Matrix bots. It's true that IRC has a long and impressive history with lots of various bots doing various things, but given how young Matrix is, there's still a good variety:

  • maubot: generic bot with tons of usual plugins like sed, dice, karma, xkcd, echo, rss, reminder, translate, react, exec, gitlab/github webhook receivers, weather, etc
  • opsdroid: framework to implement "chat ops" in Matrix, connects with Matrix, GitHub, GitLab, Shell commands, Slack, etc
  • matrix-nio: another framework, used to build lots more bots like:
    • hemppa: generic bot with various functionality like weather, RSS feeds, calendars, cron jobs, OpenStreetmaps lookups, URL title snarfing, wolfram alpha, astronomy pic of the day, Mastodon bridge, room bridging, oh dear
    • devops: ping, curl, etc
    • podbot: play podcast episodes from AntennaPod
    • cody: Python, Ruby, Javascript REPL
    • eno: generic bot, "personal assistant"
  • mjolnir: moderation bot
  • hookshot: bridge with GitLab/GitHub
  • matrix-monitor-bot: latency monitor

One thing I haven't found an equivalent for is Debian's MeetBot. There's an archive bot but it doesn't have topics or a meeting chair, or HTML logs.

Working on Matrix

As a developer, I find Matrix kind of intimidating. The specification is huge. The official specification itself looks somewhat digestable: it's only 6 APIs so that looks, at first, kind of reasonable. But whenever you start asking complicated questions about Matrix, you quickly fall into the Matrix Spec Change specification (which, yes, is a separate specification). And there are literally hundreds of MSCs flying around. It's hard to tell what's been adopted and what hasn't, and even harder to figure out if your specific client has implemented it.

(One trendy answer to this problem is to "rewrite it in rust": Matrix are working on implementing a lot of those specifications in a matrix-rust-sdk that's designed to take the implementation details away from users.)

Just taking the latest weekly Matrix report, you find that three new MSCs proposed, just last week! There's even a graph that shows the number of MSCs is progressing steadily, at 600+ proposals total, with the majority (300+) "new". I would guess the "merged" ones are at about 150.

That's a lot of text which includes stuff like 3D worlds which, frankly, I don't think you should be working on when you have such important security and usability problems. (The internet as a whole, arguably, doesn't fare much better. RFC600 is a really obscure discussion about "INTERFACING AN ILLINOIS PLASMA TERMINAL TO THE ARPANET". Maybe that's how many MSCs will end up as well, left forgotten in the pits of history.)

And that's the thing: maybe the Matrix people have a different objective than I have. They want to connect everything to everything, and make Matrix a generic transport for all sorts of applications, including virtual reality, collaborative editors, and so on.

I just want secure, simple messaging. Possibly with good file transfers, and video calls. That it works with existing stuff is good, and it should be federated to remove the "Signal point of failure". So I'm a bit worried with the direction all those MSCs are taking, especially when you consider that clients other than Element are still struggling to keep up with basic features like end-to-end encryption or room discovery, never mind voice or spaces...

Conclusion

Overall, Matrix is somehow in the space XMPP was a few years ago. It has a ton of features, pretty good clients, and a large community. It seems to have gained some of the momentum that XMPP has lost. It may have the most potential to replace Signal if something bad would happen to it (like, I don't know, getting banned or going nuts with cryptocurrency)...

But it's really not there yet, and I don't see Matrix trying to get there either, which is a bit worrisome.

Looking back at history

I'm also worried that we are repeating the errors of the past. The history of federated services is really fascinating:. IRC, FTP, HTTP, and SMTP were all created in the early days of the internet, and are all still around (except, arguably, FTP, which was removed from major browsers recently). All of them had to face serious challenges in growing their federation.

IRC had numerous conflicts and forks, both at the technical level but also at the political level. The history of IRC is really something that anyone working on a federated system should study in detail, because they are bound to make the same mistakes if they are not familiar with it. The "short" version is:

  • 1988: Finish researcher publishes first IRC source code
  • 1989: 40 servers worldwide, mostly universities
  • 1990: EFnet ("eris-free network") fork which blocks the "open relay", named Eris - followers of Eris form the A-net, which promptly dissolves itself, with only EFnet remaining
  • 1992: Undernet fork, which offered authentication ("services"), routing improvements and timestamp-based channel synchronisation
  • 1994: DALnet fork, from Undernet, again on a technical disagreement
  • 1995: Freenode founded
  • 1996: IRCnet forks from EFnet, following a flame war of historical proportion, splitting the network between Europe and the Americas
  • 1997: Quakenet founded
  • 1999: (XMPP founded)
  • 2001: 6 million users, OFTC founded
  • 2002: DALnet peaks at 136,000 users
  • 2003: IRC as a whole peaks at 10 million users, EFnet peaks at 141,000 users
  • 2004: (Facebook founded), Undernet peaks at 159,000 users
  • 2005: Quakenet peaks at 242,000 users, IRCnet peaks at 136,000 (Youtube founded)
  • 2006: (Twitter founded)
  • 2009: (WhatsApp, Pinterest founded)
  • 2010: (TextSecure AKA Signal, Instagram founded)
  • 2011: (Snapchat founded)
  • ~2013: Freenode peaks at ~100,000 users
  • 2016: IRCv3 standardisation effort started (TikTok founded)
  • 2021: Freenode self-destructs, Libera chat founded
  • 2022: Libera peaks at 50,000 users, OFTC peaks at 30,000 users

(The numbers were taken from the Wikipedia page and Netsplit.de. Note that I also include other networks launch in parenthesis for context.)

Pretty dramatic, don't you think? Eventually, somehow, IRC became irrelevant for most people: few people are even aware of it now. With less than a million users active, it's smaller than Mastodon, XMPP, or Matrix at this point.1 If I were to venture a guess, I'd say that infighting, lack of a standardization body, and a somewhat annoying protocol meant the network could not grow. It's also possible that the decentralised yet centralised structure of IRC networks limited their reliability and growth.

But large social media companies have also taken over the space: observe how IRC numbers peak around the time the wave of large social media companies emerge, especially Facebook (2.9B users!!) and Twitter (400M users).

Where the federated services are in history

Right now, Matrix, and Mastodon (and email!) are at the "pre-EFnet" stage: anyone can join the federation. Mastodon has started working on a global block list of fascist servers which is interesting, but it's still an open federation. Right now, Matrix is totally open, but matrix.org publishes a (federated) block list of hostile servers (#matrix-org-coc-bl:matrix.org, yes, of course it's a room).

Interestingly, Email is also in that stage, where there are block lists of spammers, and it's a race between those blockers and spammers. Large email providers, obviously, are getting closer to the EFnet stage: you could consider they only accept email from themselves or between themselves. It's getting increasingly hard to deliver mail to Outlook and Gmail for example, partly because of bias against small providers, but also because they are including more and more machine-learning tools to sort through email and those systems are, fundamentally, unknowable. It's not quite the same as splitting the federation the way EFnet did, but the effect is similar.

HTTP has somehow managed to live in a parallel universe, as it's technically still completely federated: anyone can start a web server if they have a public IP address and anyone can connect to it. The catch, of course, is how you find the darn thing. Which is how Google became one of the most powerful corporations on earth, and how they became the gatekeepers of human knowledge online.

I have only briefly mentioned XMPP here, and my XMPP fans will undoubtedly comment on that, but I think it's somewhere in the middle of all of this. It was co-opted by Facebook and Google, and both corporations have abandoned it to its fate. I remember fondly the days where I could do instant messaging with my contacts who had a Gmail account. Those days are gone, and I don't talk to anyone over Jabber anymore, unfortunately. And this is a threat that Matrix still has to face.

It's also the threat Email is currently facing. On the one hand corporations like Facebook want to completely destroy it and have mostly succeeded: many people just have an email account to register on things and talk to their friends over Instagram or (lately) TikTok (which, I know, is not Facebook, but they started that fire).

On the other hand, you have corporations like Microsoft and Google who are still using and providing email services — because, frankly, you still do need email for stuff, just like fax is still around — but they are more and more isolated in their own silo. At this point, it's only a matter of time they reach critical mass and just decide that the risk of allowing external mail coming in is not worth the cost. They'll simply flip the switch and work on an allow-list principle. Then we'll have closed the loop and email will be dead, just like IRC is "dead" now.

I wonder which path Matrix will take. Could it liberate us from these vicious cycles?

  1. According to Wikipedia, there are currently about 500 distinct IRC networks operating, on about 1,000 servers, serving over 250,000 users. In contrast, Mastodon seems to be around 5 million users, Matrix.org claimed at FOSDEM 2021 to have about 28 million globally visible accounts, and Signal lays claim to over 40 million souls. XMPP claims to have "millions" of users on the xmpp.org homepage but the FAQ says they don't actually know. On the proprietary silo side of the fence, this page says

    • Facebook: 2.9 billion users
    • WhatsApp: 2B
    • Instagram: 1.4B
    • TikTok: 1B
    • Snapchat: 500M
    • Pinterest: 480M
    • Twitter: 397M

    Notable omission from that list: Youtube, with its mind-boggling 2.6 billion users...

    Those are not the kind of numbers you just "need to convince a brother or sister" to grow the network...

Categories: FLOSS Project Planets

Antoine Beaupré: Matrix notes

Planet Debian - Fri, 2022-06-17 11:34

I have some concerns about Matrix (the protocol, not the movie that came out recently, although I do have concerns about that as well). I've been watching the project for a long time, and it seems more a promising alternative to many protocols like IRC, XMPP, and Signal.

This review may sound a bit negative, because it focuses on those concerns. I am the operator of an IRC network and people keep asking me to bridge it with Matrix. I have myself considered just giving up on IRC and converting to Matrix. This space is a living document exploring my research of that problem space. The TL;DR: is that no, I'm not setting up a bridge just yet, and I'm still on IRC.

This article was written over the course of the last three months, but I have been watching the Matrix project for years (my logs seem to say 2016 at least). The article is rather long. It will likely take you half an hour to read, so copy this over to your ebook reader, your tablet, or dead trees, and lean back and relax as I show you around the Matrix. Or, alternatively, just jump to a section that interest you, most likely the conclusion.

Introduction to Matrix

Matrix is an "open standard for interoperable, decentralised, real-time communication over IP. It can be used to power Instant Messaging, VoIP/WebRTC signalling, Internet of Things communication - or anywhere you need a standard HTTP API for publishing and subscribing to data whilst tracking the conversation history".

It's also (when compared with XMPP) "an eventually consistent global JSON database with an HTTP API and pubsub semantics - whilst XMPP can be thought of as a message passing protocol."

According to their FAQ, the project started in 2014, has about 20,000 servers, and millions of users. Matrix works over HTTPS but over a special port: 8448.

Security and privacy

I have some concerns about the security promises of Matrix. It's advertised as a "secure" with "E2E [end-to-end] encryption", but how does it actually work?

Data retention defaults

One of my main concerns with Matrix is data retention, which is a key part of security in a threat model where (for example) an hostile state actor wants to surveil your communications and can seize your devices.

On IRC, servers don't actually keep messages all that long: they pass them along to other servers and clients as fast as they can, only keep them in memory, and move on to the next message. There are no concerns about data retention on messages (and their metadata) other than the network layer. (I'm ignoring the issues with user registration, which is a separate, if valid, concern.) Obviously, an hostile server could log everything passing through it, but IRC federations are normally tightly controlled. So, if you trust your IRC operators, you should be fairly safe. Obviously, clients can (and often do, even if OTR is configured!) log all messages, but this is generally not the default. Irssi, for example, does not log by default. IRC bouncers are more likely to log to disk, of course, to be able to do what they do.

Compare this to Matrix: when you send a message to a Matrix homeserver, that server first stores it in its internal SQL database. Then it will transmit that message to all clients connected to that server and room, and to all other servers that have clients connected to that room. Those remote servers, in turn, will keep a copy of that message and all its metadata in their own database, by default forever. On encrypted rooms those messages are encrypted, but not their metadata.

There is a mechanism to expire entries in Synapse, but it is not enabled by default. So one should generally assume that a message sent on Matrix is never expired.

GDPR in the federation

But even if that setting was enabled by default, how do you control it? This is a fundamental problem of the federation: if any user is allowed to join a room (which is the default), those user's servers will log all content and metadata from that room. That includes private, one-on-one conversations, since those are essentially rooms as well.

In the context of the GDPR, this is really tricky: who is the responsible party (known as the "data controller") here? It's basically any yahoo who fires up a home server and joins a room.

In a federated network, one has to wonder whether GDPR enforcement is even possible at all. But in Matrix in particular, if you want to enforce your right to be forgotten in a given room, you would have to:

  1. enumerate all the users that ever joined the room while you were there
  2. discover all their home servers
  3. start a GDPR procedure against all those servers

I recognize this is a hard problem to solve while still keeping an open ecosystem. But I believe that Matrix should have much stricter defaults towards data retention than right now. Message expiry should be enforced by default, for example. (Note that there are also redaction policies that could be used to implement part of the GDPR automatically, see the privacy policy discussion below on that.)

Also keep in mind that, in the brave new peer-to-peer world that Matrix is heading towards, the boundary between server and client is likely to be fuzzier, which would make applying the GDPR even more difficult.

In fact, maybe Synapse should be designed so that there's no configurable flag to turn off data retention. A bit like how most system loggers in UNIX (e.g. syslog) come with a log retention system that typically rotate logs after a few weeks or month. Historically, this was designed to keep hard drives from filling up, but it also has the added benefit of limiting the amount of personal information kept on disk in this modern day. (Arguably, syslog doesn't rotate logs on its own, but, say, Debian GNU/Linux, as an installed system, does have log retention policies well defined for installed packages, and those can be discussed. And "no expiry" is definitely a bug.

Matrix.org privacy policy

When I first looked at Matrix, five years ago, Element.io was called Riot.im and had a rather dubious privacy policy:

We currently use cookies to support our use of Google Analytics on the Website and Service. Google Analytics collects information about how you use the Website and Service.

[...]

This helps us to provide you with a good experience when you browse our Website and use our Service and also allows us to improve our Website and our Service.

When I asked Matrix people about why they were using Google Analytics, they explained this was for development purposes and they were aiming for velocity at the time, not privacy (paraphrasing here).

They also included a "free to snitch" clause:

If we are or believe that we are under a duty to disclose or share your personal data, we will do so in order to comply with any legal obligation, the instructions or requests of a governmental authority or regulator, including those outside of the UK.

Those are really broad terms, above and beyond what is typically expected legally.

Like the current retention policies, such user tracking and ... "liberal" collaboration practices with the state set a bad precedent for other home servers.

Thankfully, since the above policy was published (2017), the GDPR was "implemented" (2018) and it seems like both the Element.io privacy policy and the Matrix.org privacy policy have been somewhat improved since.

Notable points of the new privacy policies:

  • 2.3.1.1: the "federation" section actually outlines that "Federated homeservers and Matrix clients which respect the Matrix protocol are expected to honour these controls and redaction/erasure requests, but other federated homeservers are outside of the span of control of Element, and we cannot guarantee how this data will be processed"
  • 2.6: users under the age of 16 should not use the matrix.org service
  • 2.10: Upcloud, Mythic Beast, Amazon, and CloudFlare possibly have access to your data (it's nice to at least mention this in the privacy policy: many providers don't even bother admitting to this kind of delegation)
  • Element 2.2.1: mentions many more third parties (Twilio, Stripe, Quaderno, LinkedIn, Twitter, Google, Outplay, PipeDrive, HubSpot, Posthog, Sentry, and Matomo (phew!) used when you are paying Matrix.org for hosting

I'm not super happy with all the trackers they have on the Element platform, but then again you don't have to use that service. Your favorite homeserver (assuming you are not on Matrix.org) probably has their own Element deployment, hopefully without all that garbage.

Overall, this is all a huge improvement over the previous privacy policy, so hats off to the Matrix people for figuring out a reasonable policy in such a tricky context. I particularly like this bit:

We will forget your copy of your data upon your request. We will also forward your request to be forgotten onto federated homeservers. However - these homeservers are outside our span of control, so we cannot guarantee they will forget your data.

It's great they implemented those mechanisms and, after all, if there's an hostile party in there, nothing can prevent them from using screenshots to just exfiltrate your data away from the client side anyways, even with services typically seen as more secure, like Signal.

As an aside, I also appreciate that Matrix.org has a fairly decent code of conduct, based on the TODO CoC which checks all the boxes in the geekfeminism wiki.

Metadata handling

Overall, privacy protections in Matrix mostly concern message contents, not metadata. In other words, who's talking with who, when and from where is not well protected. Compared to a tool like Signal, which goes through great lengths to anonymize that data with features like private contact discovery, disappearing messages, sealed senders, and private groups, Matrix is definitely behind.

This is a known issue (opened in 2019) in Synapse, but this is not just an implementation issue, it's a flaw in the protocol itself. Home servers keep join/leave of all rooms, which gives clear text information about who is talking to. Synapse logs may also contain privately identifiable information that home server admins might not be aware of in the first place. Those log rotation policies are separate from the server-level retention policy, which may be confusing for a novice sysadmin.

Combine this with the federation: even if you trust your home server to do the right thing, the second you join a public room with third-party home servers, those ideas kind of get thrown out because those servers can do whatever they want with that information. Again, a problem that is hard to solve in any federation.

To be fair, IRC doesn't have a great story here either: any client knows not only who's talking to who in a room, but also typically their client IP address. Servers can (and often do) obfuscate this, but often that obfuscation is trivial to reverse. Some servers do provide "cloaks" (sometimes automatically), but that's kind of a "slap-on" solution that actually moves the problem elsewhere: now the server knows a little more about the user.

Overall, I would worry much more about a Matrix home server seizure than a IRC or Signal server seizure. Signal does get subpoenas, and they can only give out a tiny bit of information about their users: their phone number, and their registration, and last connection date. Matrix carries a lot more information in its database.

Amplification attacks on URL previews

I (still!) run an Icecast server and sometimes share links to it on IRC which, obviously, also ends up on (more than one!) Matrix home servers because some people connect to IRC using Matrix. This, in turn, means that Matrix will connect to that URL to generate a link preview.

I feel this outlines a security issue, especially because those sockets would be kept open seemingly forever. I tried to warn the Matrix security team but somehow, I don't think this issue was taken very seriously. Here's the disclosure timeline:

  • January 18: contacted Matrix security
  • January 19: response: already reported as a bug
  • January 20: response: can't reproduce
  • January 31: timeout added, considered solved
  • January 31: I respond that I believe the security issue is underestimated, ask for clearance to disclose
  • February 1: response: asking for two weeks delay after the next release (1.53.0) including another patch, presumably in two weeks' time
  • February 22: Matrix 1.53.0 released
  • April 14: I notice the release, ask for clearance again
  • April 14: response: referred to the public disclosure

There are a couple of problems here:

  1. the bug was publicly disclosed in September 2020, and not considered a security issue until I notified them, and even then, I had to insist

  2. no clear disclosure policy timeline was proposed or seems established in the project (there is a security disclosure policy but it doesn't include any predefined timeline)

  3. I wasn't informed of the disclosure

  4. the actual solution is a size limit (10MB, already implemented), a time limit (30 seconds, implemented in PR 11784), and a content type allow list (HTML, "media" or JSON, implemented in PR 11936), and I'm not sure it's adequate

  5. (pure vanity:) I did not make it to their Hall of fame

I'm not sure those solutions are adequate because they all seem to assume a single home server will pull that one URL for a little while then stop. But in a federated network, many (possibly thousands) home servers may be connected in a single room at once. If an attacker drops a link into such a room, all those servers would connect to that link all at once. This is an amplification attack: a small amount of traffic will generate a lot more traffic to a single target. It doesn't matter there are size or time limits: the amplification is what matters here.

It should also be noted that clients that generate link previews have more amplification because they are more numerous than servers. And of course, the default Matrix client (Element) does generate link previews as well.

That said, this is possibly not a problem specific to Matrix: any federated service that generates link previews may suffer from this.

I'm honestly not sure what the solution is here. Maybe moderation? Maybe link previews are just evil? All I know is there was this weird bug in my Icecast server and I tried to ring the bell about it, and it feels it was swept under the rug. Somehow I feel this is bound to blow up again in the future, even with the current mitigation.

Moderation

In Matrix like elsewhere, Moderation is a hard problem. There is a detailed moderation guide and much of this problem space is actively worked on in Matrix right now. A fundamental problem with moderating a federated space is that a user banned from a room can rejoin the room from another server. This is why spam is such a problem in Email, and why IRC networks have stopped federating ages ago (see the IRC history for that fascinating story).

The mjolnir bot

The mjolnir moderation bot is designed to help with some of those things. It can kick and ban users, redact all of a user's message (as opposed to one by one), all of this across multiple rooms. It can also subscribe to a federated block list published by matrix.org to block known abusers (users or servers). Bans are pretty flexible and can operate at the user, room, or server level.

Matrix people suggest making the bot admin of your channels, because you can't take back admin from a user once given.

The command-line tool

There's also a new command line tool designed to do things like:

  • System notify users (all users/users from a list, specific user)
  • delete sessions/devices not seen for X days
  • purge the remote media cache
  • select rooms with various criteria (external/local/empty/created by/encrypted/cleartext)
  • purge history of theses rooms
  • shutdown rooms

This tool and Mjolnir are based on the admin API built into Synapse.

Rate limiting

Synapse has pretty good built-in rate-limiting which blocks repeated login, registration, joining, or messaging attempts. It may also end up throttling servers on the federation based on those settings.

Fundamental federation problems

Because users joining a room may come from another server, room moderators are at the mercy of the registration and moderation policies of those servers. Matrix is like IRC's +R mode ("only registered users can join") by default, except that anyone can register their own homeserver, which makes this limited.

Server admins can block IP addresses and home servers, but those tools are not currently available to room admins. So it would be nice to have room admins have that capability, just like IRC channel admins can block users based on their IP address.

Matrix has the concept of guest accounts, but it is not used very much, and virtually no client supports it. This contrasts with the way IRC works: by default, anyone can join an IRC network even without authentication. Some channels require registration, but in general you are free to join and look around (until you get blocked, of course).

I have heard anecdotal evidence that "moderating bridges is hell", and I can imagine why. Moderation is already hard enough on one federation, when you bridge a room with another network, you inherit all the problems from that network but without the entire abuse control tools from the original network's API...

Room admins

Matrix, in particular, has the problem that room administrators (which have the power to redact messages, ban users, and promote other users) are bound to their Matrix ID which is, in turn, bound to their home servers. This implies that a home server administrators could (1) impersonate a given user and (2) use that to hijack the room. So in practice, the home server is the trust anchor for rooms, not the user themselves.

That said, if server B administrator hijack user joe on server B, they will hijack that room on that specific server. This will not (necessarily) affect users on the other servers, as servers could refuse parts of the updates or ban the compromised account (or server).

It does seem like a major flaw that room credentials are bound to Matrix identifiers, as opposed to the E2E encryption credentials. In an encrypted room even with fully verified members, a compromised or hostile home server can still take over the room by impersonating an admin. That admin (or even a newly minted user) can then send events or listen on the conversations.

This is even more frustrating when you consider that Matrix events are actually signed and therefore have some authentication attached to them, acting like some sort of Merkle tree (as it contains a link to previous events). That signature, however, is made from the homeserver PKI keys, not the client's E2E keys, which makes E2E feel like it has been "bolted on" later.

Availability

While Matrix has a strong advantage over Signal in that it's decentralized (so anyone can run their own homeserver,), I couldn't find an easy way to run a "multi-primary" setup, or even a "redundant" setup (even if with a single primary backend), short of going full-on "replicate PostgreSQL and Redis data", which is not typically for the faint of heart.

How this works in IRC

On IRC, it's quite easy to setup redundant nodes. All you need is:

  1. a new machine (with it's own public address with an open port)

  2. a shared secret (or certificate) between that machine and an existing one on the network

  3. a connect {} block on both servers

That's it: the node will join the network and people can connect to it as usual and share the same user/namespace as the rest of the network. The servers take care of synchronizing state: you do not need about replicating a database server.

(Now, experienced IRC people will know there's a catch here: IRC doesn't have authentication built in, and relies on "services" which are basically bots that authenticate users (I'm simplifying, don't nitpick). If that service goes down, the network still works, but then people can't authenticate, and they can start doing nasty things like steal people's identity if they get knocked offline. But still: basic functionality still works: you can talk in rooms and with users that are on the reachable network.)

User identities

Matrix is more complicated. Each "home server" has its own identity namespace: a specific user (say @anarcat:matrix.org) is bound to that specific home server. If that server goes down, that user is completely disconnected. They could register a new account elsewhere and reconnect, but then they basically lose all their configuration: contacts, joined channels are all lost.

(Also notice how the Matrix IDs don't look like a typical user address like an email in XMPP. They at least did their homework and got the allocation for the scheme.)

Rooms

Users talk to each other in "rooms", even in one-to-one communications. (Rooms are also used for other things like "spaces", they're basically used for everything, think "everything is a file" kind of tool.) For rooms, home servers act more like IRC nodes in that they keep a local state of the chat room and synchronize it with other servers. Users can keep talking inside a room if the server that originally hosts the room goes down. Rooms can have a local, server-specific "alias" so that, say, #room:matrix.org is also visible as #room:example.com on the example.com home server. Both addresses refer to the same room underlying room.

(Finding this in the Element settings is not obvious though, because that "alias" are actually called a "local address" there. So to create such an alias (in Element), you need to go in the room settings' "General" section, "Show more" in "Local address", then add the alias name (e.g. foo), and then that room will be available on your example.com homeserver as #foo:example.com.)

So a room doesn't belong to a server, it belongs to the federation, and anyone can join the room from any serer (if the room is public, or if invited otherwise). You can create a room on server A and when a user from server B joins, the room will be replicated on server B as well. If server A fails, server B will keep relaying traffic to connected users and servers.

A room is therefore not fundamentally addressed with the above alias, instead ,it has a internal Matrix ID, which basically a random string. It has a server name attached to it, but that was made just to avoid collisions. That can get a little confusing. For example, the #fractal:gnome.org room is an alias on the gnome.org server, but the room ID is !hwiGbsdSTZIwSRfybq:matrix.org. That's because the room was created on matrix.org, but the preferred branding is gnome.org now.

As an aside, rooms, by default, live forever, even after the last user quits. There's an admin API to delete rooms and a tombstone event to redirect to another one, but neither have a GUI yet. The latter is part of MSC1501 ("Room version upgrades") which allows a room admin to close a room, with a message and a pointer to another room.

Spaces

Discovering rooms can be tricky: there is a per-server room directory, but Matrix.org people are trying to deprecate it in favor of "Spaces". Room directories were ripe for abuse: anyone can create a room, so anyone can show up in there. It's possible to restrict who can add aliases, but anyways directories were seen as too limited.

In contrast, a "Space" is basically a room that's an index of other rooms (including other spaces), so existing moderation and administration mechanism that work in rooms can (somewhat) work in spaces as well. This enables a room directory that works across federation, regardless on which server they were originally created.

New users can be added to a space or room automatically in Synapse. (Existing users can be told about the space with a server notice.) This gives admins a way to pre-populate a list of rooms on a server, which is useful to build clusters of related home servers, providing some sort of redundancy, at the room -- not user -- level.

Home servers

So while you can workaround a home server going down at the room level, there's no such thing at the home server level, for user identities. So if you want those identities to be stable in the long term, you need to think about high availability. One limitation is that the domain name (e.g. matrix.example.com) must never change in the future, as renaming home servers is not supported.

The documentation used to say you could "run a hot spare" but that has been removed. Last I heard, it was not possible to run a high-availability setup where multiple, separate locations could replace each other automatically. You can have high performance setups where the load gets distributed among workers, but those are based on a shared database (Redis and PostgreSQL) backend.

So my guess is it would be possible to create a "warm" spare server of a matrix home server with regular PostgreSQL replication, but that is not documented in the Synapse manual. This sort of setup would also not be useful to deal with networking issues or denial of service attacks, as you will not be able to spread the load over multiple network locations easily. Redis and PostgreSQL heroes are welcome to provide their multi-primary solution in the comments. In the meantime, I'll just point out this is a solution that's handled somewhat more gracefully in IRC, by having the possibility of delegating the authentication layer.

Delegations

If you do not want to run a Matrix server yourself, it's possible to delegate the entire thing to another server. There's a server discovery API which uses the .well-known pattern (or SRV records, but that's "not recommended" and a bit confusing) to delegate that service to another server. Be warned that the server still needs to be explicitly configured for your domain. You can't just put:

{ "m.server": "matrix.org:443" }

... on https://example.com/.well-known/matrix/server and start using @you:example.com as a Matrix ID. That's because Matrix doesn't support "virtual hosting" and you'd still be connecting to rooms and people with your matrix.org identity, not example.com as you would normally expect. This is also why you cannot rename your home server.

The server discovery API is what allows servers to find each other. Clients, on the other hand, use the client-server discovery API: this is what allows a given client to find your home server when you type your Matrix ID on login.

Performance

The high availability discussion brushed over the performance of Matrix itself, but let's now dig into that.

Horizontal scalability

There were serious scalability issues of the main Matrix server, Synapse, in the past. So the Matrix team has been working hard to improve its design. Since Synapse 1.22 the home server can horizontally to multiple workers (see this blog post for details) which can make it easier to scale large servers.

Other implementations

There are other promising home servers implementations from a performance standpoint (dendrite, Golang, entered beta in late 2020; conduit, Rust, beta; others), but none of those are feature-complete so there's a trade-off to be made there. Synapse is also adding a lot of feature fast, so it's an open question whether the others will ever catch up. (I have heard that Dendrite might actually surpass Synapse in features within a few years, which would put Synapse in a more "LTS" situation.)

Latency

Matrix can feel slow sometimes. For example, joining the "Matrix HQ" room in Element (from matrix.debian.social) takes a few minutes and then fails. That is because the home server has to sync the entire room state when you join the room. There was promising work on this announced in the lengthy 2021 retrospective, and some of that work landed (partial sync) in the 1.53 release already. Other improvements coming include sliding sync, lazy loading over federation, and fast room joins. So that's actually something that could be fixed in the fairly short term.

But in general, communication in Matrix doesn't feel as "snappy" as on IRC or even Signal. It's hard to quantify this without instrumenting a full latency test bed (for example the tools I used in the terminal emulators latency tests), but even just typing in a web browser feels slower than typing in a xterm or Emacs for me.

Even in conversations, I "feel" people don't immediately respond as fast. In fact, this could be an interesting double-blind experiment to make: have people guess whether they are talking to a person on Matrix, XMPP, or IRC, for example. My theory would be that people could notice that Matrix users are slower, if only because of the TCP round-trip time each message has to take.

Transport

Some courageous person actually made some tests of various messaging platforms on a congested network. His evaluation was basically:

  • Briar: uses Tor, so unusable except locally
  • Matrix: "struggled to send and receive messages", joining a room takes forever as it has to sync all history, "took 20-30 seconds for my messages to be sent and another 20 seconds for further responses"
  • XMPP: "worked in real-time, full encryption, with nearly zero lag"

So that was interesting. I suspect IRC would have also fared better, but that's just a feeling.

Other improvements to the transport layer include support for websocket and the CoAP proxy work from 2019 (targeting 100bps links), but both seem stalled at the time of writing. The Matrix people have also announced the pinecone p2p overlay network which aims at solving large, internet-scale routing problems. See also this talk at FOSDEM 2022.

Usability Onboarding and workflow

The workflow for joining a room, when you use Element web, is not great:

  1. click on a link in a web browser
  2. land on (say) https://matrix.to/#/#matrix-dev:matrix.org
  3. offers "Element", yeah that's sounds great, let's click "Continue"
  4. land on https://app.element.io/#/room%2F%23matrix-dev%3Amatrix.org and then you need to register, aaargh

As you might have guessed by now, there is a specification to solve this, but web browsers need to adopt it as well, so that's far from actually being solved. At least browsers generally know about the matrix: scheme, it's just not exactly clear what they should do with it, especially when the handler is just another web page (e.g. Element web).

In general, when compared with tools like Signal or WhatsApp, Matrix doesn't fare so well in terms of user discovery. I probably have some of my normal contacts that have a Matrix account as well, but there's really no way to know. It's kind of creepy when Signal tells you "this person is on Signal!" but it's also pretty cool that it works, and they actually implemented it pretty well.

Registration is also less obvious: in Signal, the app confirms your phone number automatically. It's friction-less and quick. In Matrix, you need to learn about home servers, pick one, register (with a password! aargh!), and then setup encryption keys (not default), etc. It's a lot more friction.

And look, I understand: giving away your phone number is a huge trade-off. I don't like it either. But it solves a real problem and makes encryption accessible to a ton more people. Matrix does have "identity servers" that can serve that purpose, but I don't feel confident sharing my phone number there. It doesn't help that the identity servers don't have private contact discovery: giving them your phone number is a more serious security compromise than with Signal.

There's a catch-22 here too: because no one feels like giving away their phone numbers, no one does, and everyone assumes that stuff doesn't work anyways. Like it or not, Signal forcing people to divulge their phone number actually gives them critical mass that means actually a lot of my relatives are on Signal and I don't have to install crap like WhatsApp to talk with them.

5 minute clients evaluation

Throughout all my tests I evaluated a handful of Matrix clients, mostly from Flathub because almost none of them are packaged in Debian.

Right now I'm using Element, the flagship client from Matrix.org, in a web browser window, with the PopUp Window extension. This makes it look almost like a native app, and opens links in my main browser window (instead of a new tab in that separate window), which is nice. But I'm tired of buying memory to feed my web browser, so this indirection has to stop. Furthermore, I'm often getting completely logged off from Element, which means re-logging in, recovering my security keys, and reconfiguring my settings. That is extremely annoying.

Coming from Irssi, Element is really "GUI-y" (pronounced "gooey"). Lots of clickety happening. To mark conversations as read, in particular, I need to click-click-click on all the tabs that have some activity. There's no "jump to latest message" or "mark all as read" functionality as far as I could tell. In Irssi the former is built-in (alt-a) and I made a custom /READ command for the latter:

/ALIAS READ script exec \$_->activity(0) for Irssi::windows

And yes, that's a Perl script in my IRC client. I am not aware of any Matrix client that does stuff like that, except maybe Weechat, if we can call it a Matrix client, or Irssi itself, now that it has a Matrix plugin (!).

As for other clients, I have looked through the Matrix Client Matrix (confusing right?) to try to figure out which one to try, and, even after selecting Linux as a filter, the chart is just too wide to figure out anything. So I tried those, kind of randomly:

  • Fractal
  • Mirage
  • Nheko
  • Quaternion

Unfortunately, I lost my notes on those, I don't actually remember which one did what. I still have a session open with Mirage, so I guess that means it's the one I preferred, but I remember they were also all very GUI-y.

Maybe I need to look at weechat-matrix or gomuks. At least Weechat is scriptable so I could continue playing the power-user. Right now my strategy with messaging (and that includes microblogging like Twitter or Mastodon) is that everything goes through my IRC client, so Weechat could actually fit well in there. Going with gomuks, on the other hand, would mean running it in parallel with Irssi or ... ditching IRC, which is a leap I'm not quite ready to take just yet.

Oh, and basically none of those clients (except Nheko and Element) support VoIP, which is still kind of a second-class citizen in Matrix. It does not support large multimedia rooms, for example: Jitsi was used for FOSDEM instead of the native videoconferencing system.

Bots

This falls a little aside the "usability" section, but I didn't know where to put this... There's a few Matrix bots out there, and you are likely going to be able to replace your existing bots with Matrix bots. It's true that IRC has a long and impressive history with lots of various bots doing various things, but given how young Matrix is, there's still a good variety:

  • maubot: generic bot with tons of usual plugins like sed, dice, karma, xkcd, echo, rss, reminder, translate, react, exec, gitlab/github webhook receivers, weather, etc
  • opsdroid: framework to implement "chat ops" in Matrix, connects with Matrix, GitHub, GitLab, Shell commands, Slack, etc
  • matrix-nio: another framework, used to build lots more bots like:
    • hemppa: generic bot with various functionality like weather, RSS feeds, calendars, cron jobs, OpenStreetmaps lookups, URL title snarfing, wolfram alpha, astronomy pic of the day, Mastodon bridge, room bridging, oh dear
    • devops: ping, curl, etc
    • podbot: play podcast episodes from AntennaPod
    • cody: Python, Ruby, Javascript REPL
    • eno: generic bot, "personal assistant"
  • mjolnir: moderation bot
  • hookshot: bridge with GitLab/GitHub
  • matrix-monitor-bot: latency monitor

One thing I haven't found an equivalent for is Debian's MeetBot. There's an archive bot but it doesn't have topics or a meeting chair, or HTML logs.

Working on Matrix

As a developer, I find Matrix kind of intimidating. The specification is huge. The official specification itself looks somewhat digestable: it's only 6 APIs so that looks, at first, kind of reasonable. But whenever you start asking complicated questions about Matrix, you quickly fall into the Matrix Spec Change specification (which, yes, is a separate specification). And there are literally hundreds of MSCs flying around. It's hard to tell what's been adopted and what hasn't, and even harder to figure out if your specific client has implemented it.

(One trendy answer to this problem is to "rewrite it in rust": Matrix are working on implementing a lot of those specifications in a matrix-rust-sdk that's designed to take the implementation details away from users.)

Just taking the latest weekly Matrix report, you find that three new MSCs proposed, just last week! There's even a graph that shows the number of MSCs is progressing steadily, at 600+ proposals total, with the majority (300+) "new". I would guess the "merged" ones are at about 150.

That's a lot of text which includes stuff like 3D worlds which, frankly, I don't think you should be working on when you have such important security and usability problems. (The internet as a whole, arguably, doesn't fare much better. RFC600 is a really obscure discussion about "INTERFACING AN ILLINOIS PLASMA TERMINAL TO THE ARPANET". Maybe that's how many MSCs will end up as well, left forgotten in the pits of history.)

And that's the thing: maybe the Matrix people have a different objective than I have. They want to connect everything to everything, and make Matrix a generic transport for all sorts of applications, including virtual reality, collaborative editors, and so on.

I just want secure, simple messaging. Possibly with good file transfers, and video calls. That it works with existing stuff is good, and it should be federated to remove the "Signal point of failure". So I'm a bit worried with the direction all those MSCs are taking, especially when you consider that clients other than Element are still struggling to keep up with basic features like end-to-end encryption or room discovery, never mind voice or spaces...

Conclusion

Overall, Matrix is somehow in the space XMPP was a few years ago. It has a ton of features, pretty good clients, and a large community. It seems to have gained some of the momentum that XMPP has lost. It may have the most potential to replace Signal if something bad would happen to it (like, I don't know, getting banned or going nuts with cryptocurrency)...

But it's really not there yet, and I don't see Matrix trying to get there either, which is a bit worrisome.

Looking back at history

I'm also worried that we are repeating the errors of the past. The history of federated services is really fascinating:. IRC, FTP, HTTP, and SMTP were all created in the early days of the internet, and are all still around (except, arguably, FTP, which was removed from major browsers recently). All of them had to face serious challenges in growing their federation.

IRC had numerous conflicts and forks, both at the technical level but also at the political level. The history of IRC is really something that anyone working on a federated system should study in detail, because they are bound to make the same mistakes if they are not familiar with it. The "short" version is:

  • 1988: Finish researcher publishes first IRC source code
  • 1989: 40 servers worldwide, mostly universities
  • 1990: EFnet ("eris-free network") fork which blocks the "open relay", named Eris - followers of Eris form the A-net, which promptly dissolves itself, with only EFnet remaining
  • 1992: Undernet fork, which offered authentication ("services"), routing improvements and timestamp-based channel synchronisation
  • 1994: DALnet fork, from Undernet, again on a technical disagreement
  • 1995: Freenode founded
  • 1996: IRCnet forks from EFnet, following a flame war of historical proportion, splitting the network between Europe and the Americas
  • 1997: Quakenet founded
  • 1999: (XMPP founded)
  • 2001: 6 million users, OFTC founded
  • 2002: DALnet peaks at 136,000 users
  • 2003: IRC as a whole peaks at 10 million users, EFnet peaks at 141,000 users
  • 2004: (Facebook founded), Undernet peaks at 159,000 users
  • 2005: Quakenet peaks at 242,000 users, IRCnet peaks at 136,000 (Youtube founded)
  • 2006: (Twitter founded)
  • 2009: (WhatsApp, Pinterest founded)
  • 2010: (TextSecure AKA Signal, Instagram founded)
  • 2011: (Snapchat founded)
  • ~2013: Freenode peaks at ~100,000 users
  • 2016: IRCv3 standardisation effort started (TikTok founded)
  • 2021: Freenode self-destructs, Libera chat founded
  • 2022: Libera peaks at 50,000 users, OFTC peaks at 30,000 users

(The numbers were taken from the Wikipedia page and Netsplit.de. Note that I also include other networks launch in parenthesis for context.)

Pretty dramatic, don't you think? Eventually, somehow, IRC became irrelevant for most people: few people are even aware of it now. With less than a million users active, it's smaller than Mastodon, XMPP, or Matrix at this point.1 If I were to venture a guess, I'd say that infighting, lack of a standardization body, and a somewhat annoying protocol meant the network could not grow. It's also possible that the decentralised yet centralised structure of IRC networks limited their reliability and growth.

But large social media companies have also taken over the space: observe how IRC numbers peak around the time the wave of large social media companies emerge, especially Facebook (2.9B users!!) and Twitter (400M users).

Where the federated services are in history

Right now, Matrix, and Mastodon (and email!) are at the "pre-EFnet" stage: anyone can join the federation. Mastodon has started working on a global block list of fascist servers which is interesting, but it's still an open federation. Right now, Matrix is totally open, but matrix.org publishes a (federated) block list of hostile servers (#matrix-org-coc-bl:matrix.org, yes, of course it's a room).

Interestingly, Email is also in that stage, where there are block lists of spammers, and it's a race between those blockers and spammers. Large email providers, obviously, are getting closer to the EFnet stage: you could consider they only accept email from themselves or between themselves. It's getting increasingly hard to deliver mail to Outlook and Gmail for example, partly because of bias against small providers, but also because they are including more and more machine-learning tools to sort through email and those systems are, fundamentally, unknowable. It's not quite the same as splitting the federation the way EFnet did, but the effect is similar.

HTTP has somehow managed to live in a parallel universe, as it's technically still completely federated: anyone can start a web server if they have a public IP address and anyone can connect to it. The catch, of course, is how you find the darn thing. Which is how Google became one of the most powerful corporations on earth, and how they became the gatekeepers of human knowledge online.

I have only briefly mentioned XMPP here, and my XMPP fans will undoubtedly comment on that, but I think it's somewhere in the middle of all of this. It was co-opted by Facebook and Google, and both corporations have abandoned it to its fate. I remember fondly the days where I could do instant messaging with my contacts who had a Gmail account. Those days are gone, and I don't talk to anyone over Jabber anymore, unfortunately. And this is a threat that Matrix still has to face.

It's also the threat Email is currently facing. On the one hand corporations like Facebook want to completely destroy it and have mostly succeeded: many people just have an email account to register on things and talk to their friends over Instagram or (lately) TikTok (which, I know, is not Facebook, but they started that fire).

On the other hand, you have corporations like Microsoft and Google who are still using and providing email services — because, frankly, you still do need email for stuff, just like fax is still around — but they are more and more isolated in their own silo. At this point, it's only a matter of time they reach critical mass and just decide that the risk of allowing external mail coming in is not worth the cost. They'll simply flip the switch and work on an allow-list principle. Then we'll have closed the loop and email will be dead, just like IRC is "dead" now.

I wonder which path Matrix will take. Could it liberate us from these vicious cycles?

  1. According to Wikipedia, there are currently about 500 distinct IRC networks operating, on about 1,000 servers, serving over 250,000 users. In contrast, Mastodon seems to be around 5 million users, Matrix.org claimed at FOSDEM 2021 to have about 28 million globally visible accounts, and Signal lays claim to over 40 million souls. XMPP claims to have "millions" of users on the xmpp.org homepage but the FAQ says they don't actually know. On the proprietary silo side of the fence, this page says

    • Facebook: 2.9 billion users
    • WhatsApp: 2B
    • Instagram: 1.4B
    • TikTok: 1B
    • Snapchat: 500M
    • Pinterest: 480M
    • Twitter: 397M

    Notable omission from that list: Youtube, with its mind-boggling 2.6 billion users...

    Those are not the kind of numbers you just "need to convince a brother or sister" to grow the network...

Categories: FLOSS Project Planets

PyBites: What I have learned from an open-source project

Planet Python - Fri, 2022-06-17 10:30
What preceded it

I like the Carbon images that appear on Twitter from Pybites. Out of curiosity, I took a look at the code on GitHub, but it was pretty overwhelming and intimidating, so I quickly moved on to something I did “understand.”

I often follow a tutorial or collect items I might need one day. I had so many Udemy courses that I was ashamed of it. Taking a course gives a sense of security: they take you by the hand, and you get the feeling that you are learning something because you can do the exercises they present.

However, in practice, I did not learn to program in Python. The basics stuck, but I couldn’t build an app with them, and I couldn’t apply my knowledge; I wasn’t even able to write a simple rock-paper-scissors game.

To get out of this paralysis tutorial, I started with PDM (the Pybites Developer Mindset program). The one-on-one guidance from someone who will assess my work was an exciting undertaking. But now, I’m glad I did because it has brought me to the point where I can even dig into the code of an open-source project and modify it to my liking.

The code on GitHub and my plan

Before I could get started with the code from PyBites-Open-Source on GitHub, I had to figure out what I wanted to do. So I started making a list of what I wanted, what I had to do, and what resources I needed.

The list of tasks I had prepared for myself included the following:

  • Find out what happens in the code.
  • List the things I want to change.
  • Analyze the link in the browser to see which values I have to give.
  • Analyze the JSON file to see what the values look like.
  • Place the values in the code, that is adjusting the URL by passing in the variables.
  • Rename the image to date-time-carbon.png.
The URL

To start, I created a nice image on Carbon, which I could use for learning from this open-source project. Then I exported all the desired settings (a JSON file) so that I would always have the data at hand. Finally, I copied the link from the address bar. The URL contained all the data needed to create the image.

Sample snippet to test

To be able to test whether everything was going according to plan, I used a sample snippet to ensure everything looked how I envisioned it. This snippet would be the same during the development process to have a test guideline.

# using slicing s = "some random string" # move "som" to the right print(s[3:] + s[:3]) # move "ing" to the left print(s[-3:] + s[:-3]) # using collections deque from collections import deque s = "some random string" deq = deque(s) deq.rotate(3) print (deq) # make it a string again print("".join(deq)) The options I would like to see in my result.

The images of Pybites are very beautiful, but I wanted something different. For this I had to adjust a number of options. After examining the JSON file and URL, I found that I needed the following data:

  • windowTheme (boxy);
  • width (fixed width of the image = 680);
  • widthAdjustment (false, because I give it a fixed width);
  • dropShadow(true);
  • dropShadowOffsetY(“20px”);
  • dropShadowBlurRadius(“68px”);
  • fontFamily (“JetBrains Mono”, must be installed on the computer);
  • fontSize(“14px”);
  • lineHeight(“155%”);
  • paddingVertically(“35px”, how much padding at the bottom and top of the image);
  • paddingHorizontally(“34px”, how much padding on the left and right side of the image).

Once I had this list of desired settings, I started adding them one by one to the code, each time checking whether all still worked. Luckily, because you can quickly make a typo in the code, the error messages were helpful and even hinted: “Did you mean …?”

Where do I want to save the images?

The code saved the images in the current working directory (os.getcwd()), but I didn’t want that. I had created a dedicated folder on my computer for the images so that they would all be in the same place and easy to find.

For this, I had to change the target directory. Because this is something that was not so well known to me, I had to use Google heavily and read many answers on Stack Overflow. Finally, I came to my answer, and what a fantastic feeling that gave me when I got it to work!

os.chdir("C:/Users/<username>/carbon-snippets") No default image name

I didn’t want the image’s default name (carbon.png) because that means that the new image overwrites the old image. I had to make sure that the images had unique names. After brainstorming about the best name I could give as a default, I concluded that it would be best to let the name consist of the date and time. Thus the idea arose to build the name from date-time-carbon.png.

However, changing the default name was difficult because the default name was passed in from the form on the website whose value was in a placeholder. Asking the right question on Google will get you closer to the answer on Stack Overflow. And then it’s a matter of adapting the given answers and examples to solve your problem. Additional code that did it:

new_file_name = driver.find_element_by_xpath("//input[@placeholder='carbon']") new_file_name.clear() new_file_name.send_keys(image_name_png) Convert the date to your format

For naming the images, I used datetime.now() but the result was neither nice nor practical for the image name. I wanted the following format: 20220608-174726-carbon.png so datetime.now() had to be converted to a string. This can be achieved with datetime.now().strftime("%Y%m%d-%H%M%S"). I saved this format for the name of the image in a variable that send_keys (code above) could use:

image_date_time = datetime.now().strftime("%Y%m%d-%H%M%S") image_name_png = f"{image_date_time}-carbon"

Converting the time was the last step in the process of modifying Pybites’ code to allow me to do the following:

  1. I can run the code from the terminal.
  2. Running the code will create an image on Carbon.
  3. This image has my adjustments.
  4. When the image is ready, it goes into the folder I specified.
  5. The image gets a customized name.

Result:

The resulting carbon image, customized to my preferences. Conclusion of this way of working and learning

The main takeaway: it’s incredible how much you can learn from working with an open-source project!

And the feeling of euphoria every time you complete a task from your to-do list and thus get closer to the end goal is amazing.

Often it was a matter of daring: incorporate the code I found online into my code, see what it did, then test the result. If the code didn’t work, I found out why. I started looking for a new solution with the newly acquired knowledge until it worked!

My final conclusion from working with an open-source project: you can learn things from courses, but I am convinced that JIT Learning is a much better way of learning for me. In other words, Just In Time Learning has stolen my heart

Keep calm and code in Python!

Leonieke

Categories: FLOSS Project Planets

Agaric Collective: Drupal 9.4 installation with existing configuration fails because "unable to uninstall the MySQL module"!?

Planet Drupal - Fri, 2022-06-17 09:57

Here is how to deal with the surprising-to-impossible-seeming error "Unable to uninstall the MySQL module because: The module 'MySQL' is providing the database driver 'mysql'.."

Like, why is it trying to uninstall anything when you are installing? Well, it is because you are installing with existing configuration— and your configuration is out-of-date. This same problem will happen on configuration import on a Drupal website, too.

Really this error message is a strong reminder to always run database updates and then commit any resulting configuration changes after updating Drupal core or module code.

And so the solution is to roll back the code to Drupal 9.3, do your installation from configuration, and then run the database updates, export configuration, and commit the result.

For example:

git checkout composer install drush -y site:install drutopia --existing-config git checkout main composer install drush -y updb drush -y cex git commit -m "Apply configuration updates from Drupal 9.4 upgrade"

The system update enable_provider_database_driver is the post-update hook that is doing the work here to "Enable the modules that are providing the listed database drivers." Pretty cool feature and a strong reminder to always, always run database updates and commit any configuration changes immediately after any code updates!

Read more and discuss at agaric.coop.

Categories: FLOSS Project Planets

Pages