Feeds
PyPy: Guest Post: Final Encoding in RPython Interpreters
This post started as a quick note summarizing a recent experiment I carried out upon a small RPython interpreter by rewriting it in an uncommon style. It is written for folks who have already written some RPython and want to take a deeper look at interpreter architecture.
Some experiments are about finding solutions to problems. This experiment is about taking a solution which is already well-understood and applying it in the context of RPython to find a new approach. As we will see, there is no real change in functionality or the number of clauses in the interpreter; it's more like a comparison between endo- and exoskeletons, a different arrangement of equivalent bones and plates.
OverviewAn RPython interpreter for a programming language generally does three or four things, in order:
- Read and parse input programs
- Encode concrete syntax as abstract syntax
- Optionally, optimize or reduce the abstract syntax
- Evaluate the abstract syntax: read input data, compute, print output data, etc.
Today we'll look at abstract syntax. Most programming languages admit a concrete parse tree which is readily abstracted to provide an abstract syntax tree (AST). The AST is usually encoded with the initial style of encoding. An initial encoding can be transformed into any other encoding for the same AST, looks like a hierarchy of classes, and is implemented as a static structure on the heap.
In contrast, there is also a final encoding. A final encoding can be transformed into by any other encoding, looks like an interface for the actions of the interpreter, and is implemented as an unwinding structure on the stack. From the RPython perspective, Python builtin modules like os or sys are final encodings for features of the operating system; the underlying implementation is different when translated or untranslated, but the interface used to access those features does not change.
In RPython, an initial encoding is built from a hierarchy of classes. Each class represents a type of tree nodes, corresponding to a parser production in the concrete parse tree. Each class instance therefore represents an individual tree node. The fields of a class, particularly those filled during .__init__(), store pre-computed properties of each node; methods can be used to compute node properties on demand. This seems like an obvious and simple approach; what other approaches could there be? We need an example.
Final Encoding of BrainfuckWe will consider Brainfuck, a simple Turing-complete programming language. An example Brainfuck program might be:
[-]This program is built from a loop and a decrement, and sets a cell to zero. In an initial encoding which follows the algebraic semantics of Brainfuck, the program could be expressed by applying class constructors to build a structure on the heap:
Loop(Plus(-1))A final encoding is similar, except that class constructors are replaced by methods, the structure is built on the stack, and we are parameterized over the choice of class:
lambda cls: cls.loop(cls.plus(-1))In ordinary Python, transforming between these would be trivial, and mostly is a matter of passing around the appropriate class. Indeed, initial and final encodings are equivalent; we'll return to that fact later. However, in RPython, all of the types must line up, and classes must be determined before translation. We'll need to monomorphize our final encodings, using some RPython tricks later on. Before that, let's see what an actual Brainfuck interface looks like, so that we can cover all of the difficulties with final encoding.
Before we embark, please keep in mind that local code doesn't know what cls is. There's no type-safe way to inspect an arbitrary semantic domain. In the initial-encoded version, we can ask isinstance(bf, Loop) to see whether an AST node is a loop, but there simply isn't an equivalent for final-encoded ASTs. So, there is an implicit challenge to think about: how do we evaluate a program in an arbitrary semantic domain? For bonus points, how do we optimize a program without inspecting the types of its AST nodes?
What follows is a dissection of this module at the given revision. Readers may find it satisfying to read the entire interpreter top to bottom first; it is less than 300 lines.
Core FunctionalityFinal encoding is given as methods on an interface. These five methods correspond precisely to the summands of the algebra of Brainfuck.
class BF(object): # Other methods elided def plus(self, i): pass def right(self, i): pass def input(self): pass def output(self): pass def loop(self, bfs): passNote that the .loop() method takes another program as an argument. Initial-encoded ASTs have other initial-encoded ASTs as fields on class instances; final-encoded ASTs have other final-encoded ASTs as parameters to interface methods. RPython infers all of the types, so the reader has to know that i is usually an integer while bfs is a sequence of Brainfuck operations.
We're using a class to implement this functionality. Later, we'll treat it as a mixin, rather than a superclass, to avoid typing problems.
MonoidIn order to optimize input programs, we'll need to represent the underlying monoid of Brainfuck programs. To do this, we add the signature for a monoid:
class BF(object): # Other methods elided def unit(self): pass def join(self, l, r): passThis is technically a unital magma, since RPython doesn't support algebraic laws, but we will enforce the algebraic laws later on during optimization. We also want to make use of the folklore that free monoids are lists, allowing callers to pass a list of actions which we'll reduce with recursion:
class BF(object): # Other methods elided def joinList(self, bfs): if not bfs: return self.unit() elif len(bfs) == 1: return bfs[0] elif len(bfs) == 2: return self.join(bfs[0], bfs[1]) else: i = len(bfs) >> 1 return self.join(self.joinList(bfs[:i]), self.joinList(bfs[i:])).joinList() is a little bulky to implement, but Wirth's principle applies: the interpreter is shorter with it than without it.
IdiomsFinally, our interface includes a few high-level idioms, like the zero program shown earlier, which are defined in terms of low-level behaviors. In an initial encoding, these could be defined as module-level functions; here, we define them on the mixin class BF.
class BF(object): # Other methods elided def zero(self): return self.loop(self.plus(-1)) def move(self, i): return self.scalemove(i, 1) def move2(self, i, j): return self.scalemove2(i, 1, j, 1) def scalemove(self, i, s): return self.loop(self.joinList([ self.plus(-1), self.right(i), self.plus(s), self.right(-i)])) def scalemove2(self, i, s, j, t): return self.loop(self.joinList([ self.plus(-1), self.right(i), self.plus(s), self.right(j - i), self.plus(t), self.right(-j)])) Interface-oriented Architecture Applying InterfacesNow, we hack at RPython's object model until everything translates. First, consider the task of pretty-printing. For Brainfuck, we'll simply regurgitate the input program as a Python string:
class AsStr(object): import_from_mixin(BF) def unit(self): return "" def join(self, l, r): return l + r def plus(self, i): return '+' * i if i > 0 else '-' * -i def right(self, i): return '>' * i if i > 0 else '<' * -i def loop(self, bfs): return '[' + bfs + ']' def input(self): return ',' def output(self): return '.'Via rlib.objectmodel.import_from_mixin, no stressing with covariance of return types is required. Instead, we shift from a Java-esque view of classes and objects, to an OCaml-ish view of prebuilt classes and constructors. AsStr is monomorphic, and any caller of it will have to create their own covariance somehow. For example, here are the first few lines of the parsing function:
@specialize.argtype(1) def parse(s, domain): ops = [domain.unit()] # Parser elided to preserve the reader's attentionBy invoking rlib.objectmodel.specialize.argtype, we make copies of the parsing function, up to one per call site, based on our choice of semantic domain. Oleg calls these "symantics" but I prefer "domain" in code. Also, note how the parsing stack starts with the unit of the monoid, which corresponds to the empty input string; the parser will repeatedly use the monoidal join to build up a parsed expression without inspecting it. Here's a small taste of that:
while i < len(s): char = s[i] if char == '+': ops[-1] = domain.join(ops[-1], domain.plus(1)) elif char == '-': ops[-1] = domain.join(ops[-1], domain.plus(-1)) # and so onThe reader may feel justifiably mystified; what breaks if we don't add these magic annotations? Well, the translator will throw UnionError because the low-level types don't match. RPython only wants to make one copy of functions like parse() in its low-level representation, and each copy of parse() will be compiled to monomorphic machine code. In this interpreter, in order to support parsing to an optimized string and also parsing to an evaluator, we need two copies of parse(). It is okay to not fully understand this at first.
Composing InterfacesEarlier, we noted that an interpreter can optionally optimize input programs after parsing. To support this, we'll precompose a peephole optimizer onto an arbitrary domain. We could also postcompose with a parser instead, but that sounds more difficult. Here are the relevant parts:
def makePeephole(cls): domain = cls() def stripDomain(bfs): return domain.joinList([t[0] for t in bfs]) class Peephole(object): import_from_mixin(BF) def unit(self): return [] def join(self, l, r): return l + r # Actual definition elided... for now... return Peephole, stripDomainDon't worry about the actual optimization yet. What's important here is the pattern of initialization of semantic domains. makePeephole is an SML-style functor on semantic domains: given a final encoding of Brainfuck, it produces another final encoding of Brainfuck which incorporates optimizations. The helper stripDomain is a finalizer which performs the extraction from the optimizer's domain to the underlying cls that was passed in at translation time. For example, let's optimize pretty-printing:
AsStr, finishStr = makePeephole(AsStr)Now, it only takes one line to parse and print an optimized AST without ever building it on the heap. To be pedantic, fragments of the output string will be heap-allocated, but the AST's node structure will only ever be stack-allocated. Further, to be shallow, the parser is written to prevent malicious input from causing a stack overflow, and this forces it to maintain a heap-allocated RPython list of intermediate operations inside loops.
print finishStr(parse(text, AsStr())) PerformanceBut is it fast? Yes. It's faster than the prior version, which was initial-encoded, and also faster than Andrew Brown's classic version (part 1, part 2). Since Brown's interpreter does not perform much optimization, we will focus on how final encoding can outperform initial encoding.
JITFirst, why is it faster than the same interpreter with initial encoding? Well, it still has initial encoding from the JIT's perspective! There is an Op class with a hierarchy of subclasses implementing individual behaviors. A sincere tagless-final student, or those who remember Stop Writing Classes (2012, Pycon US), will recognize that the following classes could be plain functions, and should think of the classes as a concession to RPython's lack of support for lambdas with closures rather than an initial encoding. We aren't ever going to directly typecheck any Op, but the JIT will generate typechecking guards anyway, so we effectively get a fully-promoted AST inlined into each JIT trace. First, some simple behaviors:
class Op(object): _immutable_ = True class _Input(Op): _immutable_ = True def runOn(self, tape, position): tape[position] = ord(os.read(0, 1)[0]) return position Input = _Input() class _Output(Op): _immutable_ = True def runOn(self, tape, position): os.write(1, chr(tape[position])) return position Output = _Output() class Add(Op): _immutable_ = True _immutable_fields_ = "imm", def __init__(self, imm): self.imm = imm def runOn(self, tape, position): tape[position] += self.imm return positionThe JIT does technically have less information than before; it no longer knows that a sequence of immutable operations is immutable enough to be worth unrolling, but a bit of rlib.jit.unroll_safe fixes that:
class Seq(Op): _immutable_ = True _immutable_fields_ = "ops[*]", def __init__(self, ops): self.ops = ops @unroll_safe def runOn(self, tape, position): for op in self.ops: position = op.runOn(tape, position) return positionFinally, the JIT entry point is at the head of each loop, just like with prior interpreters. Since Brainfuck doesn't support mid-loop jumps, there's no penalty for only allowing merge points at the head of the loop.
class Loop(Op): _immutable_ = True _immutable_fields_ = "op", def __init__(self, op): self.op = op def runOn(self, tape, position): op = self.op while tape[position]: jitdriver.jit_merge_point(op=op, position=position, tape=tape) position = op.runOn(tape, position) return positionThat's the end of the implicit challenge. There's no secret to it; just evaluate the AST. Here's part of the semantic domain for evaluation, as well as the "functor" to optimize it. In AsOps.join() are the only isinstance() calls in the entire interpreter! This is acceptable because Seq is effectively a type wrapper for an RPython list, so that a list of operations is also an operation; its list is initial-encoded and available for inspection.
class AsOps(object): import_from_mixin(BF) def unit(self): return Shift(0) def join(self, l, r): if isinstance(l, Seq) and isinstance(r, Seq): return Seq(l.ops + r.ops) elif isinstance(l, Seq): return Seq(l.ops + [r]) elif isinstance(r, Seq): return Seq([l] + r.ops) return Seq([l, r]) # Other methods elided! AsOps, finishOps = makePeephole(AsOps)And finally here is the actual top-level code to evaluate the input program. As before, once everything is composed, the actual invocation only takes one line.
tape = bytearray("\x00" * cells) finishOps(parse(text, AsOps())).runOn(tape, 0) Peephole OptimizationOur peephole optimizer is an abstract interpreter with one instruction of lookahead/rewrite buffer. It implements the aforementioned algebraic laws of the Brainfuck monoid. It also implements idiom recognition for loops. First, the abstract interpreter. The abstract domain has six elements:
class AbstractDomain(object): pass meh, aLoop, aZero, theIdentity, anAdd, aRight = [AbstractDomain() for _ in range(6)]We'll also tag everything with an integer, so that anAdd or aRight can be exact annotations. This is the actual Peephole.join() method:
def join(self, l, r): if not l: return r rv = l[:] bfHead, adHead, immHead = rv.pop() for bf, ad, imm in r: if ad is theIdentity: continue elif adHead is aLoop and ad is aLoop: continue elif adHead is theIdentity: bfHead, adHead, immHead = bf, ad, imm elif adHead is anAdd and ad is aZero: bfHead, adHead, immHead = bf, ad, imm elif adHead is anAdd and ad is anAdd: immHead += imm if immHead: bfHead = domain.plus(immHead) elif rv: bfHead, adHead, immHead = rv.pop() else: bfHead = domain.unit() adHead = theIdentity elif adHead is aRight and ad is aRight: immHead += imm if immHead: bfHead = domain.right(immHead) elif rv: bfHead, adHead, immHead = rv.pop() else: bfHead = domain.unit() adHead = theIdentity else: rv.append((bfHead, adHead, immHead)) bfHead, adHead, immHead = bf, ad, imm rv.append((bfHead, adHead, immHead)) return rvIf this were to get much longer, then implementing a DSL would be worth it, but this is a short-enough method to inline. The abstract interpretation is assumed by induction for the left-hand side of the join, save for the final instruction, which is loaded into a rewrite register. Each instruction on the right-hand side is inspected exactly once. The logic for anAdd followed by anAdd is exactly the same as for aRight followed by aRight because they both have underlying Abelian groups given by the integers. The rewrite register is carefully pushed onto and popped off from the left-hand side in order to cancel out theIdentity, which itself is merely a unifier for anAdd or aRight of 0.
Note that we generate a lot of garbage. For example, parsing a string of n '+' characters will cause the peephole optimizer to allocate n instances of the underlying domain.plus() action, from domain.plus(1) up to domain.plus(n). An older initial-encoded version of this interpreter used hash consing to avoid ever building an op more than once, even loops. It appears more efficient to generate lots of immutable garbage than to repeatedly hash inputs and search mutable hash tables, at least for optimizing Brainfuck incrementally during parsing.
Finally, let's look at idiom recognition. RPython lists are initial-coded, so we can dispatch based on the length of the list, and then inspect the abstract domains of each action.
def isConstAdd(bf, i): return bf[1] is anAdd and bf[2] == i def oppositeShifts(bf1, bf2): return bf1[1] is bf2[1] is aRight and bf1[2] == -bf2[2] def oppositeShifts2(bf1, bf2, bf3): return (bf1[1] is bf2[1] is bf3[1] is aRight and bf1[2] + bf2[2] + bf3[2] == 0) def loop(self, bfs): if len(bfs) == 1: bf, ad, imm = bfs[0] if ad is anAdd and imm in (1, -1): return [(domain.zero(), aZero, 0)] elif len(bfs) == 4: if (isConstAdd(bfs[0], -1) and bfs[2][1] is anAdd and oppositeShifts(bfs[1], bfs[3])): return [(domain.scalemove(bfs[1][2], bfs[2][2]), aLoop, 0)] if (isConstAdd(bfs[3], -1) and bfs[1][1] is anAdd and oppositeShifts(bfs[0], bfs[2])): return [(domain.scalemove(bfs[0][2], bfs[1][2]), aLoop, 0)] elif len(bfs) == 6: if (isConstAdd(bfs[0], -1) and bfs[2][1] is bfs[4][1] is anAdd and oppositeShifts2(bfs[1], bfs[3], bfs[5])): return [(domain.scalemove2(bfs[1][2], bfs[2][2], bfs[1][2] + bfs[3][2], bfs[4][2]), aLoop, 0)] if (isConstAdd(bfs[5], -1) and bfs[1][1] is bfs[3][1] is anAdd and oppositeShifts2(bfs[0], bfs[2], bfs[4])): return [(domain.scalemove2(bfs[0][2], bfs[1][2], bfs[0][2] + bfs[2][2], bfs[3][2]), aLoop, 0)] return [(domain.loop(stripDomain(bfs)), aLoop, 0)]This ends the bonus question. How do we optimize an unknown semantic domain? We must maintain an abstract context which describes elements of the domain. In initial encoding, we ask an AST about itself. In final encoding, we already know everything relevant about the AST.
The careful reader will see that I didn't really answer that opening question in the JIT section. Because the JIT still ranges over the same operations as before, it can't really be slower; but why is it now faster? Because the optimizer is now slightly better in a few edge cases. It performs the same optimizations as before, but the rigor of abstract interpretation causes it to emit slightly better operations to the JIT backend.
Concretely, improving the optimizer can shorten pretty-printed programs. The Busy Beaver Gauge measures the length of programs which search for solutions to mathematical problems. After implementing and debugging the final-encoded interpreter, I found that two of my entries on the Busy Beaver Gauge for Brainfuck had become shorter by about 2%. (Most other entries are already hand-optimized according to the standard algebra and have no optimization opportunities.)
DiscussionGiven that initial and final encodings are equivalent, and noting that RPython's toolchain is written to prefer initial encodings, what did we actually gain? Did we gain anything?
One obvious downside to final encoding in RPython is interpreter size. The example interpreter shown here is a rewrite of an initial-encoded interpreter which can be seen here for comparison. Final encoding adds about 20% more code in this case.
Final encoding is not necessarily more code than initial encoding, though. All AST encodings in interpreters are subject to the Expression Problem, which states that there is generally a quadratic amount of code required to implement multiple behaviors for an AST with multiple types of nodes; specifically, n behaviors for m types of nodes require n × m methods. Initial encodings improve the cost of adding new types of nodes; final encodings improve the cost of adding new behaviors. Final encoding may tend to win in large codebases for mature languages, where the language does not change often but new behaviors are added frequently and maintained for long periods.
Optimizations in final encoding require a bit of planning. The abstract-interpretation approach is solid but relies upon the monoid and its algebraic laws. In the worst case, an entire class hierarchy could be required to encode the abstraction.
It is remarkable to find a 2% improvement in residual program size merely by reimplementing an optimizer as an abstract interpreter respecting the algebraic laws. This could be the most important lesson for compiler engineers, if it happens to generalize.
Final encoding was popularized via the tagless-final movement in OCaml and Scala, including famously in a series of tutorials by Kiselyov et al. A "tag", in this jargon, is a runtime identifier for an object's type or class; a tagless encoding effectively doesn't allow isinstance() at all. In the above presentation, tags could be hacked in, but were not materially relevant to most steps. Tags were required for the final evaluation step, though, and the tagless-final insight is that certain type systems can express type-safe evaluation without those tags. We won't go further in this direction because tags also communicate valuable information to the JIT.
Summarizing Table Initial Encoding Final Encoding hierarchy of classes signature of interfaces class constructors method calls built on the heap built on the stack traversals allocate stack traversals allocate heap tags are available with isinstance() tags are only available through hacks cost of adding a new AST node: one class cost of adding a new AST node: one method on every other class cost of adding a new behavior: one method on every other class cost of adding a new behavior: one class CreditsThanks to folks in #pypy on Libera Chat: arigato for the idea, larstiq for pushing me to write it up, and cfbolz and mattip for reviewing and finding mistakes. The original IRC discussion leading to this blog post is available here.
This interpreter is part of the rpypkgs suite, a Nix flake for RPython interpreters. Readers with Nix installed can run this interpreter directly from the flake:
$ nix-prefetch-url https://github.com/MG-K/pypy-tutorial-ko/raw/refs/heads/master/mandel.b $ nix run github:rpypkgs/rpypkgs#bf -- /nix/store/ngnphbap9ncvz41d0fkvdh61n7j2bg21-mandel.bPython Bytes: #409 We've moved to Hetzner write-up
Stefan Scherfke: Publishing to PyPI with a Trusted Publisher from GitLab CI/CD
PyPA’s Trusted Publishers let you upload Python packages directly from your CI pipeline to PyPI. And you don’t need any long-lived secrets like API tokens. This makes uploading Python packages not only easier than ever and more secure, too.
In this article, we’ll look at what Trusted Publishers are and how they’re more secure than using API tokens or a username/password combo. We’ll also learn how to set up our GitLab CI/CD pipeline to:
- continuously test the release processes with the TestPyPI on every push to main,
- automatically perform PyPI releases on every Git tag, and
- additionally secure the process with GitLab (deployment) environments.
The official documentation explains most of this, but it doesn’t go into much depth regarding GitLab pipelines and leaves a few details unexplained.
Why should I want to use this?API tokens aren’t inherently insecure, but they do have a few drawbacks:
- If they are passed as environment variables, there’s a chance they’ll leak (think of a debug env | sort command in your pipeline).
- If you don’t watch out, bad co-maintainers can steal the token and do mischief with it.
- You have to manually renew the token from time to time, which can be annoying in the long run.
Trusted Publishers can avoid these problems or, at the very least, reduce their risk:
- You don’t have to manually renew any long-lived tokens.
- All tokens are short-lived. Even if they leak, they can’t be misused for long.
After we’ve learned how Trusted Publishers and protected GitLab environments work, we will take another look at security considerations.
How do Trusted Publishers work?The basic idea of Trusted Publishers is quite simple:
- In PyPI’s project settings, you add a Trusted Publisher and configure it with the GitLab URL of your project.
- PyPI will then only accept package uploads if the uploader can prove that the upload comes from a CI pipeline of that project.
The technical process behind this is based on the OpenID Connect (OIDC) standard.
Essentially, the process works like this:
- In your CI pipeline, you request an ID token for PyPI.
- GitLab injects the short-lived token into your pipeline as a (masked) environment variable. It is cryptographically signed by GitLab and contains, among other things, your project’s path with namespace.
- You use this token to authenticate with PyPI and request another token for the actual package upload.
- This API token can now be used just like “normal” project-scoped API tokens.
The Trusted Publishers documentation explains this in more detail.
One problem remains, though: An ID token can be requested in any pipeline job and in any branch. Malicious contributors could sneak in a pipeline job and make a corrupted release.
This is where environments come in.
EnvironmentsGitLab environments represent your deployed code in your infrastructure. Think of your code running in a container in your production or testing Kubernetes cluster; or your Python package living on PyPI. :-)
The most important feature of environments in this context is access control: You can protect environments, restricting deployments to them. For protected environments, you can define users or roles that are allowed to perform deployments and that must approve deployments. For example, you could restrict deployments (uploads to PyPI) to all maintainers of your project, but only after you yourself have approved each release.
Note
Protected environments are a premium feature.
Non-profit open source projects/organizations can apply for a free ultimate subscription.
It seems that very old projects also have this feature enabled. Otherwise I can’t explain why I have it for Typed Settings but not for my other projects…
To use an environment in your CI/CD pipeline, you need to add it to a job in the .gitlab-ci.yml.
If we also store the name of the environment in the PyPI deployment settings, only uploads from that environment will be allowed, i.e. only uploads that have been authorized by selected people.
Only maintainers can deploy to the release environment and only after Stefan approved it. Only maintainers can deploy to the release environment and only after Stefan approved it. Security ConsiderationsThe last two sections have already hinted at this: GitLab environments are only truly secure if you can protect them.
Let’s take a step back and consider what threats we’re trying to protect against, so that we’ll then be able to choose the right approach:
- Random people doing a merge request for your project.
- Contributors with the developer role committing directly into your project.
- Co-maintainers with more permissions then a developer.
- A Jia Tan which you trust even more than the other maintainers.
What can we do about it?
- Code in other people’s forks doesn’t have access to your project’s CI variables nor can it request OIDC ID tokens in your project’s name. But you need to carefully review each MR!
- Contributors with only developer permissions can still request ID tokens. If you cannot use protected environments, using an API token stored in a protected CI/CD variable is a more secure approach. You should also protect your main branch and all tags (using the * pattern), so that devleopers only have access to feature branches. You’ll find it under Settings → Repository → Protected branches/tags.
- Protected CI/CD variables do not protect you from malicious maintainers, though. Even if you only allow yourself to create tags, other maintainers still have access to protected variables. Protected environments with only a selected set of approvers is the most secure approach.
- If a very trusted co-maintainer becomes malicious, there’s very little you can do. Carefully review all commits and read the audit logs (Secure → Audit Events).
So that means for you:
- If you are the only maintainer of a small open source project, just use a Trusted Publisher with (unprotected) environments.
- If you belong to a larger project with multiple maintainers, consider applying for GitLab for Open Source and use a Trusted Publisher with a protected environment.
- If there are multiple contributors and you don’t have access to protected environments, use an API token stored in a protected CI/CD variable and try only grant developer permissions to contributors.
See also
Please also read about the security model and considerations in the PyPa docs.
Putting it all togetherConfiguring your GitLab project to use a trusted publisher involves three main steps:
- Update your project’s publishing settings on PyPI and TestPyPI.
- Update the CI/CD settings for your GitLab project.
- Update your project’s pyproject.toml and .gitlab-ci.yml.
Tell PyPI to trust your GitLab CI pipelines.
- Log in to PyPI and go to your account’s Publishing settings. Here, you can manage and add trusted publishers for your project.
Add a new trusted publisher for GitLab as shown in the screenshot below.
Enter your project’s namespace (your GitLab username or the name of your organization), the project name, the filename of your CI def (usually .gitlab-ci.yml).
Use release as the environment name!
- Repeat the same steps for the TestPyPI, but use release-test as environment name.
You need to create two environments and protect the one for production releases.
Open your project in GitLab, then go to Operate → Environments and click Create an environment to create the production environment:
- Title: release
- Description: PyPI releases (or whatever you want)
- External URL: https://pypi.org/project/{your-project}/ (the URL is displayed in a few places in GitLab and helps you to quickly navigate to your project on PyPI.)
Click Save.
Click New environment (in the top right corner) to create the test environment:
- Title: release-test
- Description: TestPyPI releases (or whatever you want)
- External URL: https://test.pypi.org/project/{your-project}/
Click Save.
If protected environments are available (see the note above), navigate to Settings → CI/CD and open the Protected environments section. Click the Protect an environment button.
- Select environment: release
- Allowed to deploy: Choose a role or user, e.g. Maintainers.
- Approvers: Choose a role or user, e.g. yourself.
In order to be able to upload each commit to the TestPyPI, we need a different version for each build. To achieve this, we can use hatch-vcs, setuptools_scm, or similar.
In the following example, we are going to use hatchling with hatch-vcs as the build backend and uv for everything else.
We configure the build backend in our pyproject.toml as follows:
[build-system] requires = ["hatchling", "hatch-vcs"] build-backend = "hatchling.build" [tool.hatch.version] source = "vcs" raw-options = { local_scheme = "no-local-version" } # TestPyPI lacks support for this [project] dynamic = ["version"]Hint
Versions with a local component cannot be uploaded to to (Test)PyPI, so we must disable this feature.
Now lets open our project’s .gitlab-ci.yml which we’ll edit during the next steps.
Hint
The snippets in the next steps only show fragments of the .gitlab-ci.yml. I’ll post the complete file at the end of the article.
We need at least a build and a deploy stage:
stages: - 'build' # - 'test' # - ... - 'deploy'Python build tools usually put their artifacts (binary wheels and source distributions) into dist/. This directory needs to be added to your pipeline artifacts, so that these files are available in later pipeline jobs:
build: stage: 'build' script: - 'uv build --out-dir=dist' artifacts: paths: - 'dist/'For our use-case, we need two release jobs: One that uploads to the TestPyPI on each push (release-test) and one that uploads to the PyPI in tag pipelines (release).
Since both jobs are nearly the same, we’ll also define an “abstract base job” .release-base which the other two extend.
Hint
To improve readability and avoid issues with excaping, we’ll use YAML multiline strings.
The >- operator joins the following lines without a line break and strips additional whitespace.
See yaml-multiline.info for details.
.release-base: # Abstract base job for "release" jobs. # Extending jobs must define the following variables: # - PYPI_OIDC_AUD: Audience for the ID token that GitLab # issues to the pipeline job # - PYPI_OIDC_URL: PyPI endpoint for retrieving a publish # token with GitLab’s ID token # - UV_PUBLISH_URL: PyPI endpoint for the actual upload stage: 'deploy' id_tokens: PYPI_ID_TOKEN: aud: '$PYPI_OIDC_AUD' script: # Use the GitLab ID token to retrieve an API token from PyPI - >- resp="$(curl -X POST "${PYPI_OIDC_URL}" -d "{\"token\":\"${PYPI_ID_TOKEN}\"}")" # Parse the response and extract the token - >- publish_token="$(python -c "import json; print(json.load('${resp}')['token'])")" # Upload the files from "dist/" - 'uv publish --token "$publish_token"' # Print the link to PyPI so we can quickly go there to verify the result: - 'version="$(uv run --with hatch-vcs hatchling version)"' - 'echo -e "\033[34;1mPackage on PyPI:\033[0m ${CI_ENVIRONMENT_URL}${version}/"'Now we can add the release-test job. It extends .release-base, defines variables for the base job, and rules for when the job should run:
release-test: extends: '.release-base' rules: # Only run if it's a pipeline for the default branch or a tag: - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH || $CI_COMMIT_TAG' environment: name: 'release-test' url: 'https://test.pypi.org/project/typed-settings/' variables: PYPI_OIDC_AUD: 'testpypi' PYPI_OIDC_URL: 'https://test.pypi.org/_/oidc/mint-token' UV_PUBLISH_URL: 'https://test.pypi.org/legacy/'The release job looks very similar, but the variables have different values and the job only runs in tag pipelines.
release: extends: '.release-base' rules: # Only run in tag pipelines: - if: '$CI_COMMIT_TAG' environment: name: 'release' url: 'https://pypi.org/project/typed-settings/' variables: PYPI_OIDC_AUD: 'pypi' PYPI_OIDC_URL: 'https://pypi.org/_/oidc/mint-token' UV_PUBLISH_URL: 'https://upload.pypi.org/legacy/'
That’s it. You should now be able to automatically create PyPI releases directly from your GitLab CI/CD pipeline. 🎉
A successful GitLab CI/CD pipeline for Typed Settings’ v24.6.0 release. A successful GitLab CI/CD pipeline for Typed Settings’ v24.6.0 release.If you run into any problems, you can
- check if the settings on PyPI match your GitLab project,
- read the Trusted Publishers docs,
- read the GitLAB CI/CD YAML syntax reference,
- read the docs for GitLab environments and GitLab OIDC authentication.
You can leave comments over at Mastodon or Bluesky.
And, as promised, here is the complete (but still minimal) .gitlab-ci.yml from the snippets above. If you want to see a real-world example, you can take a look at Typed Settings pipeline definition.
# .gitlab-ci.yml stages: - 'build' # - 'test' # - ... - 'deploy' build: stage: 'build' script: - 'uv build --out-dir=dist' artifacts: paths: - 'dist/' .release-base: # Abstract base job for "release" jobs. # Extending jobs must define the following variables: # - PYPI_OIDC_AUD: Audience for the ID token that GitLab issues to the pipeline job # - PYPI_OIDC_URL: PyPI endpoint for retrieving a publish token with GitLab’s ID token # - UV_PUBLISH_URL: PyPI endpoint for the actual upload stage: 'deploy' id_tokens: PYPI_ID_TOKEN: aud: '$PYPI_OIDC_AUD' script: - >- resp="$(curl -X POST "${PYPI_OIDC_URL}" -d "{\"token\":\"${PYPI_ID_TOKEN}\"}")" - >- publish_token="$(python -c "import json; print(json.load('${resp}')['token'])")" - 'uv publish --token "$publish_token"' - 'version="$(uv run --with hatch-vcs hatchling version)"' - 'echo -e "\033[34;1mPackage on PyPI:\033[0m ${CI_ENVIRONMENT_URL}${version}/"' release-test: extends: '.release-base' rules: - if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH || $CI_COMMIT_TAG' environment: name: 'release-test' url: 'https://test.pypi.org/project/typed-settings/' variables: PYPI_OIDC_AUD: 'testpypi' PYPI_OIDC_URL: 'https://test.pypi.org/_/oidc/mint-token' UV_PUBLISH_URL: 'https://test.pypi.org/legacy/' release: extends: '.release-base' rules: - if: '$CI_COMMIT_TAG' environment: name: 'release' url: 'https://pypi.org/project/typed-settings/' variables: PYPI_OIDC_AUD: 'pypi' PYPI_OIDC_URL: 'https://pypi.org/_/oidc/mint-token' UV_PUBLISH_URL: 'https://upload.pypi.org/legacy/'Gizra.com: Drupal on Azure - Forging Docker Image and Beyond
Seth Michael Larson: Early promising results with SBOMs and Python packages
Published 2024-11-14 by Seth Larson
Reading time: minutes
I've kicked off a project to reduce the "phantom dependency" problem for Python. The phantom dependency problem is where distinct software (sometimes written in Python, but often C, C++, Rust, etc) is included in a Python package but then isn't recorded anywhere in the package metadata.
These distinct pieces of software aren't not recorded because of lack of time or awareness, there is no standardized method to record this information in Python package metadata.
This means that when a software composition analysis (SCA) tool looks at the Python package the tool will "miss" all the software that's included in the package aside from the top-level package itself.
For example, the popular Python image manipulation library "Pillow" is not only "Pillow", the wheel files contain many more libraries to comply with the "manylinux" package platform:
# (the below libraries are bundled by auditwheel) $ unzip -l pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl | grep 'pillow.libs' pillow.libs/ pillow.libs/libharfbuzz-144af51e.so.0 pillow.libs/libxcb-b8a56d01.so.1.1.0 pillow.libs/libpng16-4cc6a9fc.so.16.44.0 pillow.libs/libXau-154567c4.so.6.0.0 pillow.libs/libbrotlicommon-3ecfe81c.so.1 pillow.libs/liblzma-c9407571.so.5.6.3 pillow.libs/libfreetype-e7d5437d.so.6.20.1 pillow.libs/liblcms2-e69eef39.so.2.0.16 pillow.libs/libopenjp2-05423b53.so pillow.libs/libtiff-0a86184d.so.6.0.2 pillow.libs/libjpeg-45e70d75.so.62.4.0 pillow.libs/libbrotlidec-ba690955.so.1 pillow.libs/libwebp-2fd3cdca.so.7.1.9 pillow.libs/libsharpyuv-898c0cb5.so.0.1.0 pillow.libs/libwebpdemux-f2642bcc.so.2.0.15 pillow.libs/libwebpmux-d524b4d5.so.3.1.0I see many recognizable projects in the list of shared objects, like libjpeg, libwebp, libpng, xz-utils (liblzma), etc. If we try to scan this installed wheel with a tool like Syft we receive this report:
$ syft dir:venv ✔ Indexed file system venv ✔ Cataloged packages [2 packages] NAME VERSION TYPE pillow 11.0.0 python pip 24.2 pythonSyft isn't able to find any of the compiled libraries! So if we were to run a vulnerability scanner we would only receive vulnerability records for Pillow and pip. My plan is to help fix this problem with Software Bill-of-Materials documents (SBOMs) included in a standardized way inside of Python packages.
To test how well this proposal works with today's tools, I forked auditwheel and created a rudimentary patch which:
- For each shared library which is being bundled into a wheel, record the original file path and checksum. Bundle the shared libraries into the wheel as normal.
- Using platform-specific manager query each file path back to the package that provides the file. In this specific case rpm was used (rpm -qf <path>) because manylinux_2_28_x86_64 uses AlmaLinux 8 as the distribution.
- Gather information about that package using rpm, such as the name, version, etc.
- For each package, create the intrinsic "package URL" (PURL) software identifier for later use. This includes information about the packaging format, package name, version, but also the distro and architecture. For example, the PURL for the copy of libwebp used by the wheel is: pkg:rpm/almalinux/libwebp@1.0.0-9.el8_9.1?arch=x86_64&distro=almalinux-8
- Generate a CycloneDX SBOM file containing the above gathered information split into components and with relationship links between the top-level component (Pillow) and the bundled libraries.
- Embed that generated SBOM file into the wheel.
Let's run through building Pillow from source and using our forked auditwheel:
# The manylinux image may differ depending on your platform. $ docker run --rm -it -v.:/tmp/wheelhouse \ quay.io/pypa/manylinux_2_28_x86_64 # Install dependencies for Pillow $ yum install --nogpgcheck libtiff-devel \ libjpeg-devel openjpeg2-devel zlib-devel \ freetype-devel lcms2-devel libwebp-devel \ tcl-devel tk-devel harfbuzz-devel \ fribidi-devel libxcb-devel # Create a virtualenv and install auditwheel fork $ /usr/local/bin/python3.12 -m venv venv $ source venv/bin/activate $ python -m pip install build $ python -m pip install git+https://github.com/sethmlarson/auditwheel@sboms # Download the Pillow source from PyPI $ python -m pip download --no-binary=pillow pillow==11.0.0 $ tar -xzvf pillow-11.0.0.tar.gz # Build a non-manylinux wheel for Pillow $ python -m build ./pillow-11.0.0/ # Repair the wheel using auditwheel $ auditwheel repair ./pillow-11.0.0/dist/ ... Fixed-up wheel written to /wheelhouse/pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl # Inspect the wheel for our SBOM, there it is! $ unzip -l /wheelhouse/pillow-11.0.0-*.whl | grep '.cdx.json' 5703 11-14-2024 19:39 pillow.libs/auditwheel.cdx.json # Move the wheel outside our container $ mv /wheelhouse/pillow-11.0.0-cp312-cp312-manylinux_2_28_x86_64.whl /tmp/wheelhouse/So now we have a wheel file that contains an SBOM partially describing its contents. Let's try installing that wheel and running Syft:
$ syft dir:venv ✔ Indexed file system /tmp/venv-pillow ✔ Cataloged packages [13 packages] NAME VERSION TYPE Pillow 11.0.0 python bzip2-libs 1.0.6-26.el8 rpm freetype 2.9.1-9.el8 rpm jbigkit-libs 2.1-14.el8 rpm lcms2 2.9-2.el8 rpm libXau 1.0.9-3.el8 rpm libjpeg-turbo 1.5.3-12.el8 rpm libpng 1.6.34-5.el8 rpm libtiff 4.0.9-33.el8_10 rpm libwebp 1.0.0-9.el8_9.1 rpm libxcb 1.13.1-1.el8 rpm openjpeg2 2.4.0-5.el8 rpm pip 24.2 pythonWoo hoo! Now the proper libraries are showing up in Syft. That means we'll be able to get vulnerability information from all the contained software components. This isn't the end, there are many many MANY ways that software ends up in a Python package. This quick validation test only shows that even with today's SBOM and SCA tools that embedding SBOM documents into wheels can be useful for downstream tools. Onwards to even more! 🚀
If you're interested in this project, follow the repository on GitHub and participate in the kick-off discussion on Python Discourse.
That's all for this post! 👋 If you're interested in more you can read the last report.
Have thoughts or questions? Let's chat over email or social:
sethmichaellarson@gmail.com
@sethmlarson@fosstodon.org
Want more articles like this one? Get notified of new posts by subscribing to the RSS feed or the email newsletter. I won't share your email or send spam, only whatever this is!
Want more content now? This blog's archive has ready-to-read articles. I also curate a list of cool URLs I find on the internet.
Find a typo? This blog is open source, pull requests are appreciated.
Thanks for reading! ♡ This work is licensed under CC BY-SA 4.0
︎FSF Blogs: PERA Act votes tomorrow - A major step back for software freedom
drunomics: Was mir das DrupalCamp Berlin über “Volunteering” beigebracht hat
Drupal Association blog: Governance in the Drupal Ecosystem
The Summary
To ensure Drupal’s stability and independence, the project is managed through a well-established, transparent governance system. Dries Buytaert, the Founder and Project Lead, helped design a model that distributes power and prevents any single person or entity — even himself — from making unilateral decisions that could alter the project unexpectedly. The independent Drupal Association oversees Drupal.org and other key infrastructure, free from commercial pressures. This approach ensures that Drupal.org is reliable and creates a fair playing field for all contributors, embodying true open-source leadership.
Just as the Drupal software has grown and changed significantly over its 23-year history, so has its governance. And, while there’s always room for improvement, it is safe to say that Drupal’s seasoned governance is what allows it to be one of the largest, independent open source projects in the world.
The Detail
Dries Buytaert, as the founder and project lead, ultimately guides the direction of Drupal, and is responsible for shaping the project’s philosophy and core principles.
While Dries started Drupal on his own, he has helped evolve the governance model over the years to be mature and resilient. To help govern the project's technical aspects, Dries established the core committer team and other supporting groups. To oversee non-technical areas, he co-founded the Drupal Association. These initiatives were intentional efforts to scale and strengthen Drupal’s governance.
On the technical side, the governance model for Drupal core is very mature, as described in the Drupal Project Governance. Technical decision-making is distributed among the core committers and other maintainers, promoting a transparent, structured, and collaborative approach to managing Drupal core.
Many other aspects of Drupal governance are managed by the Drupal Association, which is a U.S. 501(c)3 nonprofit organization formed in 2008 to support the Drupal project and the Drupal community. I am currently the Chief Executive Officer of the Association. Our mission is to drive innovation and adoption of Drupal as a high-impact digital public good, hand-in-hand with our open source community. A fundamental obligation of the Drupal Association is to ensure that Drupal is available to anyone, anywhere in the world free of charge. We primarily accomplish this task through Drupal.org.
The Drupal Association is a bona fide non-profit organization (not a pass-through), with assets of just over $3 million and an operating budget of over $4 million. We publish our finances annually (see: Find the reports in the Accountability section of D.org). The Association is not controlled or funded by any single entity nor does it pass revenues onto another entity. The Association’s revenue comes from hundreds of organizations and thousands of individuals. No single financial contributor accounts for more than 10% of our revenue. This diverse support base prevents any one entity from having too much influence.
The Drupal Association employs a full-time team of 19 professionals located throughout the world. These people include engineers, marketers, accountants, communication staff, and program administration team members. I say all this to demonstrate that we have the capacity to legitimately, and independently, carry out our mission.
The Drupal Association owns and controls important components of the Drupal ecosystem that allow Drupal to be one of the largest independent FOSS projects in the world.
The Drupal Association owns and/or controls the infrastructure that powers Drupal.org. The Drupal Association has complete control over who accesses Drupal.org, how they access it, and what they can do when accessing it. These are covered by our Terms of Service.
In administering Drupal.org, the Drupal Association controls a number of services, including:
- The database of Drupal.org users/project contributors
- A self-hosted GitLab instance that includes all of the Drupal code repositories for core and contrib, testing with GitLab CI and documentation through GitLab Pages
- Drupal software packaging (the actual .zip and .tar.gz files containing Drupal code)
- Drupal Updates (the Updates.xml feed, Automatic Updates endpoint, Secure Signing server, and Packages.Drupal.org- the composer endpoint for Drupal projects).
- The Drupal namespace on GitHub
- The Drupal namespace on Packagist
- The Drupal namespace on NPM
- The Drupal Infrastructure namespace on gitlab.com (separate from our self-hosted instance)
- The contribution credit system
- Usage data about Drupal core and extensions
The Drupal Association also owns and controls the primary means by which the community communicates and gathers. We organize DrupalCons and manage Drupal Slack. We issue The Drupal Association Newsletter and TheWeeklyDrop (together with Bob Kepford). We control and manage Mastodon, X/Twitter, YouTube, LinkedIn (Drupal, Drupal Association, Drupal Jobs), Facebook, Instagram, and TikTok.
Drupal has the Maker/Taker Problem that nearly all open source projects face. There are companies that profit off Drupal who don’t give back to help maintain the project. The Drupal Association has chosen to address this issue by restructuring our Drupal Certified Partner program to focus exclusively on those companies that give back to the community. The goal is to incentivize the creation of a culture of contribution within companies that work in Drupal that provide the Drupal Project with sufficient resources to innovate and grow. There is always work to be done in creating a more equitable program, but it is beginning to work as we have more than doubled the number of Drupal Certified Partners in the past 15 months.
The Drupal Association is governed by a 12-person Board of Directors that meets several times a year, including two public meetings at DrupalCons. Nine directors are selected by a Nominating Committee of the board and two directors are elected by members of the Drupal Association. The final seat is the “Founding Director”. This is a voting seat that can only be filled by Dries Buytaert. Like all board seats, this is an unpaid, voluntary role that carries with it a single vote on the board. It has to be approved annually by the Board of Directors. Except for the trademark licensing, the Drupal Association has no contracts or agreements with Dries Buytaert or the Drupal Project, and Dries receives no funding from the Drupal Association or its operation of Drupal.org.
Dries Buytaert owns the trademark “Drupal”. He has transparently communicated the Drupal Trademark and Logo Policy by which these are governed. Under the policy, any changes to the policy go into effect sixty (60) days after publication. Dries Buytaert also owns the domain names “drupal.org”, “drupal.com” and “drupalcon.org”.
Dries has granted the Drupal Association an exclusive license to use “Drupal”, “Drupal.org”, and “DrupalCon” and a non-exclusive license to use Drupal for non-commercial uses. This license allows the Drupal Association to support the Drupal Project by providing the infrastructure to host and maintain the official version of Drupal and to organize its contributors. It also allows the Association to support the Drupal Community in their work with Drupal.
The net effect of this arrangement is that Dries Buytaert retains ultimate control over what software can be named “Drupal” and what website can be named “Drupal.org.” He can thus ensure that any software that calls itself “Drupal” or website that uses “Drupal.org” conforms with his vision. This would likely cause the Drupal Association to fork the software and maintain it under a new name and url. The high cost of such an action to both parties makes this option highly unlikely and unable to execute quickly.
What the trademark does not allow him to do is to block any person or organization from using any component of Drupal core or any modules housed on Drupal.org. Those decisions are the sole discretion of the Drupal Association. To date, we have exercised this authority in a very limited manner to protect and safeguard the website and its content from attacks and misuse.
Twenty-three years ago, Dries chose to release Drupal under an open-source license, inspiring tens of thousands to build careers and champion an Open Web. However, fulfilling this vision required more than just a General Public License. By creating the Drupal Association, setting up Drupal core's governance, and licensing the trademark, Dries ensured Drupal remained open-source without commercial entanglements, securing a strong, independent foundation.
Along with Dries Buytaert and many contributors, the Drupal Association is focused on the future of Drupal (see: Starshot Initiative). How can we support its adoption through marketing and create sustainable revenue streams for Drupal to flourish? These are tough questions that confront many open source projects. Our governance allows us to move forward in this work with great certainty.
Bojan Mihelac: Building docker images with private python packages
Bojan Mihelac: Django app name translation in admin
Bojan Mihelac: Django-sites-ext
Bojan Mihelac: Django-simpleadmindoc updated
Bojan Mihelac: Rename uploaded files to ASCII charset in Django
Real Python: Python Dictionary Comprehensions: How and When to Use Them
Dictionary comprehensions are a concise and quick way to create, transform, and filter dictionaries in Python. They can significantly enhance your code’s conciseness and readability compared to using regular for loops to process your dictionaries.
Understanding dictionary comprehensions is crucial for you as a Python developer because they’re a Pythonic tool for dictionary manipulation and can be a valuable addition to your programming toolkit.
In this tutorial, you’ll learn how to:
- Create dictionaries using dictionary comprehensions
- Transform existing dictionaries with comprehensions
- Filter key-value pairs from dictionaries using conditionals
- Decide when to use dictionary comprehensions
To get the most out of this tutorial, you should be familiar with basic Python concepts, such as for loops, iterables, and dictionaries, as well as list comprehensions.
Get Your Code: Click here to download the free sample code that you’ll use to learn about dictionary comprehensions in Python.
Creating and Transforming Dictionaries in PythonIn Python programming, you’ll often need to create, populate, and transform dictionaries. To do this, you can use dictionary literals, the dict() constructor, and for loops. In the following sections, you’ll take a quick look at how to use these tools. You’ll also learn about dictionary comprehensions, which are a powerful way to manipulate dictionaries in Python.
Creating Dictionaries With Literals and dict()To create new dictionaries, you can use literals. A dictionary literal is a series of key-value pairs enclosed in curly braces. The syntax of a dictionary literal is shown below:
Python Syntax {key_1: value_1, key_2: value_2,..., key_N: value_N} Copied!The keys must be hashable objects and are commonly strings. The values can be any Python object, including other dictionaries. Here’s a quick example of a dictionary:
Python >>> likes = {"color": "blue", "fruit": "apple", "pet": "dog"} >>> likes {'color': 'blue', 'fruit': 'apple', 'pet': 'dog'} >>> likes["hobby"] = "guitar" >>> likes {'color': 'blue', 'fruit': 'apple', 'pet': 'dog', 'hobby': 'guitar'} Copied!In this example, you create dictionary key-value pairs that describe things people often like. The keys and values of your dictionary are string objects. You can add new pairs to the dictionary using the dict[key] = value syntax.
Note: To learn more about dictionaries, check out the Dictionaries in Python tutorial.
You can also create new dictionaries using the dict() constructor:
Python >>> dict(apple=0.40, orange=0.35, banana=0.25) {'apple': 0.4, 'orange': 0.35, 'banana': 0.25} Copied!In this example, you create a new dictionary using dict() with keyword arguments. In this case, the keys are strings and the values are floating-point numbers. It’s important to note that the dict() constructor is only suitable for those cases where the dictionary keys can be strings that are valid Python identifiers.
Using for Loops to Populate DictionariesSometimes, you need to start with an empty dictionary and populate it with key-value pairs dynamically. To do this, you can use a for loop. For example, say that you want to create a dictionary in which keys are integer numbers and values are powers of 2.
Here’s how you can do this with a for loop:
Python >>> powers_of_two = {} >>> for integer in range(1, 10): ... powers_of_two[integer] = 2**integer ... >>> powers_of_two {1: 2, 2: 4, 3: 8, 4: 16, 5: 32, 6: 64, 7: 128, 8: 256, 9: 512} Copied!In this example, you create an empty dictionary using an empty pair of curly braces. Then, you run a loop over a range of integer numbers from 1 to 9. Inside the loop, you populate the dictionary with the integer numbers as keys and powers of two as values.
The loop in this example is readable and clear. However, you can also use dictionary comprehension to create and populate a dictionary like the one shown above.
Introducing Dictionary Comprehensions Read the full article at https://realpython.com/python-dictionary-comprehension/ »[ Improve Your Python With 🐍 Python Tricks 💌 – Get a short & sweet Python Trick delivered to your inbox every couple of days. >> Click here to learn more and see examples ]
Mike Driscoll: ANN – The textual-cogs Package – Creating Reusable Dialogs for Textual
Textual-cogs is a collection of Textual dialogs that you can use in your Textual application. You can see a quick demo of the dialogs below:
Dialogs included so far:
- Generic MessageDialog – shows messages to the user
- SaveFileDialog – gives the user a way to select a location to save a file
- SingleChoiceDialog – gives the user a series of choices to pick from
- TextEntryDialog – ask the user a question and get their answer using an Input widget
- and more
You can check out textual-cogs on GitHub.
Installation
You can install textual-cog using pip:
python -m pip install textual-cogYou also need Textual to run these dialogs.
Example Usage
Here is an example of creating a small application that opens the MessageDialog immediately. You would normally open the dialog in response to a message or event that has occurred, such as when the application has an error or you need to tell the user something.
from textual.app import App from textual.app import App, ComposeResult from textual_cogs.dialogs import MessageDialog from textual_cogs import icons class DialogApp(App): def on_mount(self) -> ComposeResult: def my_callback(value: None | bool) -> None: self.exit() self.push_screen( MessageDialog( "What is your favorite language?", icon=icons.ICON_QUESTION, title="Warning", ), my_callback, ) if __name__ == "__main__": app = DialogApp() app.run()When you run this code, you will get something like the following:
Creating a SaveFileDialog
The following code demonstrates how to create a SaveFileDialog:
from textual.app import App from textual.app import App, ComposeResult from textual_cogs.dialogs import SaveFileDialog class DialogApp(App): def on_mount(self) -> ComposeResult: self.push_screen(SaveFileDialog()) if __name__ == "__main__": app = DialogApp() app.run()When you run this code, you will see the following:
Wrapping UpThe textual-cogs package is currently only a collection of reusable dialogs for your Textual application. However, this can help speed up your ability to add code to your TUI applications because the dialogs are taken care of for you.
Check it out on GitHub or the Python Package Index today.
The post ANN – The textual-cogs Package – Creating Reusable Dialogs for Textual appeared first on Mouse Vs Python.
qtatech.com blog: Managing Multilingual Content in Drupal 10 Multisites
In an increasingly globalized world, businesses are turning to multilingual solutions to reach an international audience. Drupal 10 offers a powerful multisite architecture that allows you to manage multiple sites from a single installation, ideal for organizations with a global reach.
Droptica: 5 Problems You May Encounter When Integrating Drupal with Third-Party Software
Integrating Drupal with other systems is a common part of creating or developing a website or web application. Although Drupal offers many tools to facilitate this process, encountering minor or major difficulties is simply inevitable. Based on our knowledge from several hundred projects for clients, we’ve compiled a list of the common problems. It’s worth familiarizing yourself with them to effectively avoid them and speed up the implementation of integration projects.
Real Python: Quiz: Basic Input and Output in Python
In this quiz, you’ll test your understanding of how to use Python’s built-in functions input() and print() for basic input and output operations.
You’ll also revisit how to use readline to improve the user experience when collecting input, and how to format output using the sep and end keyword arguments of print().
[ Improve Your Python With 🐍 Python Tricks 💌 – Get a short & sweet Python Trick delivered to your inbox every couple of days. >> Click here to learn more and see examples ]