
Magnet or Sticky? An OSS Project-by-Project Typology

Kazuhiro Yamashita1, Shane McIntosh2, Yasutaka Kamei1 and Naoyasu Ubayashi1
1Principles of Software Languages Group (POSL), Kyushu University, Japan
2Software Analysis and Intelligence Lab (SAIL), Queen’s University, Canada

1yamashita@posl.ait.kyushu-u.ac.jp, {kamei, ubayashi}@ait.kyushu-u.ac.jp,
2mcintosh@cs.queensu.ca

ABSTRACT
For Open Source Software (OSS) projects, retaining exist-
ing contributors and attracting new ones is a major con-
cern. In this paper, we expand and adapt a pair of pop-
ulation migration metrics to analyze migration trends in a
collection of open source projects. Namely, we study: (1)
project stickiness, i.e., its tendency to retain existing con-
tributors and (2) project magnetism, i.e., its tendency to
attract new contributors. Using quadrant plots, we classify
projects as attractive (highly magnetic and sticky), stag-
nant (highly sticky, weakly magnetic), fluctuating (highly
magnetic, weakly sticky), or terminal (weakly magnetic and
sticky). Through analysis of the MSR challenge dataset, we
find that: (1) quadrant plots can e↵ectively identify at-risk
projects, (2) stickiness is often motivated by professional
activity and (3) transitions among quadrants as a project
ages often coincides with interesting events in the evolution
history of a project.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process metrics

General Terms
Measurement

Keywords
Magnet, Sticky, Developer migration, Open source

1. INTRODUCTION
Using census data, the Pew Research Center, a research

body that studies the issues, attitudes and trends shaping
America and the world, launched a Social & Demographic
Trends study. The study reports that just 28% of adults
born in Alaska still live there. Furthermore, 86% of adult
residents of Nevada migrated there from a di↵erent state,
suggesting that Nevada is quite“magnetic”. Such population
studies illustrate the migratory trends of citizens in America.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 - June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

For software engineers, migratory trends of open source
contributors is of interest. To become a popular and long-
lived project, maintainers need to retain existing contribu-
tors and attract new ones. Mockus et al. [4] find that al-
though the Apache and Mozilla open source projects have a
small core team of developers, there is a larger community of
contributors. While prior work has explored contributor im-
migration [1] and Long Term Contributors (LTCs) [5], to the
best of our knowledge, the “sticky” and “magnetic” nature
of open source projects has not yet been explored. Hence in
this paper, we set out to adapt the “magnet” and “sticky”
metrics described in the Pew Research study for the context
of open source projects. We then use these metrics to ex-
plore the sticky or magnetic nature of open source projects
in the MSR challenge dataset [2]. Using the dataset, we
address the following two research questions:

(RQ1) What are typical values of magnet and sticky
in OSS?
Although most of the studied projects tend to be
more sticky than they are magnetic, highly mag-
netic projects like Homebrew consistently attract many
developers by simplifying the contribution process.

(RQ2) How do magnet and sticky values change over
time?
Our quadrant analysis can identify projects at risk
of becoming obsolete. Furthermore, quadrant tran-
sitions are often accompanied by interesting events.

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 provides our definitions of magnet
and sticky metrics for the open source context. Section 3
describes the areas of the MSR challenge dataset that we
leverage for our study, for which the results are presented in
Section 4. Finally, Section 5 draws conclusions.

2. MAGNET OR STICKY?
The Pew Research Center report1 defines magnet states

as those states where a large proportion of adults who live
there have moved from another state. Thus, the magnet
metric for a state is the proportion of adult residents of a
state who were not born in the state. Furthermore, the
report also defines sticky states as those states where a large
proportion of adults who were born there continue to live
there. Thus, the sticky metric for a state is the proportion
of adult residents who were born in the state.

These definitions are sound for a study of populations,
where a single adult can only occupy one state at a time.

1
http://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/

http://www.pewsocialtrends.org/2009/03/11/magnet-or-sticky/

P
ro

je
ct

 1
P

ro
je

ct
 2

2010 2011 2012

Sticky = 2/3
Magnet = 2/3

Sticky = 1/1
Magnet = 1/3

A

B

C

D

E

= Commit or
pull request

Figure 1: Example of Magnet or Sticky of values by
our definition in 2011

However, the definition cannot be applied directly to open
source projects, where a contributor can contribute to sev-
eral projects at the same time. Therefore, we expand origi-
nal definition to apply to open source projects as follows:

Magnet projects are those that attract a large proportion
of new contributors. Thus, we calculate the magnetism
of a project as the proportion of contributors who
made their first contribution in the time period under
study who contribute to a given project.

Sticky projects are those where a large proportion of the
contributors will keep making contributions in the time
period the following and under study. Thus, we calcu-
late the stickiness of a project as the proportion of the
contributors in the time period under study who have
also made contributions in the following time period.

While our definitions are based on contributors, in this pa-
per, we focus on developers. We plan to explore other types
of contributions in future work. Furthermore, our definition
is based on time periods in the abstract sense. We select
development years as the granularity for this study because
we believe that years provide a coarse enough granularity to
observe high-level trends. Coarser or finer granularities can
also be explored.

Figure 1 shows an example of our definition. In this ex-
ample, we examine the 2011 time period. There are five de-
velopers (A, B, C, D and E) and two projects (1 and 2). To
calculate the magnet metric, we observe that there are three
new developers (B, C and D), and two of them contribute
to project 1 (B and C), while one developer (D) contributes
to project 2. In this case, Magnet value of project 1 is 2/3
and project 2 is 1/3.

To calculate the sticky metric, in project 1, three devel-
opers contribute in 2011 (A, B and C) two of them also
contribute in 2012 (A and B). Hence, the sticky value of
project 1 is 2/3. In project 2, one developer contributes to
the project in 2011 (D) and two developers (D and E) con-
tribute to in 2012. However, the sticky metric only considers
the number of developers who contribute to the project in
the studied time period and the next one. Hence, Sticky
value of project 2 is not 2/1, but rather 1/1.

3. DATASET
In this paper, we analyze the GitHub dataset provided

by Gousios [2]. The dataset includes a variety of software
evolution data from 90 OSS projects, such as issues, pull
requests, organizations, followers, stars and labels. However,
in this paper, we only operate on code authorship data in
the commits and pull requests tables. Although these 90
OSS projects are forked thousands of times, we focus on the
commit and pull request activity in the original repository.

Table 1: An overview of the dataset collected using
queries like: “select count(id) from TABLE”.

Users # Projects # Commits
499,485 108,718 555,325

An overview of the data we study is presented in Table 1.
Note that each of the IDs are unique for each studied ta-
ble. Therefore, Table 1 shows the number of unique users,
projects and commits.

In this paper, we consider a developer to be one who au-
thors code changes to a project. In the GitHub dataset,
a developer can either perform the commit themselves or
send a pull request to an upstream repository maintainer.
We consider both actions as development activity for our
magnet and sticky analysis.

4. STUDY RESULTS
We now present the results of our study with respect to

our two research questions. For each question, we discuss
our approach, quantitative and qualitative results.

(RQ1) What are typical values of magnet and
sticky in OSS?
Approach. We calculate magnet and sticky values for the
studied OSS projects as described in Section 2. To visualize
the data, we plot magnet and sticky values for each project
against each other, and (similar to Khomh et al. [3]) divide
the plot into four quadrants:

Attractive: Projects with high magnet and sticky values.
Attractive projects are successful in both attracting
new developers and retaining existing ones.

Fluctuating: Projects with high magnet values, but low
sticky ones. Fluctuating projects are successful at at-
tracting new developers, but unsuccessful at retaining
existing ones.

Stagnant: Projects with low magnet values, but high sticky
ones. Stagnant projects retain the existing develop-
ment team well, but struggle to attract new members.

Terminal: Projects with low magnet and sticky values. Ter-
minal projects struggle to retain existing developers
and do not attract new ones.

The quadrant thresholds can be dynamically configured.
In this paper, we use the median magnet and sticky values
as the thresholds, since the median is a robust measure that
is not heavily influenced by outliers.

As described in Section 2, the sticky value of a year under
study depends on the number of developers in that year and
the following one. Hence, to address RQ1, we focus on the
most recent year (2011) that has a complete year of historical
data recorded after it (2012). We are not able to use the data
of 2012 or other more recent years because the dataset only
contains partial results from the 2013 (i.e., until October)
and no results from 2014 yet.

Note that the sticky value depends on the number of de-
velopers who contribute in the target year (Figure 1). If the
number of developers in the target year is small, the sticky
value tends to be high. Therefore, to reduce the influence of
noise on our results, we filter away projects that have ten or
fewer developers.

Quantitative results. Figure 2 shows the magnet vs.
sticky quadrant plot of OSS projects in 2011. Attractive

●

●●

●

●

●
●

●

●

●
●

●●

●

●
●● ●

●

●

●

●●

●● ● ●
●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8
Sticky

M
ag
ne
t

eHomebrew

eDjango

Figure 2: Distribution of magnet and sticky values
for the studied projects.

projects land in the red quadrant, fluctuating projects land
in the green quadrant, stagnant projects land in the blue
quadrant and terminal projects land in the purple quadrant.

Figure 2 shows that magnet values tend to be much smaller
than the sticky values. Indeed, most projects have sticky val-
ues that are larger than their magnet values. In other words,
stickiness is a more common attribute of a software project
than magnetism. This finding is in agreement with the orig-
inal magnet vs. sticky study of American states, where the
median of sticky value was 0.580 and the median of magnet
value was 0.392. Like citizens who become accustomed to
their environment, developers who contribute to a project
are likely to continue contributing to the same project.

Manual analysis. Figure 2 shows that there are projects
with extreme magnet and sticky values. We manually in-
spect two such projects, i.e., the projects that have the high-
est magnet and sticky values.

The Homebrew3 project has the largest magnet value in
Figure 2. Homebrew is a popular package management tool
for Mac OS X that began development in 2009. We suspect
that in addition to Homebrew’s popularity, it is especially
magnetic because it is relatively easy to contribute to it.
For example, the smallest contribution that one can make
to Homebrew is a “Formula cookbook”, i.e., a package de-
scription that specifies the URL of a package and how it can
be installed. Since most package descriptions are written
in high-level scripting languages,4 the barrier to entry for
newcomers is relatively low.

The django project has the largest sticky value. Django is
a high-level python web framework that began development
in 2005. Django is used by several popular web applications,
such as: (1) Instagram – a popular social image sharing
application5 and (2) ReviewBoard – a peer reviewing web
application.6 To investigate why the django project is so
sticky, we studied the professional activity of the ten most
active and loyal developers.

We find that although prior work by Zhou et al. reports
that the most important factor to becoming a long term
contributor to an open source project is a pro-community

2
http://www.pewsocialtrends.org/2009/03/11/sticky-states/

3
http://brew.sh/

4
https://github.com/Homebrew/homebrew/wiki/Formula-Cookbook

5
http://instagram-engineering.tumblr.com/post/13649370142/

what-powers-instagram-hundreds-of-instances-dozens-of
6
http://www.reviewboard.org/

attitude [5], many of the top contributors are motivated by
their professional activity. For example, many of the most
loyal django developers began contributing during the ini-
tial development period or shortly after it. Of the ten top
contributors, eight are paid to develop web applications pro-
fessionally, and use django to do so. Their work on django

is thus likely motivated by their professional activity.

Stickiness is a more common project attribute than mag-
netism. Especially sticky projects like django are used
professionally by many of the most loyal contributors.
Especially magnetic projects like Homebrew have simple
contribution processes.

(RQ2) How do magnet and sticky values change
over time?
Approach. We first analyze how all of the studied projects
transition among the quadrants of Figure 2 as they age.
Since the boundaries of the quadrants will likely change, we
recalculate the boundaries for each studied year.

Quantitative results. Figure 3 illustrates quadrant tran-
sition likelihood using a state transition diagram. Each value
describes the likelihood of a transition from one quadrant to
another (or the same) quadrant. The direction of the arrow
indicates the direction of the quadrant change. For example,
Figure 3 shows that the likelihood of transitioning from the
attractive quadrant to the fluctuating one is 22%. We use
the “*” state to represent the years when projects did not
satisfy our filtering criteria (ten or more developers). To
improve the readability of the figure, we plot two “*” states,
however they are semantically identical.

This figure shows that terminal quadrant projects are the
only ones that drop into the filtered away state (“*”). This
agrees with our intuition, in that terminal quadrant projects
are losing team members and struggling to attract new ones,
which if continued for a long enough period of time would
lead to the death of a project. Projects in the other quad-
rants are successful at either attracting new developers (high
magnet) or retaining the existing ones (high sticky), and are
unlikely to decay in size like those in the terminal quadrant.

We also find that fluctuating projects have same likeli-
hood of transition to other three categories (i.e., attractive,
stagnant, terminal). This also agrees with intuition, in that
fluctuating projects have plenty of turnover in the develop-
ment team, and hence could transition to any of the other
quadrants at any time.

Figure 3 also shows that there is often a higher likeli-
hood of transition from higher quadrants to lower ones than
vice versa. This is likely due to the fact that increasing the
stickiness or magnetic nature of a project requires e↵ort to
obtain (and retain) more developers. Nonetheless, in two
out of nine cases (i.e., attractive-stagnant and fluctuating-
terminal), projects are more likely to transition from the
lower quadrant to the higher one than vice versa. While
the di↵erence in the fluctuating-terminal transition flow is
minimal (i.e., only four percentage points di↵erentiate the
two directions), the attractive-stagnant case has a much
broader separation. The reversal of transition flow in the
attractive-stagnant case is likely because 70% of the studied
projects only began development after 2009 (see Table 2).
The short nature of much of the studied project history
causes “trendy”, short-lived, but highly popular applications
to influence our results.

http://www.pewsocialtrends.org/2009/03/11/sticky-states/
http://brew.sh/
https://github.com/Homebrew/homebrew/wiki/Formula-Cookbook
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances-dozens-of
http://instagram-engineering.tumblr.com/post/13649370142/what-powers-instagram-hundreds-of-instances-dozens-of
http://www.reviewboard.org/

Table 2: Quadrant transitions of long-lived open source projects.
Quadrant in 2011 Project Name 2004 2005 2006 2007 2008 2009 2010

rails * Terminal Stagnant Stagnant Fluctuating Fluctuating Attractive

Attractive xbmc - Stagnant Attractive Attractive Stagnant Attractive Terminal

django - * * Stagnant Stagnant Stagnant Stagnant

jquery - - Fluctuating Terminal * Attractive Fluctuating

Fluctuating paperclip - - - * Fluctuating Terminal Fluctuating

compass - - - - * Fluctuating Fluctuating

scala Terminal Terminal * * Attractive Terminal Fluctuating

Stagnant memcached * * Terminal Fluctuating Stagnant Terminal *

clojure - - * * * Attractive Attractive

django-debug-toolbar - - - - Terminal Terminal Terminal

Terminal jekyll - - - - Fluctuating Fluctuating Terminal

blueprint-css - - - * * Terminal *

Attrac
tive

Termi
nal

Fluctu
ating

Stagna
nt

50%

22%

59%

14%

14%

45%

5%

27%

37%

17%

18%

6%

20%

22%14%

9%

＊＊

40%40%

18%

26%

9%

8%23%

0%

0%

0%

Figure 3: The likelihood of quadrant transitions

Furthermore, to confirm the risk of becoming obsolete,
we check how many of the projects that enter the filtered
state (“*”) were in the terminal state just before. We find
that two-thirds of filtered state projects originate from the
terminal state.

Manual analysis. We select three projects from each
quadrant that have the longest history, and study each quad-
rant transition that they make in depth. Table 2 shows the
quadrant transition history of the 12 selected projects. In
this table, “-” means that the project was not yet under
development, and “*” means that the project started, yet,
lacked a large enough contributing team to satisfy our filter-
ing criteria (i.e., more than ten active developers).

We first discuss the Rails project, which is one of the
most popular web application frameworks, as it transitions
through the quadrant states. The first version of Rails was
released in 2004, version 1.0 was released in Dec. 2005,
version 2.0 was released in Dec. 2007 and version 3.0 released
in Aug. 2010. From the Table 2, Rails became a highly
magnetic project in 2008, which coincides with the release
of version 1.2 (1.2.6 is a stable version in ver. 1.x) and
2.0. We suspect that the appearance of the stable version
increased the visibility of Rails, which in turn increased
developer interest. Furthermore, the Rails 2.0 introduced
SQLite3 as the backend datastore and encouraged the use of
REpresentational State Transfer (REST), which also likely
intrigued technology-motivated developers to participate.

Next, we discuss the jQuery project, which began devel-
opment in 2006 and is one of the most popular JavaScript
libraries today. Interestingly, Table 2 shows that jQuery has
transitioned between three quadrants and “*” state during
its lifespan. The bursty nature agrees with the hypothe-
sis of Bird et al. [1] that the rate of immigration in open
source projects is non-monotonic. Early in development,
jQuery transitioned from the terminal quadrant to “*” in
2008 and then to the attractive quadrant in 2009. Although
the transition from the terminal quadrant to “*” state is not

uncommon, the transition from “*” state directly to the at-
tractive quadrant is interesting and worth exploring. In fact,
on Sep. 2008, Microsoft and Nokia announce their support
for jQuery7. This news generated much interest in jQuery.

23% of terminal quadrant projects eventually decay into a
state where they have ten or fewer contributors, suggest-
ing that our quadrant analysis can successfully identify
projects at risk of becoming obsolete. Furthermore, we
find that many quadrant transitions are accompanied by
interesting events in a project’s history.

5. CONCLUSIONS
Migratory trends of open source developers are of interest

for software engineers. Project maintainers would like to
retain the active developers that they have and would also
like to attract new ones to grow the community.

This paper applied the magnet and sticky population con-
cepts to a set of open source projects. We find that:

• Stickiness is a more common project attribute than
magnetism, which can be motivated by more than a
pro-community attitude [5], but also by professional
activity (e.g., django).

• Quadrant plots can e↵ectively identify at-risk projects.

• Quadrant transitions often coincide with interesting
events in a project’s history.

6. ACKNOWLEDGEMENTS
This research was partially supported by JSPS KAKENHI

Grant Numbers 24680003 and 25540026 and the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

References
[1] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and

G. Hsu. Open borders? immigration in open source
projects. In Proc. MSR, pages 6–13, 2007.

[2] G. Gousios. The ghtorrent dataset and tool suite. In
Proc. MSR, pages 233–236, 2013.

[3] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan. An
entropy evaluation approach for triaging field crashes:
A case study of mozilla firefox. In Proc. WCRE, pages
261–270, 2011.

[4] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache
and mozilla. TOSEM, 11(3):309–346, 2002.

[5] M. Zhou and A. Mockus. What make long term contrib-
utors: Willingness and opportunity in OSS community.
In Proc. ICSE, pages 518–528, 2012.

7
http://blog.jquery.com/2008/09/28/jquery-microsoft-nokia/

http://blog.jquery.com/2008/09/28/jquery-microsoft-nokia/

	Introduction
	Magnet or Sticky?
	Dataset
	Study Results
	Conclusions
	Acknowledgements

