
Development costs and open source software

Xiaopeng Xu*

University of California-Berkeley

xxu94@yahoo.com

Abstract

This paper analyzes the effect of the development cost on an open source software enhancement

that is developed by individual programmers in an Internet community. It considers a situation in

which each programmer's cost of development is common knowledge but his valuation of the

enhancement is his private information, with other programmers knowing about only its

distribution. Depending on the distribution functions of programmers' valuations of the

enhancement, a programmer with a lower development cost may have a less incentive to

develop. As the development cost decreases, the enhancement may be less likely to be

developed, and some programmers may be worse off.

* I thank Eric von Hippel for encouragement and Justin Johnson and Thomas Marschak for

helpful comments.

2

1. Introduction

The recent movement of open source software development has attracted a lot attention not only

of the computing community, but also of the media, of economists and, more recently, of

politicians.1 In many countries, there are political initiatives trying to provide public support for

open source, e.g., by paying direct subsidies to open source projects or by requiring government

agencies and schools and universities to replace propriety software by open source software

whenever possible (Schmidt and Schnitzer, 2002).

An open source process involves a large number of programmers scattered across the

world sharing the source code to develop and refine pre-existing programs.2 An experienced

programmer who has access to the source code of a program is able to figure out exactly how the

program works. He can then exert effort to improve or enhance the pre-existing program. Any

developed software can be freely distributed through the Internet to other programmers in the

Internet community and will be distributed if developed (Johnson, 2002).3

An open source software enhancement or refinement developed by a programmer is thus

a public good. To an economist, the behavior of individual programmers engaged in open source

processes is startling (Lerner and Tirole, 2002). Why should thousands of top-notch

programmers contribute freely to the provision of the public good? This is an important issue to

address. Lerner and Tirole make an attempt toward answering this question. They argue that

career concerns can to some extent explain the behavior of individual programmers. This is

echoed by some practitioners of open source software such as Eric Raymond (1999). Harhoff et

al. (2000) consider other individual motivations related to the increased diffusion of freely

revealed innovations. Bessen (2002) focuses on the participation of consumers, both individuals

and firms, with complex needs. He argues that complexity makes a difference and that open

source allows consumers to meet their needs by customizing the code themselves.

1 The open source movement was started in 1998 by a number of prominent computer "hackers" such as Bruce
Perens and Eric Raymond (von Hippel, 2002).
2 Well-known examples of open source software are the GNU/Linux computer operating system, Perl programming
language, and Internet e-mail engine SendMail (Raymond, 1999).
3 Kollock (1999) argues that the advent of the Internet has been a boon to the development of open source
development projects.

3

This paper sidesteps the question of group formation, but focuses on analyzing the

behavior of the individual programmers who are in a given open source group.4 Specifically, it

addresses the following questions. Ceteris paribus, will a programmer who has a lower

development cost be more likely to develop a program? Will a program be more likely to be

developed when all programmers have lower development costs? Finally, will all the

programmers be better off as their development costs decrease?

Conventional wisdom may lead one to answer these questions affirmatively. The paper

challenges such wisdom. In a model where each programmer's valuation of the open source

development or enhancement is his private information, I show that the answers to the questions

depend critically on the distributions of valuations. Specifically, I obtain the following results.

First, a programmer with a higher development cost may be more likely to develop. Second, the

enhancement program may be less likely to be developed when all programmers have lower

development costs. Finally, some of the programmers may be worse off, as their development

costs decrease.

The reason for the results is simple. Developing the software enhancement is essentially

an R&D activity. The provision of the enhancement, a public good, thus is of "max" or "best-

shot" type. So long as there is one programmer who develops, the public good is provided;

additional developers add nothing to the provision of the good. Simply put, only the best effort

counts. And if every programmer can exert the best effort, then a programmer will be less likely

to develop if he thinks that other programmers are more likely to develop. In other words,

everyone has an incentive to be a free-rider. The free-rider problem is well known in the public

economics literature. The problem is particularly severe when the public good is of best-shot

type (Hirshleifer, 1983). In the development of the open source software enhancement,

programmers behave strategically, each programmer's decision to develop depends on his belief

about the probability that other programmers develop. The marginal benefit of development to a

programmer is his valuation of the enhancement times the probability that no one else develops.

Therefore, there is no simple link between the incentive to develop and the cost of development

for each programmer, because a programmer develops if and only if his cost of development is

no greater than the marginal benefit, rather than his valuation, of the enhancement.

4 For example, 15 programmers did much of the initial coding of Apache. And during the first three years of
Apache, 388 developers contributed 6,092 feature enhancements and fixed 695 bugs (Mockus et al., 2000).

4

The second result of the paper has important policy implications. Some firms pay their

employees to work on open source software, because they believe that they will benefit from the

enhancement. Similarly, the government and not-for-profit organizations have supported open

source projects either by offering direct subsidies to the projects or by employing computer

experts at universities or government agencies to support it (Schmidt and Schnitzer, 2002). The

intention of such support, effecting to reduce programmers' development costs, is clearly to

promote open source software developments. Unfortunately, the end result of the support may

not promote but rather hinder the open source program enhancement.

Schmidt and Schnitzer (2002) discuss the implication of direct subsidies (as well as other

forms of government support) for open source. They argue that the government should restrict

itself to subsidizing basic research, which is a public good with strong positive external effects

that will not be provided by the market. The development of most software projects, however, is

applied R&D, which can be provided by the market. They also raise another problem with public

subsidies to applied R&D in that it invites rent seeking activities. This leads well-intended

projects to be captured by large companies managing to acquire vast amount of public subsidies

as happened in the space, defense and nuclear industries. My analysis goes one step further. Even

if there is no rent-seeking behavior and an open source project has the feature of basic research,

public support may, due to the strategic interaction among programmers, have the unintended

effect in that it may hinder rather than foster the enhancement of open source software.

The paper is closely related to Johnson (2002), who builds a model of open source

software, in which individual user-programmers decide whether to invest their own time and

effort to develop a software enhancement that will become a public good if so developed. Each

of the programmers has a private cost of working on the project and a private value of using it;

both of which are private information. The main focus of his paper is on the relationship between

the probability of innovation and the number of programmers who are symmetric ex ante. I

consider a modified version of his model in which each programmer has private information

about his valuation of an open source program enhancement, but his development cost is

common knowledge. Programmers may differ in their development costs, or their valuations of

the enhancement may be differently distributed. The focus of my paper is on the effect of

development costs on each individual's incentive to innovate, and on the probability that the

5

innovation is made, as well as on the programmers' expected utility. The two papers are thus

complementary.

The analysis of the paper has applications to other economic problems. For example, a

large multinational corporation may have several research firms that simultaneously engage in an

R&D activity to carry out a corporation-specific technological innovation. The rule of the

corporation is that any innovation by one of the firms is shared fully with other firms, while the

firm's R&D cost is not shared (Mas-Collel, Whinston and Green, 1995, pp. 256-257). To

promote innovation, the headquarter of the corporation may subsidize the firms. Unfortunately,

my analysis shows that the well-perceived policy may lead to an unintended result of hindering

the prospect of innovation.

Another application is to the market for evaluations (Avery, Resnick and Zeckhauser,

1999). A group of consumers shares product evaluations which may be treated as public goods;

evaluations are non-rival if the good being evaluated has elastic supply (e.g., a book or an

appliance), and each individual can benefit from an evaluation without reducing its value to

anyone else. Recent developments in computer networks have dramatically driven down the cost

of distributing information. One may naturally think that these developments will lead more

information or evaluations to be distributed. My analysis shows that the answer may not be so

straightforward as long as there is still a positive cost of distribution.

The remainder of the paper is organized as follows. Section 2 sets up and analyzes the

model, and Section 3 concludes.

2. The Model

There are N > 1 software programmers in an Internet community, each deciding simultaneously

whether to expend effort and time to develop an enhancement or refinement of a pre-existing

software application, the source code of which is open. In other words, each programmer makes

a binary choice: si � {0, 1}, where 1 means "develop" and 0 means "don't develop".

The enhancement, once developed, will then become a public good, available to all

programmers in the community. Developing the software enhancement is essentially an R&D

activity. The provision of the enhancement, the public good, thus is of "max" or "best-shot" type.

6

So long as there is one programmer choosing to develop, the enhancement is made; additional

developers add further value to the innovation.

Programmers derive benefits from the enhancement; they may be driven to write software

for their own use, such as facilitating their own work or debugging (Johnson, 2002; von Hippel,

2002). The benefit of the enhancement to programmer i is bi, which is his private information.

Other players know about only the distribution of bi. The cumulative distribution function for bi

is Fi(bi), and the corresponding density function is fi(bi) > 0, for bi � [bi , bi], 0 � bi < bi .

Assume that programmers' benefits are independently distributed. A programmer working on a

software development project incurs an opportunity cost of his time; he cannot work on other

projects while he is working on this project. The development cost for programmer i is ci > 0,

which is common knowledge. This specification differs from that of Johnson (2002) in which

each programmer's valuation of the enhancement and cost of development are his private

information.

Given the best-shot feature of the enhancement, programmer i's utility function is

Ui = max{si, …, sN}bi - sici. (1)

If at least one of the N programmers develops, programmer i receives his privately known

benefit, bi, but he incurs his development cost, ci, if and only if he is a developer.

Assumption 1. bi < ci < bi , i = 1, …, N.

This assumption implies that, if programmer i were to exist in isolation, he would develop if and

only if his valuation of the enhancement is no less than his cost of development, bi � ci, and his

ex ante probability to develop would be 1 - Fi(ci), which is strictly between 0 and 1. When he

interacts with other programmers, programmer i's decision to develop depends on his belief

about the probabilities that other programmers develop. Let pj be programmer i's belief about the

ex ante probability that programmer j develops, j � {1, …, N}\{i}. If programmer i develops, his

utility or payoff is bi - ci. If programmer i does not develop, his expected payoff is [1 -

()]
,

1
1

�

� �

� p j
j j i

N

bi, which is equal to the product of his valuation of the enhancement and the

probability that at least one of the other N - 1 programmers develops.

7

Clearly, programmer i develops, i.e., si = 1, if and only if ()
,

1
1

�

� �

� p j
j j i

N

bi � ci. In other

words, programmer i's development decision obeys a cutoff rule: he develops if and only if his

valuation of the enhancement is no less than a cutoff level, bi* = ci/ ()
,

1
1

�

� �

� p j
j j i

N

. This is true for

all programmers. Thus, the ex ante probability that programmer i develops is pi = 1 - Fi(bi*), i =

1, …, N.

Note that bi* > ci. In the presence of other programmers, each programmer is less likely

to develop than he would be in isolation, in hoping that others will develop so that he can be a

free-rider. In equilibrium, we have, for i = 1, …, N,

bi* F bj j
j j i

N

()*

,� �

�
1

= ci. (2)

 Equilibrium conditions (2) are general, allowing different development costs and

distributions of valuations of the enhancement among all the programmers. With restrictions on

the distributions of valuations or development costs, we can use (2) to address many important

issues. For instance, one may intuitively think that, ceteris paribus, a programmer with a lower

development cost may be more likely to develop. Unfortunately, this intuition is generally

incorrect, as I will show below.

Assume that all programmers' benefits of the enhancement are identically and

independently distributed. Denote the common distribution function F(b), b � [b , b], b > b � 0.

From (2), one can easily see that, for any two programmers i and j, i � j, we have

ci F(bi*)/bi* = cj F(bj*)/bj*. (3)

Let G(b) = F(b)/b. Clearly, if G'(b) = [bf(b) - F(b)]/b2 < 0, then bi* > bj*, when ci > cj,

implying that a programmer with a lower development cost is more likely to develop. On the

other hand, if G'(b) > 0, then bi* < bj*, when ci > cj, implying that a programmer with a lower

development cost is less likely to develop.

The reason for the result is as follows. Each programmer i's marginal benefit of

development is his valuation of the enhancement times the probability that no one else develops.

His marginal cost of development is simply his cost of development. In equilibrium, a

programmer develops if and only if his marginal benefit of development is no less than his cost

of development. Consequently, he develops if and only if his valuation of the enhancement is no

8

less than a cutoff level. For two programmers with different development costs, there are two

possibilities. In the first which complies more with intuition, the programmer with a lower

(higher) development cost has a lower (higher) cutoff level, indicating that he is more (less)

likely to develop. In the second which is in contrast with intuition, the programmer with a lower

(higher) development cost has a higher (lower) cutoff level, indicating that he is less (more)

likely to develop. Depending on the distribution function of development costs, either possibility

can take place.

It is easy to identify distribution functions such that G'(b) is either positively or

negatively signed. For example, let F(b) = bk, b � [0, 1], k � 1. Then, G'(b) > 0, when k > 1, but

G'(b) < 0, when k < 1. Indeed, one can easily find commonly used distribution functions F(b)

such that G'(b) can be either positive or negative. For example, if F(b) is uniformly distributed,

for b � [b , b], b > b > 0, then G'(b) > 0, implying that a programmer with a lower development

cost is less likely to develop. If F(b) is exponentially distributed over [0, �), then G'(b) < 0,

implying that a programmer with a lower development cost is more likely to develop.

Let H(b) = F(b)/[bf(b)]. Because F(b)/f(b) is the hazard rate, I call H(b) the unit hazard

rate. Proposition 1 summarizes the above analysis.

Proposition 1. Suppose that programmers' valuations of the enhancement are independently and

identically distributed. If the unit hazard rate for the common distribution is greater (smaller)

than 1, then a programmer with a lower development cost is more (less) likely to develop.

A successful open source project requires a credible leader, and most leaders of open

source projects are the programmers who developed the initial code for the projects (Lerner and

Tirole, 2002). The development cost for a leader may be higher than that for other programmers,

his followers. Being leaders, they may have better outside opportunities and hence higher

opportunity costs of working on open source projects. Proposition 1 provides an explanation for

the leader's behavior. Even if his valuation of the open source software development is

identically distributed with other programmers, the leader may be more likely to develop when

the unit hazard rate of the distribution is less than 1, even though he has a higher development

cost.

9

Aiming to foster the open source movement, the government and not-for-profit

organizations in many countries make subsidies to open source projects, so do some private

firms (Lerner and Tirole, 2002; Schmidt and Schnitzer, 2002). Such policy effects to reduce

development costs. The policy is clearly based on the belief that reductions in development costs

are conducive to open source software development. But the important question is: Does the

belief make economic sense? I show that the answer to this question depends critically on

heterogeneity in programmers' valuation distributions.

To simplify the analysis, assume that all programmers have the same development cost,

i.e., ci = c > 0, i = 1, …, N. It is clear from (2) that bi* is a function of c, bi* = b*(c), for all i. The

ex ante probability that the enhancement is not developed is Q(c) = F b ci i
i

N

(()).*

�

�
1

 In the

following, I sometimes choose to suppress the argument of Fi(bi*(c)) and fi(bi*(c)), as there

should be no confusion, given the context. Differentiating Q with respect to c, we have

Q'(c)/Q(c) =
f
F

i

ii

N

�

�
1

dbi*/dc. (4)

Clearly, if dbi*/dc > 0 for all i, Q'(c) > 0, implying that a lower (common) development cost will

result into a higher probability that the enhancement is developed.

If Fi(.) = Fi(.) = F(.), for all i and j. Then, in symmetric equilibrium, bi* = bj* = b* (this is

guaranteed if G(b) is monotonic), and it follows from (2) that b* satisfies that b*F(b*)N - 1 = c.

Obviously, db*/dc > 0. Hence, dQ/dc > 0.

Proposition 2. Suppose that programmers are ex ante symmetric in that they have the same

development cost and their valuations of the enhancement are independently and identically

distributed. Then, in symmetric equilibrium, as the development cost decreases, the enhancement

is more likely to be developed.

More generally, we have Fi(bi*(c))/bi*(c) = Fj(bj*(c))/bj*(c). Differentiating both sides of

this equation with respect to c, one can readily check that [fi(bi*(c))bi*(c) - Fi(bi*(c))]/bi*(c)2

dbi*/dc = [fj(bj*(c))bj*(c) - Fj(bj*(c))]/bj*(c)2 dbj*/dc. Thus, if Hi(bi) - 1 = Fi(bi)/[bifi(bi)] - 1 is

uniformly and identically signed, for all i, then dbi*/dc is uniformly and identically signed. Using

this fact together with (2), one can easily show that dbi*/dc > 0, for all i. Thus, we have

10

Proposition 3. If Hi(bi) - 1 is uniformly and identically signed, for all i, then Q'(c) > 0.

However, when Hi(bi) - 1 and Hj(bj) - 1 are uniformly but not identically signed, then

dbi*/dc and dbj*/dc are oppositely signed and one of them must be negative, implying that one of

the them is less likely to develop, as the development cost decreases. Indeed, a lower

development cost may result into a lower probability that the enhancement is developed! To

bring out the result most straightforwardly, I consider the case of two programmers, N = 2,

whose benefits are distributed according to cumulative functions F1(b1) and F2(b2), respectively.

It follows immediately from (2) that the cutoff levels, b1* and b2*, for the two

programmers satisfy that b1*F2(b2*) = c and b2*F1(b1*) = c. Clearly, b1* and b2* are functions of

c. Totally differentiating both sides of the two equations with respect to c, we have

F b f
b f F

db
db

2 1 2

2 1 1

1

2

*

*

*

*

�

�
�

�

�
�
�

�
�

�

�
� =

dc
dc
�

�
�

�

�
� . (5)

If F1F2 - b1*b2*f1f2 � 0, then one can solve (5) and obtain dbi*/dc = (Fi - bi*fj)/(F1F2 - b1*b2*f1f2),

i =1, 2, j = 3 - i.

The ex ante probability that the enhancement is not developed is Q(c) = F1(b1*(c))

F2(b2*(c)). Differentiating Q with respect to c and plugging into db1*/dc and db2*/dc, we have

Q'(c) = F2f1db1*/dc + F1f2db2*/dc

 = (F1F2f1 - b1*f1f2F2 + F1F2f2 - b2*f1f2F1)/(F1F2 - b1*b2*F1F2).

 = [(H1 - 1)F2/b2* + (H2 - 1)F1/b1*]/(H1H2 - 1), (6)

where Hi = Fi(bi*(c))/[bi*(c)fi(bi*(c))]. Note that, in equilibrium, F1/b1* = F2/b2*. Hence, we have

the following result.

Proposition 4. Sign(dQ/dc) = Sign((H1 + H2 - 2)/(H1H2 - 1)).

From Proposition 4, we know immediately that, if H1 = H2, then dQ/dc > 0, implying that

a lower development cost will result into a higher probability that the enhancement is developed.

This is, of course, not surprising at all, given Proposition 2. On the other hand, when H1H2 < 1

and H1 + H2 > 2, dQ/dc < 0. A necessary condition for this to happen is that Hi > 1 and Hj < 1, i =

1, 2, j = 3 - i. In this case, a lower (common) development cost leads to a lower probability that

the enhancement is developed.

11

It is important to point out that Proposition 4 is valid only for interior equilibrium (which

we have implicitly assumed in the analysis), in which both programmers develop with positive

probability. If one of the programmers never develops, then, it is clear that the other programmer

is more likely to develop as the development cost decreases, leading to a higher probability that

the enhancement is developed. An example of this is as follows. Let F1(b1) = b1
1/j, 0 < j < 1, b1 �

[0, 1], F2(b2) = b2
1/k, k > 1, b2 � [0, 1], and 0 < c < 1. Simple calculation shows that H1(b1) � j

and H2(b2) � k. Let jk < 1 and j + k > 2. So, the conditions in Proposition 4 are satisfied. One can

easily verify that, for b2 � c1- 1/j, there is a unique equilibrium characterized by b1* = 1 and b2* =

c.5 In equilibrium, Q(c) = c1/k. Clearly, Q'(c) > 0.

I now give an example in which a smaller (common) development cost leads to a lower

probability that the enhancement is developed.

Example 1. Let F1(b1) = b1
1/2/2, b1 � [0, 4], and F2(b2) = b2 - 1, b2 � [1, 2], and 1 < c < 2. It is

easy to verify that H1(b1) � 2, and H2(b2) = (b2 - 1)/b2. For 1 < b2 < 2, 0 < H2(b2) < 1/2. Hence, we

have H1H2 < 1 and H1 + H2 > 2. Thus, in interior equilibrium, a lower development cost leads to

a lower probability that the enhancement is developed.

All we need to check is whether there exists interior equilibrium for some values of the

development cost. If follows from (2) that b1*(b2* - 1) = c and b2*b1*1/2/2 = c. Solving b1* and

b2*, we have b1*(c) = c/[2c - 1 - 2 c c()�1] and b2*(c) = 2c - 2 c c()�1 . In interior

equilibrium, c < b1*(c) < 4 and c < b1*(c) < 2. One can easily verify that, when 1 < c < 4/3, the

above two inequalities are satisfied. Further, one can show that, for c > 1, db1*/dc > 0 and

db2*/dc < 0.

It follows from Proposition 4 immediately that, for 1 < c < 4/3, a reduction in the

development cost results into a lower probability that the enhancement is made.

We thus see that, depending on the distributions of programmers' valuations of the

enhancement, the innovation may be either more or less likely to be made available. This is the

main result of the paper. This result has important policy implications. Private firms, the

government, and not-for-profit organizations, aiming to promote open source development

5 When b2 < c1- 1/j, besides the above equilibrium, there is another equilibrium in which b1* = c and b2* = 1.

12

processes, have made subsidies to open source projects. My analysis indicates that such policy

may not serve the intended purpose, but rather hinder the processes.

Finally, let us study the effect of the development cost on programmers' payoffs.

Programmer i's expected payoff is

EUi = piEUi b bi i�
* + (1 - pi)[1 - ()

,
1

1
�

� �

� p j
j j i

N

]EUi b bi i�
*

 = ()
*

b cib

b

i

i

� � dFi(bi) + [1 - F bj j
j j i

N

()*

,� �

�
1

] bib

b

i

i
*

� dFi(bi). (7)

Differentiating EUi with respect to c, we have

d(EUi)/dc = �(EUi)/�c + �(EUi)/�bi* dbi*/dc +
�

�

()
*

,

EU
b

i

jj j i

N

� �

�
1

dbj*/dc. (8)

It is easy to check that �(EUi)/�bi* = 0, as programmer i has optimally chosen bi* to maximize

his payoff. The first term is the direct effect of the development cost on programmer i's payoff,

while the third term is the indirect, strategic effect of the development cost on programmer i's

payoff. Simple calculation shows that �(EUi)/�c = Fi(bi*(c)) - 1 < 0. The direct effect of the

development cost on programmer i's payoff is always beneficial, as a lower development cost

leads to a higher payoff for programmer i, given other programmers' development choices.

 Differentiating EUi with respect to bj*, we have �(EUi)/�bj* = - fj(bj*) F bk k
k k i j

N

()*

, ,� �

�
1

bib

b

i

i
*

� dFi(bi) < 0. If programmer j is more likely to develop, i.e., bj* decreases, programmer i's

expected payoff increases. However, we have shown that, depending on the distribution

functions of programmers' valuations, dbj*/dc can be either positively or negatively signed.

When dbj*/dc < (>) 0, programmer j's change of behavior, in response to changes in the

development cost, imposes a negative (positive) external effect, - fj(bj*) F bk k
k k i j

N

()*

, ,� �

�
1

bib

b

i

i
*

� dFi(bi)

dbj*/dc, on programmer i's payoff. The indirect effect is the sum of all the external effects

imposed on programmer i by the other N - 1 programmers.

From Propositions 2 and 3, we know that, if programmers are ex ante symmetric, or if

Hi(bi) - 1 is uniformly and identically signed for all i, then dbi*/dc > 0, i = 1, …, N. Thus, each

13

programmer is better off, as the (common) development cost decreases. I summarize the result

by Proposition 5.

Proposition 5. When programmers are symmetric ex ante, or when the difference between the

unit hazard rate of valuation and 1 is uniformly and identically signed for all programmers, a

lower common development cost leads to a higher expected payoff for all programmers.

When Hi(bi) - 1 is not identically signed for all programmers, then the indirect effect of

reductions in the development cost is detrimental for some programmer, say, programmer i.

Hence, d(EUi)/dc can be either negatively or positively signed, depending on whether the direct

effect dominates or is dominated by the indirect effect. The following example illustrates this.

Example 1 (continued). Recall that db2*/dc < 0. Hence, �(EU1)/�b2* db2*/dc > 0. When

�(EU1)/�b2* db2*/dc > - �(EU1)/�c, d(EU1)/dc > 0, indicating that programmer 1 is worse off ex

ante, as the development cost decreases.

Simple calculation shows that �(EU1)/�c = F1(b1*(c)) - 1 = c/[2c - 2 c c()�1] - 1, and

�(EU1)/�b2* db2*/dc = - f2(b2*(c)) b dF b
b

b

1 1 1
1

1
*

()� db2*/dc = - [2 - (2c - 1)/ c c()�1]{c/[2c - 1 -

2 c c()�1]}3/2/6. With some algebra, one can show that, for c > 1, �(EU1)/�b2* db2*/dc > -

�(EU1)/�c. Hence, d(EU1)/dc > 0, for 1 < c < 4/3, implying that, in interior equilibrium, a

reduction in the development cost makes programmer 1 strictly worse off.

3. Conclusion

This paper attempts to answer the following questions in open source software development.

Ceteris paribus, will a programmer with a lower development cost more likely to develop?

Whether more of the enhancement will be developed as programmers' development costs

decrease? Will all programmers be better off as their development costs decrease? Conventional

14

wisdom may lead one to answer these questions affirmatively. However, I show in the paper that

the answers to the questions are not so straightforward.

There are two salient features of an open source software development or enhancement.

First, it is a public good. The enhancement benefits all programmers in a group in a non-rivalrous

way. Second, it is a public good of "max" or "best-shot" type. The enhancement can be

essentially developed by one programmer; additional developers, while incurring development

costs, add no further value to the enhancement. The best-shot public good feature of the open

source software enhancement leads to the well-known free-rider problem; each programmer

wants to be a free rider, hoping that someone else will develop. The free-rider motive is the

underlying force driving the results of the paper.

The main result of the paper is that, as programmers' development costs decrease, the

open source enhancement may be less likely to be developed. It has important policy

implications, as some private firms and government agencies as well as not-for-profit

organizations, aiming to promote open source software development, make subsidies to open

source projects. Such subsidies effect to reduce programmers' development costs. The analysis of

paper, however, indicates that the subsidies may hinder rather than foster, as intended, the

innovation of open source software programs.

The reason for the result is that programmers involved in the open source development

act strategically. If a programmer perceives that other programmers are more likely to develop

owing to lower development costs, he is less likely to develop. The end result may be that the

program is less likely to be developed even when all programmers' development costs decrease.

15

References

Avery, C., Resnick, P., Zeckhauser, R., 1999. The market for evaluations. American Economic

Review 89, 564-584.

Bessen, J., 2002. Open source software: free provision of complex public goods. Mimeo,

Research on Innovation.

Harhoff, D., Henkel, J., von Hippel, E., 2000. Profiting from voluntary information spillovers:

how users benefit by freely revealing their innovations? Mimeo, MIT.

Hirshleifer, J. 1983. From weakest-link to best-shot: the voluntary provision of public goods.

Public Choice 41, 371-386.

Johnson, J., 2002. Open source software: private provision of a public good. Journal of

Economics and Management Strategy, forthcoming.

Kollock, P., 1999. The economies of online cooperation: gifts and public goods in Cyberspace.

In Smith, M., Kollock, P., (eds.). Communities in Cyberspace. London, Routledge.

Lerner, J., Tirole, J., 2002. The simple economics of open source. Journal of Industrial

Economics 50, 197-234.

Mas-Collel, A., Whinston, M., Green, J., 1995. Microeconomic Theory. Oxford University

Press, New York.

Mockus, A., Fielding, R., Herbsleb, J., 2000. A case study of open source software development:

the Apache server. Available at http://opensource.mit/edu/papers/mockusapache.pdf.

Raymond, E., 1999. The Cathedral & the Bazaar: Musing on Linux and Open Source by an

Accidental Revolutionary. Cambridge, O'Reilly.

Schmidt, K., Schnitzer, M., 2002. Public subsidies for open source? some economic policy issues

of the software market. Mimeo, University of Munich.

von Hippel, E., 2002. Open source software projects as user innovation networks. Mimeo, MIT.

