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ABSTRACT

The fast growth of OSS has increased the interest in
studying the composition of the OSS community and its col-
laboration mechanisms. Moreover, the success of a project
may be related to the underlying social structure of the OSS
development community. In this paper, we perform a quanti-
tative analysis of Open Source Software developers by study-
ing the entire development community at SourceForge [26].
Statistics and social network properties are explored to find
collaborations and the effects of different members in the
OSS development community. Small world phenomenon and
scale free behaviors are found in the SourceForge develop-
ment network. These topological properties may potentially
explain the success and efficiency of OSS development prac-
tices. We also infer from our analysis that weakly associated
but contributing co-developers and active users may be an
important factor in OSS development.

1. INTRODUCTION

Open Source Software (OSS) has brought us enormous
advantages such as reduced development cost, simplified
team collaboration and improved software quality. Unlike
closed-source software, OSS projects are typically devel-
oped in a distributed and decentralized way [8, 25]. OSS
projects are written, developed, and debugged largely by
worldwide volunteers, who in most cases are connected and
collaborate through the Internet. The OSS development com-
munity has developed a large number of outstanding soft-
ware products, including Apache, Perl, Linux, etc. The suc-
cess of OSS increases our interest in studying the compo-
sition of the OSS community and its collaboration mecha-
nisms, both in the business and IT communities. Despite
the growth in OSS research, the phenomenon is not yet
fully understood [4, 8, 20]. The intrinsic mechanisms in
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the OSS development process still need to be investigated.
For example, unlike closed software, the OSS development
process involves developers who irregularly participate in
projects. Moreover, the roles of users in OSS may be differ-
ent from those in closed software because they have more
closer contact with developers. Understanding the collabo-
ration among the OSS community may help solve the ”soft-
ware crisis” [25]. Moreover, the success of a project may
be related to the underlying social network topology of the
OSS development community.

Many researchers have begun to study the OSS develop-
ment community. For example, Nakakoji et al. [22] classify
OSS community members into eight different roles and di-
vide OSS projects into three different types – Exploration-
Oriented, Utility-Oriented, and Service-Oriented. Further-
more, they identify two types of OSS evolution patterns:
evolution of developer roles, and co-evolution of systems
and the roles of contributing members. A modified classi-
fication is presented by Xu [33] that reduces the number of
OSS member roles from eight to five. (In this paper, we fur-
ther reduce the number of roles from five to four.) Crowston
et al. [6, 15] study developer roles and the structure of OSS
development teams for success factors in distributed work
teams. Hars et al. report results from a survey to the partic-
ipants in various OSS projects and categorize motivations
of OSS developers [11]. By studying Linux Software Maps
(LSMs), Dempsey et al. [7] analyze the body of all extant
LSMs at a Linux site to obtain information on the nature
of Linux contributors. Data mining techniques were used
by Xu et al. to find patterns in the OSS development com-
munity [32]. Gao et al. [9, 30, 31] analyze activities of core
developers on SourceForge hosted projects and report the
scale free behavior of the OSS community. These previous
studies are either qualitative classifications, are performed
on a small set of sample projects, or the effect of the entire
community was not measured.

In this paper, we perform a quantitative analysis of Open
/$20.00 (C) 2005 IEEE 1
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Fig. 1. OSS Development Community Classification

Source Software developers by studying the development
community at SourceForge.net [26]. Data is collected and
extracted by mining a SourceForge 2003 data dump. By di-
viding the OSS development community into four subsets,
statistics and social network properties are explored to find
the effect of different roles in the OSS development commu-
nity. Based on these social network topological properties,
we discover that there are special features in the OSS devel-
opment community. We give explanations to those features
and discuss their relationship to the success of OSS.

The rest of this paper is organized as follows: the next
section classifies roles of developers by their activities in
projects; the third section gives a brief introduction to the
OSS social network; the fourth section describes the small
world phenomenon and the scale free network; social net-
work and presents properties we analyze in this paper; then,
we describe data extraction and mining process of the Source-
Forge community; statistical and social network analysis is
performed on the collected data to understand the Source-
Forge development community; the seventh section discusses
the discoveries based on the analysis; finally, conclusions
and future work are given.

2. OSS DEVELOPMENT COMMUNITY
CLASSIFICATION

An OSS development community is composed of groups
of loosely-connected contributors with central coordinators
and decision makers. According to Xu [33], OSS mem-
bers can be classified into either the user group or the de-
veloper group. The user group includes passive users and
active users. Passive users have no direct contribution other
than forming a larger user base. They just download code
and use it for their needs. Active users discover and report
bugs, suggest new features, and exchange other informa-
tion by posting messages to forums or mailing lists. The
developer group can be further categorized into peripheral
developers, central developers, core developers and project
leaders. Peripheral developers irregularly fix bugs, add fea-
tures, provide support, write documents, and exchange other
0-7695-2268-8/05
information. Central developers regularly fix bugs, add fea-
tures, submit patches, provide support, write documents and
exchange other information. Core developers extensively
contribute to projects, manage CVS releases and coordinate
peripheral developers and central developers. Project lead-
ers guide the vision and direction of a project.

In this paper, we define that the OSS development com-
munity includes all of the above members except passive
users, because passive users do not make direct software
development contributions and thus are not considered to
be part of the development team. Thus, as shown in Fig.1,
our OSS development community includes the following
groups:

1. Project leaders who are also called project adminis-
trators,

2. Core developers who regularly contribute on projects
and manage CVS releases,

3. Co-developers including both peripheral developers
and central developers, and

4. Active users who have some contributions except mod-
ifying code.

Because an individual may participate in multiple projects,
he/she can belong to different groups in the development
community (overlap in Figure 1). Our definition of the OSS
development community is considerably larger than the tra-
ditional closed source development team which approxi-
mately coincides with our project leader and core developer
groups. Our co-developer and active user groups are typ-
ically not part of the development communities for tradi-
tional closed source software, but are what has been identi-
fied as end-user contribution to the product innovation pro-
cess [12].

3. OSS SOCIAL NETWORK

The social network perspective has been explored to ex-
plain an organization’s behavior in terms of their embed-
dedness in social networks [5,10,24,27,29]. Social network
analysis seeks to understand the relationships and informa-
tion flows between people, groups, organizations, or other
social entities. A social network can be modeled as a graph
with nodes representing people or groups, and links repre-
senting relationships or information flows between nodes.
Thus, two persons are directly connected if they have a re-
lationship with each other. The path between two nodes in
the graph measures the closeness of these two nodes. Social
network analysis has been successfully applied in many sci-
entific areas [1]. For example, in a scientific collaboration
network, nodes represent scientists, and two nodes have a
link if two scientists have coauthored a paper together.
/$20.00 (C) 2005 IEEE 2
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The Open Source Software (OSS) development move-
ment is a classic example of a dynamic social network [16];
it is also a prototype of a complex evolving network [9, 19,
30–32]. In this network, we focus on two entities – de-
velopers and projects. Thus, the OSS development com-
munity can be represented as a bipartite graph, the project-
developer network, with two kinds of nodes to represent de-
velopers and projects. Developers in a project are connected
to that project. This bipartite graph can be transformed to
two unipartite graphs, the developer network and the project
network. Fig.2 shows a cluster (a collection of connected
nodes) at SourceForge.net. In this paper, we study all three
networks to determine the role and influence of different
members in the OSS community.

Many properties are used to characterize the topology of
the social network. The properties we used in our analysis
include:

Degree Distribution: The degree of a node, k, is the total
number of links connected to this node. The degree distri-
bution represents the relative frequency of each index value,
k, in a given network. The degree distribution of social net-
works was believed to be the Poisson distribution. Recently,
it has been found to often have a power law distribution [2],
which is defined as follows:

y = xα (1)

where α is a constant. The relationship between log(y) and
log(x) is linear.

Diameter: The diameter of a social network is the longest
shortest-path between all pairs of nodes. In a disconnected
network, the diameter can be defined as the maximum diam-
eter of its clusters. An alternative definition of the diameter
is the average shortest path between all pairs of nodes. We
use the second definition in this paper because the first di-
ameter definition can be hard to compute for large networks.
The average diameter indicates the average separation of
pairs of nodes in a network, which represents the average
distance to connect two nodes together. Newman and Watts
developed an approximate calculation of the diameter by us-
ing a generating function [23]. The approximate diameter in
a random network can be computed by

d =
log(N/z1)
log(z2/z1)

+ 1 (2)

where d is the diameter, N is the total number of nodes,
z1 is the average number of neighbors 1 link away, and z2

is the average number of neighbors 2 links away. Thus the
diameter of a network is increasing logarithmically with N .

Cluster: A cluster in a social network consists of con-
nected nodes. Each cluster represents a related community
in the network.

Clustering Coefficient: The clustering coefficient of a
node is defined as the ratio of the number of links to the total
0-7695-2268-8/05/$
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Fig. 2. Modeling OSS as a Social Network: a Cluster of
5 Projects and 16 Developers (Projects and Developers are
Anonymized

possible number of links among its neighbors. The cluster-
ing coefficient is an indicator of the connectivity of a node.
The clustering coefficient of a social network is the average
of all the clustering coefficients of nodes. The generating
function proposed by Newman and Watts can be general-
ized to bipartite graphs to get the clustering coefficient [1]:

C =
1

1 + (µ1−µ2)(ν1−ν2)2

µ1ν1(2ν1−3ν2+ν3)

(3)

where µn =
∑

k knPd(k) and νn =
∑

k knPp(k). In the
project-developer bipartite network, Pd(k) represents the
fraction of developers who joined k projects, while Pp(k)
means the fraction of projects which have k developers.

4. SMALL WORLD PHENOMENON AND SCALE
FREE NETWORK

The small world phenomenon is the principle that everyone
in the world can be reached through a short chain of ac-
quaintances. In 1960s, psychologist Stanley Milgram per-
formed a small world experiment to trace paths through the
20.00 (C) 2005 IEEE 3
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social network of residents of the United States. He found
that two random persons were connected by an average of
six acquaintances, which is called “six degrees of separa-
tion” [21]. Duncan Watts and Steve Strogatz provided evi-
dence that the small world phenomenon exists in many real
networks [28]. They showed that the addition of a few ran-
dom links can turn a “large world” into a “small world” net-
work. They defined a small world network to include two
features – a high clustering coefficient and a small network
diameter.

Barabasi and Albert found that some small world net-
works have another special property. Such networks con-
tain relatively few nodes that are highly connected to other
nodes, while the vast majority of nodes are only connected
to a few other nodes. These networks are called scale-free
networks. According to Barabasi and Albert [3], such a net-
work is generated by two rules. First, the network grows by
the sequential addition of new nodes; second, there exists
preferential attachment – the probability for a newly added
node to be connected to an existing node depends on the de-
gree of the existing node. This phenomenon is sometimes
called the “rich gets richer” phenomenon. In scale free net-
works, the degree distribution of index values of nodes fol-
lows the power law distribution.

5. DATA COLLECTION AND EXTRACTION

One challenge in studying OSS development is to collect
and extract data. Data collection has proven to be tedious
and time consuming [14]. Many difficulties exist in collect-
ing, cleaning, screening and interpreting data [13]. In our
previous studies [9, 17–19, 32], web-bots were used to re-
trieve and extract data from web pages at SourceForge.net.
This process often took days, and frequently was plagued by
incomplete and missing data. In this section, we discuss a
much improved data collection and extraction process used
in mining the SourceForge data.

There are many web sites which host OSS projects. With
around 87, 000 projects and 912, 000 registered users as of
mid-2004, SourceForge.net, sponsored by VA Software is
the largest OSS development and collaboration site. It offers
a centralized place for OSS developers to control and man-
age OSS development by providing project web servers,
trackers, mailing lists, discussion boards, and software re-
leases, etc. This site provides highly detailed information
about projects and developers, including project character-
istics, developers’ activities, and ”top ranked” developers.
By studying these web sites, we can explore developers’
behaviors and projects’ growth.

We extracted data from a 2003 data dump obtained from
SourceForge. The data dump is derived from a PostgreSQL
relational database used as the “back-tier” database for the
SourceForge.net web site. The data dump contains infor-
0-7695-2268-8/05/$
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Fig. 3. A Subset of SourceForge Database Schema

mation about the community, projects, and developers. We
examined these data to characterize the entire SourceForge
community, across multiple numbers of projects, investigat-
ing behaviors and mechanisms at the project and developer
levels.

In the SourceForge data dump, information about the
roles of developers on each project is distributed over seven
tables. Two roles, the project leader and core developer
roles, are explicitly defined and stored in a single table.
The other two roles, co-developers and active users, must
be inferred and extracted from project activity data, such as
bug reports, patch submission, forum discussions, etc. The
seven tables and their relationships are shown in Fig.3. Ta-
ble groups is the list of all projects. Table artifact group list
and artifact contain members’ activities such as bug track-
ing, patch submission, feature requests, and document writ-
ing, etc. Table forum group list and forum reflect members’
participation in open discussion forums. Table users lists
all users’ information including their names and contact in-
formation, etc. Table user group contains the relationships
between projects and project leaders as well as core devel-
opers.

By processing the above tables, we can identify mem-
bers and their participation activities for each project. The
data extraction process is shown in Fig.4. We used a three-
step data integration and data reduction process on the data.
Data integration combines data from multiple sources into
a coherent store. In the first step, we integrate artifact and
forum separately to create two tables – artifact activity and
forum activity to contain each member’s activities in arti-
facts and forums; because some attributes are different in
artifacts and forums, we combine artifact activity and fo-
rum activity with users table to get a member’s activities for
all projects he/she participates, which are recorded in Table
user activity; by integrating this table with user group, we
can identify each member’s role in a project. We put this
information into a table called user project role; lastly, data
reduction is used to reduce the huge data set to a smaller rep-
resentative subset according to members’ role in a project.
20.00 (C) 2005 IEEE 4
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Table 1. The Community Distribution for Large, Middle and Small Projects
Developer Size Project Number Project Leaders Core Developers Co-developers Active Users
≤ 88 64847 80329 (47.8% ) 34659 (20.6% ) 33275 (19.8%) 19941 (11.8%)
> 88 and ≤ 279 193 590 (2.1%) 1703 (5.7% ) 17334 ( 60.3%) 9124 (31.7%)
> 279 70 798 ( 0.9%) 2576 (2.7%) 53030 (55.8%) 38593 (40.6%)
0-7695-2268-8/05/$20.00 (C) 2005 IEEE 5
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6. ANALYSIS OF SOURCEFORGE
DEVELOPMENT COMMUNITY

In this section, we examine the community distribution
of the entire SourceForge population; then, we analyze the
topological properties of the SourceForge OSS development
community.

6.1. Member Distribution

As described in more detail in Section 2, we classified
member groups as follows: project leaders are administra-
tors in each project; core developers are developers listed
in each project at SourceForge.net; co-developers (central
and peripheral developers) are people who are assigned to
tasks such as bug fixing and document writing, but are not
listed as project leaders and core developers; active users
are those who submit requests and post messages, but are
not included in the project leaders, core developers and co-
developers groups; passive users are obtained by excluding
all developers from all users. Because a person can have dif-
ferent roles in different projects, we put him/her into his/her
highest ranked group. For example, if a person is listed as
0-7695-2268-8/05
a project leader in one project and a core developer in an-
other project, he/she will be counted as in the project leader
group. Fig.5 shows the distribution of members in the entire
SourceForge population. About 65% of the SourceForge
population are passive users who make no observable con-
tributions to the development of projects. Among develop-
ers (shown in Fig.6), which comprise 35% of the entire pop-
ulation, there are 28% project leaders, 16% core developers,
34% co-developers and 22% active users. We observed that
co-developers have almost the same percentage as the sum
of project leaders and core developers. This is because a
large portion of projects on SourceForge are small and most
developers on them are also initiators of the projects.

To further investigate the relationship between the project
size and the development community, we divide projects
into three categories, each representing approximately one-
third of the range from smallest to largest community sizes:
large projects, middle projects and small projects, and an-
alyzed their community distributions. Large projects are
those with members greater than 279. Small projects con-
tain less than or equal to 88 members. Middle size projects
have members between 88 and 279. We note that from a
software engineering perspective, a small project team is
typically composed of 1–10 developers and mid-size goes
from 10–50. However, because we include both co-developers
and active users in the open source development commu-
nity, the project sizes should be much larger than those of
traditional closed source software development teams. Ta-
ble 1 gives the development community distribution of these
groups. In small projects, the main part of the community
are project leaders (47.8%) and core developers (20.6%).
As the size increases, more and more co-developers and ac-
tive users join the project. In large projects, project leaders
and core developers consist only 3.6% of the whole com-
munity, while co-developers and active users are 55.8% and
40.6%, separately. The fact that co-developers and active
users comprise a large part in those more popular projects
implies that they may play a crucial role in OSS projects.

6.2. Topological Analysis

To understand how OSS development members (especially
co-developers and active users) collaborate and their effect
on the whole community, we divide the OSS development
community into four nested subsets. Each subset grows
by including more individuals based on their roles in the
SourceForge OSS community:

• Subset A = {project leaders};

• Subset B = {project leaders} ∪ {core developers};

• Subset C = {project leaders} ∪ {core developers} ∪
{co-developers} ;
/$20.00 (C) 2005 IEEE 6
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Table 2. Regression Parameters of Degree Distributions

Parameters Subset A Subset B Subset C Subset D
Project-side R2 0.9396 0.9704 0.6905 0.7221

Slope -3.5841 -2.6968 -1.3020 -1.2220
Developer-side R2 0.9870 0.9846 0.9469 0.9830

Slope -3.3747 -3.4676 -3.7793 -3.2743

• Subset D = {project leaders} ∪ {core developers} ∪
{co-developers} ∪ {active users} ;

We analyze the topological properties of these four subsets
to help identify the different characteristics of each subset
and determine the effect of different community members.

6.2.1. Degree Distribution

Degree distribution is the relative frequency of the index
values (number of edges on a node) throughout the network.
Degree distribution was recently found to fit a power law
distribution in many real networks [2]. A power law distri-
bution is an important characteristic of a scale free network.
As we introduced in Section 4, such networks can be gener-
ated using two rules: sequential addition of new nodes and
preferential attachment.

We hypothesize that the OSS community is a scale free
network because it may be growing and self-organizing us-
ing the above two rules. In the OSS community network,
the number of community members and projects grow over
time. With the evolution of projects, community members
sequentially join projects. Furthermore, the OSS develop-
ment community is highly decentralized. Developers freely
participate on projects which attract them. Some projects
are more popular than others. Such projects tend to attract
more developers and users. Thus, in this network, there ex-
ists a preferential attachment of developers to projects.

To support of our hypothesis, we compute the degree
distributions of SourceForge project and developer networks,
shown in Fig.7. All left subgraphs represent the distribu-
tions of the log-log transformation of project size frequen-
cies. The right subgraphs display the distributions of the
log-log transformation of the project membership of devel-
opers. All eight subgraphs show degree distributions which
are highly skewed. For example, on the right subgraphs, a
large number of members only participate on one project
(45261 in subset A, 63103 in subset B, 105234 in subset
C, 113999 in subset D). But some members join multiple
projects. When comparing subset A to subset D, the largest
number of projects a member joins increases from 29 to
95. These members are linchpin nodes in the community
network, who link projects together into clusters. We can
observe that all distributions display the power law rela-
tionship. Table 2 shows the linear regressions of all eight
subgraphs. Such a power law relationship suggest that the
0-7695-2268-8/05/
Table 3. The Properties of the Development Community

Property Subset A Subset B Subset C Subset D
Size 58651 83118 139570 161691
z1 1 6 508 3241
z2 1 17 13398 31998
Diameter Inf. 10.2 2.7 2.7
Clustering Coefficient 0.8406 0.8078 0.8867 0.8297
Largest Project Cluster 737 15091 30794 40175
2nd Largest Project Cluster 197 34 20 20
# of Project Clusters 43826 34280 27983 21659

SourceForge development network is a scale free network.
In this network, a successful project can attract more devel-
opers, while many projects will stagnate after a short while.
The number of members in a project may be an important
positive feedback factor in determining the attractiveness of
a project.

6.2.2. Diameter

Using Equation 2, we calculated the average shortest
path length of the four community subsets. As shown in
Table 3, if the community is composed of only project lead-
ers, the average shortest path length computed using Equa-
tion 2 in this network is infinity. This reflects the fact that
the project leader network is highly disconnected. Perhaps
project leaders are to busy to join other projects? Core
developers are more willing (or able?) to participate on
other projects. In the subset B, which includes both project
leaders and core developers, the average shortest path is 10
out of 83118 members. Co-developers and active users are
likely to join multiple projects. Subset C and Subset D both
have the average shortest path as 3. It takes about 3 steps
to reach a randomly chosen member in the SourceForge de-
velopment community. With the participation of developers
and active users, the degree of separation is significantly de-
creased. In the OSS development community, members can
be closely related to each other although they are working
in a distributed environment. Information such as ideas and
discussions can spread fast in the OSS development com-
munity because of the short distance. By understanding this
fact, certain phenomenon can be understood in terms of the
short communication path available in the OSS community.
Also, the number of separated clusters influences the spread
of ideas throughout a network. This property is described in
the following subsection.

6.2.3. Clusters – Sizes and Numbers

Two projects are linked if they share a member. All linked
projects form a project cluster (See Fig.2 for an example).
Each project cluster has a corresponding developer cluster.
Thus, we limit our discussion in this section to project clus-
ters. All four subsets of the SourceForge development com-
$20.00 (C) 2005 IEEE 7
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Fig. 7. The SourceForge Project and Developer Community Scale Free Degree Distributions
munity contain many separated clusters (shown in Table 3).
Also in Table 3, we see that the largest cluster is much big-
ger than the second largest cluster and grows as we move
from subset A to subset D. However, the second largest clus-
ter decreases with the increase of the community size. The
reason is that some clusters are linked to become part of the
largest cluster. The larger a cluster is, the more possible it
will attach to the largest cluster as the community size in-
creases.

This type of cluster analysis may be used to identify
groups of related projects or developers with similar inter-
ests. This discovery may reflect that some projects are more
similar than others. They may have some common charac-
teristics. This may be applied to project management, for
example, by identifying similar projects, we can study the
life cycle of an old project to predict the future of a young
project. Alternatively, recommender systems such as those
found at online shopping sites may be developed to assist
users and developers looking for software or projects to par-
ticipate on.

6.2.4. Clustering Coefficient

We use Equation 3 to get the approximate clustering co-
efficients of the four subsets of the SourceForge community.
The clustering coefficient tells us how many of a member’s
0-7695-2268-8/05/$
collaborators are collaborators with each other. As shown
in Table 3, the clustering coefficients of all four subsets are
above 0.8. The high clustering coefficients are not surpris-
ing because members are fully connected in each project.

7. DISCUSSION

We found a small world phenomenon, the small diam-
eter and the high clustering coefficient, in the SourceForge
development community. The small distance results from
the fact that a member may participate in multiple projects.
In this way, the member connects separate clusters together
and creates a path among members in those clusters. How-
ever, a large percentage of members participate on one project
(70.5% in subset D). This fact explains the observed high
clustering coefficient. Furthermore, the power law distri-
bution found in the SourceForge OSS network supports the
claim that it is a scale-free network. OSS projects are of-
ten developed by collaborating volunteers, who sequentially
join projects based on their interest.

In previous studies [9, 19], we observed the power law
distribution and the small world phenomenon in the Source-
Forge project leaders and core developers community (clas-
sified as subset B in this paper). In this paper, we observe
that with the participation of co-developers and active users,
20.00 (C) 2005 IEEE 8
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while the cluster is increasing, the diameter is much smaller
(only about 3 links between pairs of community members).
This fact supports the assertion that co-developers and core
developers play a crucial role in connecting the SourceForge
development community. Their existence can make com-
munication flow faster throughout the whole OSS commu-
nity. This fast communication may be an example of a self-
organized optimized resource reallocation. For example,
our SourceForge data contains 676 text editor projects. Of
all developers on those projects, about 50% of developers
are on the top 6 largest projects. One reason might be due to
the short communication path in the development commu-
nity through which people can find projects which attract
them. The feature of fast communication in OSS devel-
opment community may be a factor of its success because
closed source software development does not typically have
co-developers, and active users may not be in close contact
with developers.

8. CONCLUSIONS

In this paper, we studied the Open Source Software de-
velopment community at SourceForge. Based on a Source-
Forge 2003 data dump, we performed quantitative analysis
on the SourceForge OSS development community. Using
statistical analysis, we found that large and small projects
have different community distributions. Large projects con-
sist mainly of co-developers and active users, while project
leaders and core-developers are the main part of small projects.
Furthermore, we conducted topological analysis on four sub-
sets of the OSS development community. Properties of the
community network show that the SourceForge OSS devel-
opment community is a self-organizing system which obeys
scale-free behaviors. Moreover, small-world phenomenon,
the small average distance and the high clustering coeffi-
cient, exists in the community. We identify the important
effect of co-developers and active users because their addi-
tion can turn the OSS community into a fast communication
network. Our research provides useful information of the
underlying structure and components of the OSS commu-
nity. The information in this paper is important in studying
the evolution of the OSS community.

The work in this paper is part of an ongoing OSS study.
Future work will focus on the simulation of OSS developer
network based on the data and analysis in this paper. What
still needs to be done is to provide motivation for the in-
dividual users in terms of a social theory. We want to ex-
pand upon this work by incorporating some social network
theories into an agent-based model so that we can perform
computer experiments for hypothesis testing. Furthermore,
our analysis is based only on SourceForge.net. We will ex-
plore some other OSS project sites, (e.g. Savannah, Linux,
Mozilla, and Apache) to test if the development community
0-7695-2268-8/05/$
characteristics found in SourceForge are presented in those
sites.
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