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ABSTRACT1 
In order to achieve a better understanding of FLOSS social 
structure, we need a definition of social position. From a 
theoretical perspective, we propose to think the participation as a 
trajectory. Empirically, we use optimal matching to build a 
typology of participation trajectories based on KDE email 
archives. We show how these trajectories structure the community 
as a whole by combining these results with a social network 
analysis. 
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1. INTRODUCTION 
It is often proposed that the distinctive social structure of FLOSS 
communities could be one of the key reasons of its success [6, 9, 
11 and 12]. How can we achieve a better understanding of the 
social structure of a FLOSS project? In order to understand this 
structure, we need a definition of “social position”. Indeed, unlike 
usual institutions with clearly established social statuses, there are 
no such statuses in FLOSS. In many projects, some information 
on this subject may be available, such as the name of the project 
maintainer or some important contributors. However, this 
information is usually too general to approach the social structure 
and it is often not up to date. The underlying fact is that these 
statuses do not provide specific rights (or allow specific practices) 
just because of carrying them. They are a sign of an already 
acquired social status.  
Thus, we need a theoretical framework that will enable us to 
identify the key dimensions of the social position in order to be 
able to measure it. In this article, we base ourselves on the theory 
of the communities of practice (CoP) brought by Lave and 
Wenger [10 and 16]. In CoPs, the membership and the social 
position are defined by practice, i.e. what one does in the 
community. Thus, the first dimension of the social position is the 
activity carried out. This point is already highlighted in 
Studer [15].  
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According to the theory of the legitimate peripheral participation 
[8, 10 and 16], we need to think practice, and thus the 
participation, as a trajectory. The practice changes in the course of 
time, as it must be learned and the social structure must be 
interiorized. Practice starts as peripheral (e.g. particular to the 
newcomers and nonessential to the community) and it tends 
towards a form of “complete” participation (e.g. an ideal form of 
practice) for people who place themselves in a trajectory of 
insertion. Nobody represents the complete and ideal practice. 
Thus, each contributor modifies his own practice unceasingly in 
order to approach this ideal. It is a continuous adaptation. 
Along the same way, legitimacy within the community is 
acquired in the course of time. Thus, we should not look only at 
the current situation, but also to the past actions that constitute the 
current legitimacy and prestige of a given contributor. This 
legitimacy is important in two ways. First, without legitimacy it is 
not possible to act within the community. Second, legitimacy and 
prestige should be thought of as a resource which can be used to 
act within the community (i.e. influence). As such, it is one of the 
key dimensions of the social position.  
In order to take trajectories into account, we rely on optimal 
matching [1, 2, 3 and 4]. This method is based on “sequence 
alignments”, that is comparison of all pairs of sequences to 
generate a matrix of distances between them. We then use a 
cluster algorithm to build a typology of trajectories. This method 
will allow us to add two dimensions to the type of action carried 
out: since how long one contributes and the regularity of this 
contribution. We build our trajectories from KDE2 mail archives. 
We then investigate the relationships between the typology of 
trajectories and social positions identified through a social 
network analysis of KDE contributors. 
The rest of the article is organised as follows. First, we briefly 
introduce our data set. After that, we describe the procedure 
followed to build our trajectories. Then, we describe the optimal 
matching approach and discuss our results. Finally, we look at the 
relationships between optimal matching and a social network 
analysis of the KDE mail archives. 

2. THE DATA SOURCE 
Our data source is constituted by e-mails sent to KDE mailing-
lists and archived by MARC3. These e-mails come from the lists 
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of discussions within each project and sub-project. Two problems 
quickly arise: neither the e-mails addresses nor the names can be 
considered unique. Consequently, we used an in-depth search 
algorithm to put together “name-email” couples corresponding to 
a same contributor. Indeed, the algorithm suggests possible 
merges. Since all regroupings were human-supervised, we were 
forced to use a selection criterion. We considered only persons 
having sent at least ten messages during a period of at least one 
month and that were active between the first of January 2006 and 
the first of July of the same year.  
We distinguish three types of measures: those concerning 
modifications in the revision control system, those about the bug 
tracking system and usual messages sent to different kind of 
mailing lists. Let us briefly review these measures before 
discussing how to measure participation. 

2.1 Revision Control 
There is a specific mailing list in our data set, « kde-commit », 
which gathers automatic notifications from the revision control 
system (RCS). The use of the mailing list instead of CVS or SVN 
information allowed us to use a unique source of information and 
to link this information with the one from other sources (namely 
Bugzilla and usual mailing lists) on the basis of names and e-mail 
addresses instead of using an account name. 
The RCS should be thought of as a “shared repertoire” [16]. It 
contains the production of the community, i.e. the reason of its 
existence. As such, contributions made to the RCS are very 
important, at the production as well as at the symbolic level, since 
they can be considered as a “proof” of participation. We should 
remind that, in CoPs, participation and practice are some of the 
key dimensions of membership [16].  
Data from RCS measure in an imperfect way only the 
participation of contributors since “write accesses” to RCS are 
usually given once the contributor is already considered as a 
“member”. Thus, “commits4” made by a specific contributor can 
be the application of a patch submitted by someone else. On some 
part of KDE – translation for instance – this situation is very 
common, since only few people have “write accesses”. As a 
consequence, measurement of participation cannot be based on 
commits only. Nevertheless, the latter is an important measure 
since it is a sign of the social position. The number of commits 
should be used alongside with other measures to get an overview 
of different kinds of participation. 
We measure “commit” by the number of messages sent to the 
“kde-commit” mailing list. However, we did not count “silent” 
commits, nor usual messages sent to this mailing list. 

2.2 Bug Tracking 
Despite its name, the bug tracking system (BTS) – Bugzilla in the 
case of KDE – should be thought of as an interface of formal 
communication between “users” and “contributors”. Activity in 
BTS is very important, since BTS is a place of communication 
between the inside and the outside of the community. This kind of 
communication is often seen as one of the key dimension of the 
success of FLOSS communities [11 and 12]. 
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We measured activities done in BTS in two ways: “bug opener” 
and “non bug opener”. First, we counted the number of 
modifications done by the contributor who opened the concerned 
bug report. We built this measure by looking at the first entry 
with the given bug ID5 and called it “bug opener”. This measure 
should reflect a user practice of the BTS since the goal is to 
receive a response from the inside of the community.  
Similarly, we computed the number of modifications done by 
other contributors.  In this case, practice should be more oriented 
toward bug management. It is an “inside activity” and it should be 
distinguished from “user practice”. We called this measure “non 
bug opener”. 

2.3 Mailing Lists 
As we have seen, some kinds of contribution, such as translation, 
are not reflected by “commits”. Therefore, we considered also 
usual mailing lists archives and measured the number of messages 
sent. Since these lists may address very different issues such as 
user assistance, translation, development issues, internal 
organisation and so on, our measure remains vague. However, it 
is worth taking this dimension into account. It reflects 
participation to decision processes and other community centred 
practices essential to define the social position. This dimension 
also measures a kind of personal commitment in the community.  

2.4 Measuring Participation 
We have thus the three above mentioned sources of information to 
measure participation. We cannot rely solely on one of these 
sources. Hence, we should look at characterizing usual 
configurations of these measures. By reducing all three measures 
into a single scale, we would loss too much information. 
Therefore, we choose to represent them through a categorical 
variable. 
Let us recall that we are interested in the social structure of the 
community. This structure includes users as well as project 
maintainers. Of course, some positions may be more important 
than others for the community and especially for its reproduction. 
The social structure relies on the relationships between these 
positions. Hence, we have to depict all kinds of contribution in 
order to understand the social structure. These relevant patterns 
will be characterized in subsection 3.1. 

3. OPTIMAL MATCHING 
We argued that participation should be considered as a trajectory. 
Practices evolve over time as well as the social position. Using 
optimal matching, we build a typology of participation 
trajectories. We start by explaining how “participation 
trajectories” were built from our data set. We present the optimal 
matching approach and clustering technique used for building the 
typology. 

3.1 Participation Trajectories 
In optimal matching, trajectories must be provided as an ordered 
sequence of states (category). In sociology, the position in the 
sequence represents the position in time. Each period (or position) 
is of equal length.  
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We built our trajectories using a community time of reference. In 
other words, we used an identical reference time for all 
contributors. Since we want to understand actual dynamics of 
contributors, we choose to end the trajectories at the time the data 
were collected. Our trajectories are built as sequences of 36 
periods of four weeks each. Thus, trajectories represent the 
participation of each contributor included in the analysis between 
the 24th of September 2003 and the 28th of June 2006.  
In our construction of trajectories, each period corresponds to a 
four week interval starting Thursday at midnight (GMT). We 
preferred this solution rather than periods measured in months, 
since there is a “day of the week effect” on participation. In Table 
1, we present the average values of the variables commit, bug and 
message for each day of the week calculated over the period 
starting from 10.01.06 until 28.06.06. We can clearly distinguish 
this “day of the week effect”. Week-ends show less average 
activity (in each measure) than week days.  

Table 1. Average activity by day of the week 

Day Average 
Commit 

Average 
Bug 

Average 
Message 

Monday 296.3 280.5 219.8 

Tuesday 300.9 286.5 240.4 

Wednesday 290.2 297.6 247.4 

Thursday 268.8 290.1 221.5 

Friday 288.4 274.7 203.9 

Saturday 243.2 246.7 154.1 

Sunday 263.2 251.2 169.8 
 
After having defined the period – the position in the sequence – 
we should assign to each of them a category or a state. From a 
theoretical point of view, we have showed that we should include 
all three measures in our analysis. To define the categories of 
practices, we used a cluster analysis. 
For this analysis, we organised the data in “person-period” form. 
This means that we have 36 records for each contributor, i.e. a 
total of 105'552 records (36 periods times 2932 contributors). 
Each record is of length four, two variables representing the bug 
dimension. We created an a priori cluster with all records without 
any activity, since there is a qualitative gap between a small 
activity and no activity at all. Since we already created a 
theoretical category for period without any activity, the cluster 
analysis was finally done on the remaining 37'513 records. 
We did not use the measure directly. We used a logarithmic 
transformation of each of them with the function: 

)1ln( xy += (we added one in order to avoid troubles with null 
values). This makes differences between high values less 
important than differences between low ones.  
Then, we used the “k-means” method from SPSS [14]6 to build 
the typology. We tried several solutions and retained the one with 
five classes. Table 2 shows the mean values of the variables 
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“message”, “commit”, “non bug opener” and “bug opener” for 
each cluster of activity. 
Aside from periods without any activity, we have five clusters of 
activities. The “Small” type corresponds to periods with small 
contributions, such as one bug report opened and/or one “non bug 
opener”. The next cluster, “Bug”, regroups period with an activity 
centred on bug reports (“bug opener” is much higher than “non 
bug opener”). Some messages are sent on mailing lists, the 
average being one. The cluster “Message” shows periods with an 
activity mainly characterized by sending messages on mailing 
lists. Unfortunately, we do not know the type of message sent. 
The cluster “Commit” includes periods with messages sent on 
mailing lists, the average being 22 modifications in the RCS. We 
can interpret this cluster as that of usual developer’s activity. The 
last cluster named “High” includes periods of very high 
involvement according to all measures except “bug opener”. 
Notice the clear separation between “non bug opener” and “bug 
opener”, as expected. Cluster with commits are more linked with 
“non bug opener” than with “bug opener”. On the other hand, 
“Bug” which includes periods with activity appearing almost only 
in BTS shows much higher “bug opener”. This simple distinction 
is meaningful. 

Table 2. Average activity by cluster of activity 

 Message Commit 
Non Bug 
Opener 

Bug  
Opener 

No Activity (N) 
 (64.5%) 0.00 0.00 0.00 0.00 
Small (S) 
(15.1%) 0.27 0.16 0.70 0.74 
Bug (B) 
(5.4%) 1.09 0.14 2.99 8.14 

Message (M) 
(8.4%) 7.86 0.21 0.52 0.40 

Commit (C) 
(3.8%) 5.57 22.38 1.98 0.56 

High (H) 
(2.7%) 33.06 47.95 39.45 3.13 
Total 

(100%) 1.86 2.19 1.45 0.69 
 
Having computed these clusters of activity, we can now build the 
trajectory of each contributor. We simply represent this trajectory 
as the succession of clusters of activity assigned at each period. 
For instance, the sequence below represents the trajectory of a 
given KDE contributor.  

H M S H H C N S N N B S N S N N S B N N B N N S M N S M N B M H H H C S 

Each letter stands for an activity cluster membership (the first 
letter). For instance, this contributor had an activity characterized 
by cluster “S” (“small”) at period 3 (i.e. between 18.11.2003 and 
16.12.2003). At period 32, the activity of this contributor was best 
characterized by state “H” (“high”). 
Figure 1 shows an aggregated view of all trajectories. For each 
period on the x axis, it shows the distribution of our population 
among the different clusters of activity. We can remark that 
periods without activity are the most frequent (in black on the 
figure). There seems to be more activities during the last six 



periods. This is due to our selection criteria. Our population is 
constituted by people having contributed during the last six 
periods. 

 
Figure 1. Aggregated trajectories of all contributors7 

However, this presentation is too general and it does not permit to 
distinguish social positions. We will now present this part of the 
analysis: optimal matching and clustering sequences. 

3.2 Clustering Sequences 
Optimal matching gives an estimation of the “distance” between 
two sequences. The matrix of distances obtained by comparing all 
pairs of sequences can then be used to find clusters of trajectories 
(i.e. sequences) using classical methods. In other word, we can 
use this information to build a typology of different kinds of 
trajectories. We will now explain the general idea of optimal 
matching before presenting our results. 
According to optimal matching, the distance between a given 
sequence A and another sequence B is equal to the minimum cost 
of transforming sequence A into sequence B. The total cost is the 
sum of the cost associated with each elementary operation 
required by this transformation. Since several solutions are 
possible, we select the minimum possible cost. 
The elementary operations are of two types: insertion-deletion or 
substitution. Insertion-deletion, usually called “indel”, 
corresponds to the insertion or the deletion of one element in one 
of the sequence. The cost associated with this operation is 
independent of the state concerned. For instance, the cost 
associated with inserting the state “Small” is the same as inserting 
the state “High”. “Indel” operations deform the time structure of a 
sequence by allowing that a given subsequence appears later. The 
second kind of operation is substitution of an element (state) by 
another one. The cost associated with this operation depends on 
the state involved in the substitution. Table 3 shows the matrix of 
substitution costs used in our analysis. There are several ways for 
establishing these costs. Here, we derived the substitutions costs 
from the transition probabilities between two states. More 
precisely, we used the following formula to compute the cost (C) 
of substitution between states i and j based on transition 
probabilities (P): 

)|()|(2 11,, −− −−== ttttijji ijPjiPCC  

The indel costs were set to one. Thus, the cost of a deletion 
followed by an insertion is slightly higher than any substitution. 
We want to penalize this operation since it tends to introduce 
temporal distortion in the comparison of sequences and we want 
to take temporal structure into account. 
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Table 3. Substitution costs between clusters of activity 

 

No  
activit

y Small Bug 
Mess
age Commit High

No  
Activity 0.00      
Small  1.38 0.00     
Bug 1.72 1.62 0.00    

Message 1.72 1.76 1.89 0.00   
Commit 1.93 1.97 1.97 1.85 0.00  

High 1.99 1.85 1.97 1.91 1.70 0.00 
 
Substitution costs as well as distances between sequences were 
computed with the software TDA [13] (“Transition Data 
Analysis”). This software also implements several clustering 
algorithms. In the present study, we relied on SAHN (sequential, 
agglomerative, hierarchical, non-overlapping) algorithm with 
Ward criteria which minimizes intra-class inertia. This algorithm 
is widely used since it is close from a variance analysis and 
produces clusters with comparable sizes. In particular, it avoids 
small groups with only few individuals. 
Finally, we retained the solution with nine clusters of trajectories. 
We briefly discuss these groups below. The figures showing 
aggregated trajectories for each cluster can be found in the 
appendix. At first look, we can distinguish three main dynamics: 
stable or regular trajectories, short term trajectories showing a 
strong involvement and finally a group of sporadic contributions. 

3.2.1 Regular Contributors 
The first four clusters of trajectories correspond to stable 
contributors in different area. The first cluster (Fig. 2 in appendix) 
shows contributors with a strong involvement on a long term 
period. By comparing with other trajectories, we see that cluster 
of activity “high” are mainly concentrated in this cluster of 
trajectories. The other types of trajectories show regular activity 
over a long term period mainly centred on message (Fig. 3), 
commits and development (Fig. 4) or bug reports (Fig. 5). These 
different clusters represent 17.2% of our population. 

3.2.2 Short Term Contributors 
Next trajectories show a strong involvement over a shorter period 
than the previous. It could be new contributors in a trajectory of 
integration or short term contributors that stop their activity once 
their contribution is finished. We found three clusters of this kind. 
Those centred on commits and development (Fig. 7), messages 
(Fig. 9) and bug reports (Fig. 8).  

3.2.3 Punctual contributions 
The last two clusters of trajectories show sporadic contributions. 
The first one (Fig. 6) shows very small contributions over a long 
time frame. The second one (Fig. 10) shows small contributions 
of several types over the last six month. These two clusters of 
trajectories are the most important since they represent more than 
two third of our population. 

3.3 Conclusion from Optimal Matching 
What have we learned from the results of optimal matching? We 
can mainly draw two conclusions, but results also raise some 



questions. First, we have seen that some activities – in the way we 
measured them – are structured according to the trajectory. For 
instance, the cluster of “high” activity appears mainly in long 
term trajectories. This structuration leads us to think that some 
activities should be learned as well as the social structure that 
surrounds this activity. Thus, we can also think that the activity in 
a regular trajectory and the one in sporadic one may differ even if 
the measure (for instance, message) is the same. For instance, if a 
contributor sends messages on a “user oriented” mailing list 
regularly over a period of three years, it is not the same kind of 
contribution as a “user” sending several messages during a short 
period. Hence, we should also consider the regularity of the 
activity aside from intensity (as measured) and the kind of 
activity. 
The percentage of each kind of trajectories show us the huge 
amount of sporadic and short term contributors in a FLOSS 
community. We should be aware that these percentages are under 
evaluated because of our selection criteria. This situation raises 
several questions. First of all, how are sporadic contributors 
“handled” by the community? For instance, are these 
contributions (or questions) handled by “strongly involved” 
contributors or by some contributors specialized in this kind of 
interaction? These interactions can be time-consuming and less 
prestigious.  
According to our typology there are a lot of short term 
contributors such as “new committers” (Fig. 7), 3.3% of our 
population, comparing to “regular commit”, 4.5% of our 
population. In our sense, this high importance of “short term” 
contributors could be challenging for the community and its 
reproduction since it might reflect a high incoming-outgoing 
movement. Hence, a comprehension of the social structure of 
FLOSS communities should explain the movement between new 
and old contributors.  
In order to understand how trajectories are linked with the social 
position and how it can structure the community as whole, we 
propose to link these trajectories with a social network analysis of 
contributors. This is what we present now. 

4. SOCIAL NETWORK ANALYSIS 
If the clusters of trajectories reflect some specific social positions 
or roles, we should see some differences in how they are inserted 
in the web of social interactions. Thus, we propose to link our 
results with a social network analysis. This will give us the 
opportunity to discuss the relevance of the proposed methodology 
to study FLOSS community structure. 

4.1 Building the Network 
We used the information from mailing list archives as well as the 
one from the bug tracking system to build a social network 
analysis of all participants to KDE using Pajek [6]. In this kind of 
analyses, two definitions are essential: inclusion and relationship. 
We included the same contributors as for the analysis of 
trajectory. Regarding relationships, we followed the method used 
in Studer [15]. We used the definition of “thread” from MARC 
archive to constitute our network. We have then defined the 
relationship between two persons as: 

The relationship between a person A and B is equal to the 
sum of all messages sent by A in “threads” where B also sent 
at least one message. 

The relationship has a direction (from A to B) and the value is 
different according to this direction. However, and this follows 
from the given definition, if A has a relationship with B, then B 
has a relationship with A. It will not be automatically the same 
value. The graph obtained is directed and valued. Our 
measurement also contains a scale about the “force” of the 
relationship. Thus, taking part in a discussion with a lot of 
different participants implies more “relations” than taking part in 
a small discussion. In other words, each message is not equal in 
our construction of the network. This corresponds to some logic. 
By taking part in a large discussion (which has more chance to be 
considered as important), one acquires a greater visibility than in 
a small discussion implying only two people. 
After having exposed how we have built the network, let us look 
at where our clusters of trajectories are located in the social 
network and especially at the differences of positions. 

4.2 Social Network and Trajectories 
We computed several indicators from the network in order to 
compare the clusters of trajectories. The degree is simply the 
number of arcs connected to a given vertex (contributor) in our 
social network. According to our definition of the network, the 
sum of incoming arcs corresponds to the number of messages 
received. The sum of outgoing arcs can be interpreted as an 
indicator of influence in our network. 

Table 4. Network indicators average by cluster of trajectories 

 Degree 

Sum of   
incoming 

arcs 

Sum of  
outgoing 

arcs 
Regular Small (22.4%) 3.81 4.25 4.46 
Sporadic (45.3%) 7.73 12.74 14.75 
New BugSmall (4.7%) 14.09 20.79 19.36 
Regular Bug (4.2%) 20.85 32.04 32.80 
New SmallMessage (7.0%) 28.74 57.07 63.50 
New Committers (3.3%) 41.45 78.50 65.75 
Regular Commit (4.5%) 43.34 90.16 82.62 
Regular Message (5.2%) 57.45 125.52 110.80 
Strongly involved (3.3%) 218.26 654.04 656.47 
Total (100%) 21.54 48.28 48.27 
 
Unsurprisingly, involved and regular contributors hold a much 
more central position than other. The “New Committers” who 
seem to be quite central are the only exceptions. However, by 
comparing the degree and the sum of incoming arcs of “New 
Committers” and “Regular Commit”, we can conclude that 
newcomers tend to have weaker relationships than regular 
contributors. Bug related trajectories tend to have more 
decentralized positions, according to theses indicators. For 
instance, the average degree of “Regular Bug” is quite smaller 
than other “regular” trajectories. By looking at these differences, 
we can identify three main dynamics that seem to influence the 
position in the network: 
- The activity performed. 



- The dynamic of trajectory (long term, short term, sporadic). 
- The intensity of the activity performed. 
This discussion confirms that we should look at the participation 
in a FLOSS community with a trajectory perspective and not just 
at a given point in time. 

4.3 Relation between Clusters of Trajectories 
The clusters of trajectories hold different positions according to 
our network indicators. However, if we consider these clusters as 
“social positions” or “social roles”, we may be interested in the 
pattern of relationships between different kinds of trajectories. 
Thus, we built a “supra-network” of relationships between the 
different clusters of trajectories. In this “supra network”, the 
relationship RA,B between two clusters, A and B, is equal to the 
average relation between the members of A and B: 

BA

r
R Ai Bj

ji

BA ⋅
=
∑∑
∈ ∈

,

,

 
where: 

ri,j is the value of the relationship between contributors i and j. 
If there is no relationship, it is equal to zero.  
|A| and |B| are respectively the size of clusters A and B8. 

We obtained the graph shown in appendix (Fig. 11) using the 
Pajek software [5 and 7].  In this graph, we discarded all 
relationships smaller than the overall average of relationships 
(0.0156) in order to highlight relevant links between clusters of 
trajectories. The size of the vertex reflects the number of members 
of the concerned cluster. The cluster “strongly involved” occupies 
the most central position. It is also the only cluster connected to 
all other clusters of trajectories. According to this graph, we may 
think that most relationships with the “outside” of the community 
are carried out by the most central contributors. We do not 
observe any “filter role” between sporadic and strongly involved 
contributors. Moreover, the graph leads us to think that 
coordination of the community could be closely related to the 
management of outside relationships. This graph shows a very 
strong centralization of the network and seems to support the 
hypothesis that large decentralized project are organized as a 
collection of small centralized projects [9]. 

5. CONCLUSION 
Optimal matching showed us the importance of considering 
participation and practice in community in a trajectory 
perspective. Activity, practice, legitimacy and social position 
depend on the personal history of community members. This 
history should be thought of as a whole aside with the intensity of 
participation and the kind of activity performed. 
Our analysis showed (Subsection 3.3) the huge amount of short 
term and sporadic contributors. It raises the question of the 
reproduction of the community that seems to rely primarily on a 
small group of strongly involved members. But we are not able to 
provide evidence on this point, a longitudinal analysis of the 
community could help us to gain a new insight on this point. 
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of possible relationships within cluster A. 

Our analysis also showed that most contacts with sporadic 
contributors seem to be with the most involved members. In 
particular, contacts with regular contributors seem to be less 
important. This leads us to think that the community is very 
centralized on a small group of coordinators. 
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Figure 1. Aggregated trajectories of all contributors 
 

 
Figure 2. Strongly involved (3.3%) 

 
 



 
Figure 3. Regular Message (5.2%) 

 

 
Figure 4. Regular Commit (4.5%) 

 

 
Figure 5. Regular Bug (4.2%) 

 



 
Figure 6. Regular Small (22.4%) 
 

 
Figure 7. New Committers (3.3%) 
 
 
 

 
Figure 8. New BugSmall (4.7%) 
  
 
 



 
Figure 9. New SmallMessage (7.0%) 
 

 
Figure 10. Sporadic (45.3%) 
 
 



 
Figure 11. Collaboration between clusters of trajectories (average relationship) 


