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ABSTRACT
SourceForge is a valuable source of software artifact data
for researchers who study project evolution and developer
behavior. However, the data exhibit patterns that may bias
temporal analyses. Most notable are cliff walls in project
source code repository timelines, which indicate large com-
mits that are out of character for the given project. These
cliff walls often hide significant periods of development and
developer collaboration—a threat to studies that rely on
SourceForge repository data. We demonstrate how to iden-
tify these cliff walls, discuss reasons for their appearance,
and propose preliminary measures for mitigating their ef-
fects in evolution-oriented studies.

1. INTRODUCTION
As organizations construct software, they naturally and in-
evitably generate artifacts, including source code, defect re-
ports, and email discussions. Artifact-based software engi-
neering researchers are akin to archaeologists, sifting through
the remnants of a project looking for software pottery shards
or searching for ancient software development burial grounds.
In the artifacts, researchers find a wealth of information
about the software product itself, the organization that built
the product, and the process that was followed in order to
construct it. Further, researchers gain the ability to view
artifacts not only as static snapshots, but also from an evo-
lutionary perspective, as a function of time. [15, 4]

Artifact-based research methods help resolve some of the
limitations of traditional research methodologies. For in-
stance, data collection is often the most time consuming
research activity. Leveraging data that is already resident in
repositories—collected as a byproduct of production processes—
can save a significant amount of time and effort. Using ar-
tifact data, researchers can address software evolution ques-
tions in a matter of months that would otherwise require
longitudinal studies to be conducted over multiple years.
Further, since artifact data is a product of “natural” devel-
opment processes, research procedures are less likely to have
tainted it. Generally speaking, the act of observing human-
driven processes can cause those processes to change. Since
observational studies are designed to analyze a process “in
the wild,” any tampering with the context of that process
threatens the primary assumption of the study. Therefore,
artifact-based research significantly reduces the likelihood
that a study’s procedure will impact the observed processes.

Despite its benefits, artifact-based research suffers from lim-
itations. For instance, artifact data is temporally separated
from the processes that produced it. Therefore, researchers
must reconstruct the context in which the artifacts were orig-
inally created. Additionally, since artifact data is removed
from its original context, identifying the development at-
tributes actually recorded in the data can be difficult. It is
challenging enough to ensure that measurements taken for a
specific purpose actually measure what they claim to mea-
sure [3]. It is all the more difficult (and necessary), therefore,
to validate artifact data, which is generally collected without
a targeted purpose.

Understanding the limitations of artifact data is integral to
the agendas of several research communities (e.g., FLOSS,
MSR, ICSE, and WoPDaSD) and is an important step to-
ward validating the results of numerous studies (e.g., [1, 5,
9, 11, 14, 17, 20]). In this paper we examine some of the
limitations of artifact data by specifically addressing the ap-
plicability of SourceForge data to the study of project evo-
lution.

We select SourceForge data for several reasons. First, al-
though thousands of software projects produce millions of
artifacts each year, many of those projects are conducted be-
hind closed doors, where access to data is prohibited by cor-
porate and/or government policies. Consequently, projects
for which the artifacts are freely available are generally pro-
duced under the banner of Open Source Software (OSS).
Although some argue that the OSS model is fundamentally
different from industrial software development models [16],
recent studies suggest that the two may not be as different as
originally thought [2, 7]. Further, as one of the largest OSS
hubs, SourceForge hosts thousands of projects—providing
extensive data on thousands of mature projects [6]. These
projects are also stored in a consistent format (formerly CVS
for source code, but more recently SVN), which allows re-
searchers to compare measurements across projects and to
reuse mining techniques across studies. SourceForge data is
important to the work of a large and growing community of
several hundred researchers.1

Our concerns regarding the limitations of SourceForge data

1The number of subscribers to the SRDA (SourceForge Re-
search Data Archive) currently exceeds 100 [19]. The actual
number of researchers engaging SourceForge data is likely
several times that.



originated from efforts to replicate the results of a previ-
ous study [11, 12]. This effort led us to analyze the growth
patterns of SourceForge projects. As we visualized the evo-
lutionary development of SourceForge projects, we discov-
ered that temporal studies within SourceForge are not as
straightforward as they at first appear, and that measuring
project evolution in SourceForge is fraught with complica-
tions. Mitigating the limitations we discuss in this paper
is essential to validating the results of studies that examine
the evolutionary aspects of SourceForge data.

Objective: Understand the limitations of using Source-
Forge data to address software evolution research questions.

2. PROBLEMS
SourceForge data presents several problems that can bias or
invalidate evolutionary analyses. In this section, we address
three of these problems: Non-Source Files, Cliff Walls, and
High Initial Commit Percentage. These problems particu-
larly affect calculations that utilize project growth measures
based on lines of code added or removed. For our analysis
we examine 9,997 Production/Stable or Maintenance phase
projects stored in CVS on SourceForge and extracted in Oc-
tober of 2006 [5].

2.1 Non-Source Files
Many of the text-based files in projects on SourceForge are
not source code files. Examples include documentation files,
XML-based storage formats, and text-based data files such
as maps for games. It is unclear how to compare source
code production with production of non-source text-based
files. In order to accurately analyze author and team con-
tributions to projects, we filter out these non-source files.

Most file extensions occur infrequently in SourceForge data.
Of the 21,125 unique file extensions identified, 195 were clas-
sified as common source code extensions. Studies of source
code development should limit themselves to these source
code files. Our treatment of additional data problems herein
presumes a set of projects filtered under these criteria.

2.2 Cliff Walls
Many projects in our data set exhibit stepwise growth pat-
terns which we refer to as “Cliff Walls.” These monolithic
commits appear as vertical (or near vertical) lines in an oth-
erwise smooth project growth timeline (see Figure 1). In our
analysis we group commits into days to identify cliff walls
programmatically.

2.2.1 Anomaly Description
The average size of the largest cliff wall for a project is 41.8%
of the total size of the project. The median is 30.8%, mean-
ing that half of the projects in our data set have a cliff wall
that is nearly a third of the project size. Figure 2 shows the
distribution of projects by largest cliff walls as a percentage
of total project size as of the date of data collection. The
histogram represents the number of projects discretized by
their largest cliff wall. For example, in the 0−10% bin there
are 1,882 projects, meaning that for these 1,882 projects the
largest cliff wall is 0− 10% of the project size. 2

2 We removed one outlier from the data set when creating
these images. The “Codice Fiscale” project had a large com-

2

Firebird  Project  Growth  (All  Source  Code)

P
ro
je
ct
  S
iz
e  
(M
ill
io
n  
Li
ne
  o
f  C
od
e)

2001 2002 2003 2004 2005 2006 2007

Vulcan Project Import (~1.3 million lines)

1

3

4

5

6

0

7

Branch Merge ( ~417,000 lines)

Figure 1: Growth of Firebird over time.

#  of  Projects
1500 200010005000

100%

80%

60%

40%

20%

0%

80%

60%

40%

20%

0%

100%

Cliff  Wall  Distribution

Figure 2: Distribution of projects by largest cliff

walls. One outlier has been removed.
2

Cliff walls appear in all phases of project growth. In Figure 1
we see monolithic commits throughout the studied life cycle
of the project. However, in the Java eXPerience FrameWork
project (JXPFW), we only see this pattern at the beginning
(see Figure 3). After the initial source commit (2 1/2 years
after the project was created) JXPFW appears to grow nor-
mally.

2.2.2 Problems in Analysis
Cliff walls can cause severe biases in analysis of project evo-
lution. If a large commit comprises several months of soft-
ware development activity, productivity metrics will be er-
roneously high for the time period prior to the commit. In
addition, developers will wrongfully appear to be inactive
for the previous time periods.

A cliff wall may appear in the data for a number of reasons.
In Section 3 we discuss four of those reasons.

2.3 High Initial Commit Percentage
Most of the projects in our data set grow almost exclusively
by initial commit size (the size of files when they are initially
checked into CVS). The size associated with this commit, in

mit of 14,158 lines of code of which 13,686 were removed the
following day. The total size of the project was only 4,530
on the date our data was gathered. As a result, the project
has a cliff wall percentage of 312.54%. All other projects in
our data set lie between 0% and 100%.
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lines of code, is distinct from lines of code committed to (or
deleted from) a preexisting file.

2.3.1 Anomaly Description
Initial Commit Percentage (ICP) is the percentage of the
total size of the project that is made up of initial com-
mits. Figure 4 shows that most projects have a high ICP. In
fact, 83.6% of projects have an ICP of 80% or higher. This
would seem to make sense given the power law distribution
of projects sizes and the assumption that a big commit to a
smaller project has a more pronounced effect (see Figure 5;
note the log scale on the y-axis). However, this distribution
holds, with small variation, regardless of project size (see
Figure 6). High ICP indicates that revisionary changes to
existing files constitute a small percentage of project growth.

2.3.2 Problems in Analysis
High ICP does not, by itself, threaten appropriate and ef-
fective analysis. However, many of the causes of high ICP
may introduce threats to validity, as discussed in Section 3.

3. REASONS FOR PROBLEMS
Although there are many possible causes for the anomalies
mentioned in Section 2, we identify four that we believe to be
chief among them: Off-line Development, Auto-Generated
Files, Project Imports, and Branching. Our inclusion of
these four should not be construed as dismissive of other
causes. Instead, these four causes represent, in the opinion of
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the authors, the largest contributors to the aforementioned
anomalies in projects on SourceForge as a whole. Other
factors may be more important than these when examining
an individual project.

3.1 Off-line (Internal) Development
Many projects in our data set are committed as finished,
monolithic entities. After the initial commit the authors
commit infrequently and in large chunks. They do not com-
mit frequent, incremental changes that capture development
at a fine granularity. In essence, these projects use Source-
Forge as a delivery mechanism rather than a collaborative
development environment. We postulate that a few key fac-
tors may explain this phenomenon.

The first factor is that it may be easier or preferable for
co-located developers to collaborate via local tools, such as
a locally hosted repository, or tools that are unavailable on
SourceForge, such as GIT. These teams of “volunteer”3 de-
velopers are free to use a separate “Repository of Use” and
utilize SourceForge as a “Repository of Record” [10].

Second, projects with large corporate sponsors may be pri-
marily developed in-house within a local development frame-
work. When an established development organization begins
or adopts an open source project it is logical to assume that
the organization will continue to operate as it has in the past.
This assumption precludes integrating SourceForge into the
collaboration and build process. Instead, SourceForge be-
comes a release mechanism, rather than an integral part of
the development process.

Lastly, some projects use gatekeepers as a means of quality
control. These first tier authors are responsible for review-
ing source code before it can be committed to the repository.
In benign cases the second tier author creates a branch (dis-
cussed in Section 3.4) within the SourceForge CVS repos-
itory which the gatekeeper inspects before merging it into

3We use the term “volunteer” in deference to other re-
searchers who categorized open source developers as such.
However, many key “volunteers” are on the payroll of open
source projects, which calls into question the use of the term
“volunteer”.
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Figure 6: Distribution of project by Initial Commit Percentage discretized by project size quartile.

the trunk. The branch preserves all of the temporal data re-
lating to the development efforts of the second tier author.
However, in other cases this review process occurs outside
the purview of the repository. In essence, there exist only
first tier authors who commit all of the changes to the repos-
itory, regardless of who actually produced them.

Each of these occurrences produces commits that are bursty
and lossy. Both outcomes result from aggregating an ex-
tended work period into a single recorded event. Instead of
recording events throughout the work period, and thereby
retaining finer grained development information, authors com-
mit at the end of a protracted development effort. Conse-
quently, cliff walls are evident in the data and the ICP is
high.

3.2 Auto-Generated Files
While the bulk of code in source code repositories is written
manually, developers can use several tools to automatically
generate copious amounts of source code (e.g., GUI design
tools, lexical analyzers, and program translators [13]). The
presence of auto-generated code is a source of uncertainty
when analyzing data extracted from SourceForge. Tools
that generate such code often produce large quantities of
code very quickly, which is attributed to whomever commits
it. The result is that factors such as project size, produc-
tivity, cost, effort, and defect density are often inaccurate
[13]. We believe that commits containing auto-generated
code contribute to the presence of the cliff walls we have
identified.

Unfortunately, the problems created by auto-generated code
in SourceForge are not easily resolved. Due to the variety of
tools generating such code, the existence of a one-size-fits-
all solution for identifying auto-generated code is unlikely.
Uchida et al. suggest that code clones may be useful in
the detection of auto-generated code. Their study found
that auto-generated code was a common cause of code clones
in a sample of 125 packages of open source code written
in C [18]. Further investigation is needed to substantiate
the utility of code clones as an indicator for auto-generated
code. However, given the computational intensity of current
methods of identifying code clones, their detection is unlikely
to be a panacea.

3.3 Project Imports
In Figure 1 we see a cliff wall labelled “Vulcan Project Im-
port.” This cliff wall represents an import of slightly over
1.3 million lines of code from a project named Vulcan into
Firebird. Imports represent development that occurred out-

side of the current repository. Depending on their size, they
can result in cliff walls and high ICP. All code committed
through an import is considered an initial revision, rather
than a revisionary change.

3.4 Branching
The CVS version control system supports branching, a fea-
ture that enables concurrent development of parallel versions
of a project. However, Zimmermann et al. note that branch
merges in CVS cause undesirable side-effects for two main
reasons: they group unrelated changes into one transaction
and they duplicate changes made in the branches [21].

One such side effect materializes when researchers attempt
to estimate project size through analysis of CVS logs. Changes
made in a branch are counted twice: first when they are in-
troduced into the branch, and second when the branch is
merged, resulting in a project size estimate inflated by as
much as a factor of two. A portion of cliff walls can also be
explained by merges. A merge combines all transactions on a
branch that have not previously been merged into one trans-
action. If a significant amount of development has taken
place prior to the merge, the merge will likely appear as a
large cliff wall. In Figure 1 the cliff wall labeled “Branch
Merge” is a merge, not new code.

Merges can also falsely inflate measures of author contribu-
tions. All of the changes reflected in the merge transaction
are attributed to the developer who performs the merge, re-
gardless of whether or not that author actually produced
any of those changes. If researchers do not take measures to
correctly handle merges, analysis results may be unreliable.

4. SOLUTIONS
In order to derive useful, accurate results in temporal analy-
sis of projects hosted on SourceForge we must identify meth-
ods of mitigating the problems and associated causes that
we’ve identified. Fortunately, for most of these issues, com-
plete or partial solutions are available and computationally
solvable. However, for some of these issues, a scalable solu-
tion is not readily apparent.

4.1 Identify Merges
In Section 3.4 we discuss some of the difficulties that merges
create for those studying SourceForge data. However, cer-
tain approaches may allow researchers to overcome issues
caused by merges.

Zimmermann et al, suggest a very simple approach to iden-
tifying merge transactions wherein researchers manually ex-
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author commits.

0% 25% 50% 75% 100%
0.0 12,307.5 58,517.0 271,848.2 117,147,667.0

Table 1: Project Size Quartiles (Lines of Code)

amine each transaction for which the log message contains
the word “merge” and determine if the transaction is indeed
the merge of a branch [21]. There are drawbacks to this
approach. First, it is unknown what percentage of merges
actually include the word “merge” in the log message. It
is possible that researchers may overlook a significant num-
ber of valid merges due to custom log messages that use
synonyms for “merge” or that remove the word altogether.
Additionally, manual approaches scale poorly as the size of
the data set increases. As a result, this method may be
excessively time consuming for large quantities of data.

Fischer, Pinzger, and Gall suggest a different approach for
identifying merges in CVS. The authors utilize revision num-
bers, dates, and diffs between different revisions of a source
file [8]. This approach is computationally intensive and may
not scale to studies of large sets of projects.

We suggest the possibility of a third method, that of simply
assuming that all revisions containing the “merge” keyword
are merges. This is the fastest method that we have yet
identified, but would also likely suffer in terms of accuracy.
Future work is required to establish the best method(s) for
identifying merges in CVS, in terms of speed and accuracy.

4.2 Author Behavior
One way to identify project records that contain fine grained
evolutionary data is to filter for projects that have authors
who “commit early, commit often.” Frequency of commits is
a metric that captures this behavior. Figure 7 illustrates the
distribution of projects by commit frequency. We also show
the distribution for projects with more than 40 commits to
show that the graphic is not overly biased by small projects
that are completed quickly. There appear to be plenty of
projects that satisfy a high frequency of commits require-
ment. In Figure 8 we see that by limiting the data set to
projects with more than 40 commits we also get rid of most
of the short-lived projects.

4.3 Project Size
Small projects have a much higher occurrence of large cliff
walls than large projects. Figure 9(a) illustrates that in the
first quartile of project sizes (0 to 12,307 lines of code) 31.8%
of projects are almost entirely made up of one monolithic
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span: the time between the first and the last commit

in a project.

commit. Interestingly, all of the histograms in Figure 9 have
a spike at 100%. However, 9(b), 9(c), and 9(d) have succes-
sively greater area under the curve towards 0% (see Table 1
for quartiles). This suggests that in the second, third, and
fourth quartiles there are many projects that have small,
incremental commits and may be appropriate for temporal
analysis.

5. INSIGHTS
Artifact-based evolutionary research of projects on Source-
Forge can yield unbiased results corroborated by thousands
of projects. However, we must choose projects cautiously to
avoid the pitfalls identified in this paper. Further work is
necessary to develop a taxonomy of projects in this ecosys-
tem to better understand how to choose projects automati-
cally.

Additionally, analysis of the interaction between available
meta variables may help expose projects that capture a fine-
grained development effort. Figures 7 and 8 suggest that a
significant subset of medium to large projects on Source-
Forge can be used for evolutionary analysis. We hope that
as we further refine our methods of selecting projects we can
develop an automated procedure for choosing projects that
have the finest possible detail in their revision history.
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