
Benchmarking Lightweight Techniques to Link E-Mails and Source Code

Alberto Bacchelli, Marco D’Ambros, Michele Lanza, Romain Robbes
REVEAL@ Faculty of Informatics - University of Lugano, Switzerland

Abstract—During the evolution of a software system, a large
amount of information, which is not always directly related to
the source code, is produced. Several researchers have provided
evidence that the contents of mailing lists represent a valuable
source of information: Through e-mails, developers discuss
design decisions, ideas, known problems and bugs, etc. which
are otherwise not to be found in the system.

A technical challenge in this context is how to establish
the missing link between free-form e-mails and the system
artifacts they refer to. Although the range of approaches is
vast, establishing their accuracy remains a problem, as there
is no benchmark against which to compare their performance.

To overcome this issue, we manually inspected a statistically
significant number of e-mails pertaining to the ArgoUML
system. Based on this benchmark, we present a variety of
lightweight techniques to assign e-mails to software artifacts
and measure their effectiveness in terms of precision and recall.

I. INTRODUCTION

The evolution of software systems leaves many traces.
Some of these are structured data (e.g., SCM archives,
analysis data), others are semi-structured information (e.g.,
test cases, bug reports), and the rest is completely unstruc-
tured. The “rest”, made of documentation, wikis, forums,
e-mails repositories, chat logs, etc, is also known as semantic
information [12]. This kind of information –which is intended
to be read by both the people involved in the evolution of the
system and the people that use it– often references, explicitly
or implicitly, other data sources such as source code and bug
reports. However, actual linking to the referenced entities is
“left as an exercise to the reader”. Moreover, the links are
one way: there is no link from source code to e-mails or bug
reports to e-mails.

Connecting this semantic information to the source code
can be helpful for various different tasks [1]:

• Understanding software systems: As systems are contin-
uously growing in complexity and size, they help both
bottom-up and top-down comprehension [1];

• Recovering design rationales: Often, developers discuss
design decisions over free-form media channels, such
as mailing lists or IRC (Internet Relay Chat) channels
[3]. Establishing the link between software entities and
those discussions permits to join design decisions and
their implementation;

• Performing impact analysis: after a change is discussed
and approved, it is implemented. Tracing such discus-
sions with the subsequent code modifications gives
useful hints about the impact of changes.

• Identifying coupling: software entities that are often
mentioned at the same time are implicitly coupled.

• Extracting developer behaviour: provided the appropri-
ate links, it is possible to verify how changes occur in
the source code: if they are discussed before or after
their implementation.

However, in order to gain such benefits –which are often
critical to the success of software projects– the link between
source code and user centric information must be present,
up-to-date, and relevant. Achieving these features manually is
arduous. They constitute a task done gradually, that forces the
developer to interrupt his normal programming flow and that
is tedious, error-prone and time-consuming. As an alternative
to manual linking, in the last years, much work was devoted
to automatically establish traceability links between semantic
information and other artifacts [12].

In this research, we focus on e-mails, which are a special
case of semantic information: They are used to discuss
issues ranging from low-level decisions (e.g., software entities
implementation, bug fixing) up to high-level considerations
(e.g., design rationales, future planning), they can often be
written and read by both software system developers and end-
users, and they always come with additional information (e.g.,
time-stamp, thread, author) that can be taken into account. We
present different lightweight approaches that, exploiting the
specific characteristics of e-mails and the ones of the source
code, are capable of establishing a bi-directional link between
source code entities and e-mails. However, implementing
these techniques is not enough: One needs to be sure they
perform correctly. Thus, to assess the effectiveness of our
approaches in terms of precision and recall, we manually
created a statistically significant benchmark.

Structure of the paper. In Section II we present an
overview of related work. In Section III we illustrate the
benchmark we set up and the infrastructure supporting it. In
Section IV we detail the different approaches we tested and
in Section V we discuss how they perform with respect to
our benchmark. Finally, Section VI concludes the work.

II. RELATED WORK

Various tools and techniques have been presented to deal
with the problem of traceability between source code and user
centric information. According to Zhao et al. [23], they can
be classified in three categories: artifact traceability support
tools, artifact traceability via intermediate abstraction, and
artifact traceability via Information Retrieval.

A. Traceability support tools

These CASE tools help the developer to manually maintain
links between source code and other artifacts. They provide
support for recording, displaying and checking links.

TOOR (Traceability of Object-Oriented Requirements)
[15] is a visual tool intended to be used during development.
Through TOOR, the programmer can define any artifact
(e.g., design charts, system manuals, interview transcripts)
as an object of a certain class and can establish a relation
connecting it to other artifacts. Such objects and relations
can be later inspected graphically. For instance, all objects of
a given class, or all objects participating in a given relation,
can be shown at the same time. The tool, using properties
such as transitivity, can also relate indirectly linked objects.

REMAP [16] and gIBIS [4] are based on IBIS (Issue
Based Information System) [21], a method that provides a
model for representing “argumentation” processes.

The Ophelia Traceability Layer [19] is a tool that considers
all the artifacts of the software development lifecycle and
helps the software engineers to create a graph of relationships.
This graph is completely navigable and consistently maintains
the traceability between artifacts.

B. Traceability via intermediate abstraction

The methods in this category create an intermediate
abstraction, for both the source code and the documentation,
that is used as a basis for the matching.

Fiutem and Antoniol [8] and Antoniol et al. [2] suggest an
Abstract Object Language (AOL), Murphy et al. [14] use a
reflexion model, and Sefika et al. [17] propose a model based
on both static and dynamic information. These approaches
require a high level of interaction from the user.

C. Traceability via Information Retrieval

These techniques make use of Information Retrieval (IR)
technologies for automatically recovering traceability links.

Antoniol et al. introduce two different IR models to retrieve
the links between code and documentation (in this case
manual pages and functional requirements) [1]. The first one
is a probabilistic IR model, which computes a ranking score
based on the probability that a certain document is related to
a specific source code component; the second one is a vector
space IR model, which calculates the distance between the
vocabulary of a document and a source code component.
These approaches are tested on two small case studies (a
C++ system, 95 KLOC, 208 classes, and 88 manual pages;
and a Java software, 20 KLOC, 95 classes, and 16 functional
requirements) and the precision and recall values obtained are
shown. Interestingly, the author spot how these techniques,
which are primarily used as stand-alone solutions, can be
also exploited to aid a manual linking task, because they
reduce the size of the documentation that must be read by
one order of magnitude, at minimum.

Marcus et al. present a solution based on Latent Semantic
Indexing (LSI) [13]. LSI is a method based on a vector space
IR model, and it takes in consideration that a word always
appears in a context. This additional information provides
a set of mutual constraints that determines similarity in
meaning of sets of words to each other. The authors test
their approach on the same systems Antoniol et al. used in
their case studies. De Lucia et al. started from the results of
Marcus et al. to enhance the ADAMS tool [10].

Hayes et al. assert that IR techniques must not substitute
the human decision-maker in the linking process, but should
be used to generate an appropriate list of candidate links [9].
They show how they used three IR algorithms (Tf-Idf vector
retrieval, vector retrieval with a simple thesaurus, and LSI)
to trace requirements-to-requirements, in order to aggregate
candidate links to be evaluated by the software analyst. They
proved the effectiveness of these algorithms in two case
studies. The systems analyzed were approximately the same
size of the ones used by Antoniol et al. (approximately 20
KLOC of C code and 58 documents for the first one, and
455 documents for the second one).

Baysal et al., also considering the work of Antoniol et
al. and Marcus et al., try to correlate discussion archives
(i.e. e-mails in mailing lists) and source code [3]. In
particular, they search for a correlation between discussions
and software releases. They first apply data mining techniques
on the release history of a software system and discussion
archives to recover information about them. Then they use
Natural Language Processing (NLP) methods to search for
a correlation. They present the correlation they find in two
case studies: a visualization tool (a Java system of 144 java
files and an archive of 495 e-mails) and Apache Ant (a Java
system with 667 java files and an archive of 67,377 e-mails).
Baysal et al. do not manually inspect the system of their
case studies to verify the quality of their results.

Our work also aims at finding links between two soft-
ware artifacts: source code and mailing lists. We want to
verify whether it is possible to automatically find reliable
traceability links between emails and software entities using
lightweight approaches (namely string and regular expression
matching) –which exploit intrinsic characteristics of source
code elements– rather than expensive IR models or NLP.

III. BENCHMARKING THE LINKING APPROACHES

In this section we present the motivations and the tech-
niques we used to develop the benchmark we created to
assess the quality of our lightweight linking methods.

A. Motivation

Dekhtyar et al. put in evidence a crucial problem also
shared by all the linking techniques presented in Section II-C:
There is no specific, valid and standard benchmark for
testing and comparing proposed linking solutions [6]. For
example, IR techniques that are commonly employed in

web searches are supported by a series of well-designed,
robust and universally accepted benchmarks that are publicly
available and distributed via the infrastructure of Text RE-
trieval Conference (TREC) series, sponsored by the National
Institute of Standards and Technology (NIST) and the US
Department of Defense (DARPA) [18]. These benchmarks
are continuously evolving and they now include retrieval
from many different kinds of information (e.g., spam, legal
texts, genomic data, extremely large datasets, etc.).

However, software systems present unique characteristics
that make them different from standard IR domains. It is
not possible to assume that IR techniques would work with
similar performances if applied to software system artifacts,
which form document collections that are orders of magnitude
smaller than the standard IR benchmarks. Further, the
elements involved are composed of software artifacts, which
are usually written in a specific and terse technical language.
These characteristics mean that the common assumptions
made for usual IR collections should be revalidated in the
field of software mining. For example, the LSI technique,
which was proposed by Marcus et al., can be used in this field,
but not in standard IR applications, because it is known not to
scale to large document collections [6]. Specific benchmarks
for software engineering need to be devised.

Our goal is to evaluate the true effectiveness of several
lightweight methods for linking source code to e-mails. To
assess the quality of our findings, we not only present and
discuss a set of techniques, but also created a statistically
significant benchmark against which to verify them.

In the following, we define a benchmark for linking source
code entities to e-mails, which can be used in future work for
further analysis of different techniques, ranging from other
lightweight approaches to more sophisticate and expensive
IR methods. The obtained results can then be compared to
show the strengths and drawbacks of several approaches on
the same data set. We designed this benchmark to be easily
extensible with additional data.

B. Infrastructure

We analyzed ArgoUML1, a UML modelling tool written
in Java, developed over the course of approximately 9 years,
and made available under the BSD Open Source License.
We consider the release 0.28 (March 2009) that comprehends
2,197 classes. We employed the lightweight approaches to
map such classes to the related e-mails in ArgoUML mailing
lists.

ArgoUML e-mails are stored in six mailing lists (see
Table I), for a total amount of 79,175 messages. We excluded
the issues and commits mailing lists from our experiment,
because they contain messages automatically generated
respectively by the bug tracking system and the revision
control system. We also excluded the small announce list,

1http://argouml.tigris.org/

Mailing list Messages Inception
dev 24,347 Jan 30 2000
issues 44,208 Feb 03 2000
users 4,456 Oct 19 2000
module-dev 221 Oct 28 2001
announce 41 Dec 30 2001
commits 5,902 Sep 28 2006

Table I
ARGOUML MAILING LISTS BY CREATION DATE

because it presents only public announces of ArgoUML
releases, and does not contain technical discussions.

Svn
repository

Mailing
List

Archive

Message
linking

+-+ MilerGame

keyworkdrefer
ence add

Aliquam ac leo quis metus
fringilla sollicitudin a id magna.
Mauris dictum convallis odio sit
amet accumsan. Aliquam ac
tincidunt.Sed vel nisi libero. In hac
habitasse platea dictumst. Ut
elementum, quis pretium urna
interdum nec.

Comparison

E-mail Model

Automatic
Lightweight
Approaches

Manual
Analysis

Model with
E-mail Links

Model with
E-mail Links

Object-Oriented
Model (FAMIX)

Figure 1. Infrastructure

Figure 1 details the infrastructure we set up for the
experiment. First, using the tool iPlasma2, we extracted the
model of the ArgoUML release according to FAMIX, a
language independent meta-model of object oriented code
[7]. This model allowed us to easily extract all the information
that is necessary for implementing the lightweight approaches
(i.e., class names and packages). Then, we extracted the data
from the mailing list archives and structured it according to
the e-mail model we built. Once the two models were ready,
it was possible to conduct the message linking: This was
done both by using the automatic lightweight approaches
and by inspecting e-mails manually (i.e., annotating e-mails
using a web application developed for this task). This resulted
in different object-oriented models of ArgoUML, annotated
with e-mails. When both the manually created model (i.e., the
benchmark) and the automatically generated ones were ready,
we compared them in order to validate the effectiveness of
automatic methods.

2http://loose.upt.ro/iplasma/

E-Mails sample set size: To determine the size n of a
sample set large enough to allow using the simple random
sampling without replacement, we used the formula [20]:

n =
N · p̂q̂

(
zα/2

)2

(N − 1)E2 + p̂q̂
(
zα/2

)2

Since previous work dealing with the same problem is
unavailable, it is not possible to know a-priori the proportion
(p̂) of the e-mails referring a specific entity of the source
code, thus we consider the worst case (p̂ · q̂ = 0.25). As we
are dealing with a relatively small population (i.e., 29,024
messages in the mailing lists we used), the formula also
considers its size (N). We took the standard confidence level
of 95%, and an error (E) of 2%. This resulted in a value for
the sample set size n of 2,218. However, in order to increase
the significance of our benchmark, we enlarged this quantity
to reach the final n value of 3,000, which corresponds to an
error of 1.7%.

If a specific source code entity is cited in the f% of the
sample set e-mails, we are 95% confident it will be cited
in the f% ± 1.7% of the population messages. This only
validates the quality of this sample set as an exemplification
of the population, and it is not directly related to the precision
and recall values presented later.

Mailing list Messages Relative Size
dev 2,516 83.9%
users 467 15.5%
module-dev 17 0.6%

Table II
RANDOM E-MAILS BY MAILING LIST

Table II shows the number of random messages obtained
from each mailing list. Although we decided not to use a
stratified random sampling, but a simple random sampling,
we note that the relative dimensions of the mailing lists are
the same as in the population. This supports the hypothesis
that the procedures used, both to determine the size of the
sample set and to randomly extract elements from the mailing
lists, led to a sample set that is as an accurate estimation of
the entire population.

C. Benchmark building procedure

To evaluate the accuracy of automatic linking approaches,
we manually built the benchmark (or oracle) by reading each
e-mail and annotating them with the name of the classes they
discuss. We developed a custom web application (depicted
in Figure 2 and Figure 3) to assist this particular task.

The messages are presented in a randomly sorted list, with
the sole distinction between analyzed and not yet analyzed
messages (in Figure 2, point 2 and 1 respectively). After a
message is chosen, its content and its header are displayed in a
new page (Figure 3). If the e-mail is part of a larger discussion

1

2

Figure 2. Web Application: List of e-mails

and there are quoted sentences from previous messages,
these are coloured differently to improve the readability and,
consequently, the quality of the analysis (Figure 3, point
1). In the same page, the analyzer finds the text-field that
is used to add annotations. Entering a text into it triggers
the auto-completion feature, which displays all the matching
class names or packages of the ArgoUML system (Figure 3,
point 2). The user can select the appropriate class/package
and add it to the list of related entities for the displayed
message (Figure 3, point 3). Completion ensures that users
enter names of classes really existing in the system, also
avoiding typos. When using this text-field, it is also possible
to use regular expressions to retrieve a specific list of classes.

The readers annotated not only the classes that were
explicitly mentioned in the e-mail body, but also those which
were referred to using acronyms, abbreviations, or ArgoUML

1

2

3

Figure 3. Web Application: E-Mail annotation

developers dialect (e.g., the infamous class NSUMLModelFa-
cade [5] is often referenced using only the term “NSUML”).
In addition, we let the reader annotate also the packages if
they were mentioned in general. This allows the use of our
benchmark for future approaches that would try to find the
traceability links between e-mails and source code entities
with a different granularity, or which aim to detect implicit
references.

Despite the repetitiveness of the annotating task, we
decided not to ease it adding features that could have
influenced the results. For example, it would have been
possible to highlight pieces of text containing class names of
the ArgoUML system. However, this could have influenced
the reader of the mail, who could have only skimmed the
e-mail content in search of highlighted text, without paying
attention to the real meaning of sentences.

As we wanted our benchmark data to be easily accessible
without the need of a specific framework, we stored the
e-mails and the corresponding annotations in a PostgreSQL
database, from which they can be retrieved and exported.

Six members of the REVEAL research group, with several
years of programming experience, inspected the sample set.
The e-mails were randomly divided in overlapping sets,
resulting in 17% of the messages analyzed by two people at
least. A complete agreement was reached on 79% of these
messages, with the remaining annotations featuring a slight
degree of disagreement. Analyzing the conflicts, the most
common difference was one of the two reviewer missing
to annotate a link actually existing in the e-mail. We did
not spot situations in which one of the reviewer erroneously
annotated an unexisting link. For this reason, when two
reviewers’ annotations disagreed, we considered their union.

D. Evaluation

To compare the validity of our approaches against the
benchmark, we used two well-known IR metrics: precision
and recall [11], based on the following definitions:

• True Positives (TP): elements that are correctly retrieved
by the approach under analysis (i.e., links to source
entities also present in the oracle)

• False Positives (FP): elements that are wrongly retrieved
by the approach under analysis (i.e., links to source
entities not present in the oracle)

• False Negatives (FN): elements that are not retrieved
by the approach under analysis (i.e., links to source
entities only present in the oracle)

Standard formulas for calculating precision and recall are:

Precision =
|TP |

|TP + FP | Recall =
|TP |

|TP + FN |

The union of TP and FN constitutes the set of correct
links present in the benchmark per e-mail, while the union of
TP and FP constitutes the set of links retrieved by the used

approach. In short, precision is the fraction of the retrieved
links that are correct, while recall is the fraction of the correct
links retrieved.

A number of e-mails in the benchmark have no references
to source code entities, thus the union of TP and FN is
empty. In these cases, the denominator in the recall formula is
zero and the recall value cannot be calculated. Analogously,
it is possible for automatic approaches not to find any link
between an e-mail and source code. In this case, the precision
value cannot be evaluated because the denominator in the
corresponding formula is equals to zero. To overcome these
issues, we first calculate the average of TP , FP , and FN ,
on the entire dataset. Then, we measure the average precision
and recall from those values. This solution also takes into
account the impact of false positives on precision, when the
set of benchmark references is empty. A similar approach
was used by Antoniol et al., who encountered the same
difficulty [1].

Precision (P) and recall (R) are two quantities that trade
off against one another: Intuitively, it is possible to link each
mail with all classes, reaching a recall value of 1, but a
very low precision. For this reason, in order to measure such
trade-off we added the F measure, which is the weighted
harmonic mean of precision and recall:

F =
1

α 1
P

+ (1− α) 1
R

, β2 =
1− α
α
−→ F =

(β2 + 1)PR

β2P +R

The weighting of precision and recall can be decided
through the value of β. We decided to emphasize neither the
recall nor the precision, because our approaches can be used
in many different situations, and it is up to the engineer to
select the most appropriate one. Thus, we prefer to give a
general view of the result: We use a β value of 1 to obtain
the default balanced F measure.

IV. EXPERIMENT

This section presents the results obtained applying different
lightweight approaches. It begins illustrating techniques built
on simple intuitions (i.e., the match on the name of classes,
not case sensitive), then it proceeds to others based on more
sophisticated ideas (i.e., mixed approaches based on regular
expressions).

Each technique processes one class at a time: First it
extracts the necessary information (e.g., class name and
package) from the FAMIX model of the system, then it
prepares the matching procedure, and finally uses it against
each e-mail content (e.g., searching for the class name).

We consider an e-mail taken from the sample set (see
Figure 4) to show how the different approaches work in
practice.

We're trying to implement support in ArgoEclipse for reverse engineering which means that we need to deal with the
PluggableImport interface. It doesn't really make sense to modify that interface because it is deprecated, but I can't
figure out what replaces it. The comments say to register with org.argouml.uml.reveng.Import but that class has no
registration method. Additionally, it itself depends on the deprecated PluggableImport interface.

On the code generation side of things, Generator2 has been deprecated in favor of CodeGenerator, but they don't
appear to have equivalent functionality, so I don't understand how this is meant to work.

Are there examples of modules which have been converted to the new structure? Is there a design discussion
somewhere which describes how to convert old style modules to new style modules?

A related issue is GUI independence. I don't really see any reason that the language modules need to be dependent
on a GUI. They really only need to know about source modules, the UML model, and some configuration settings. The
settings that they need are pretty simple (things like boolean values, integers, strings), so it seems like overkill to make
them construct their own settings dialogs. This also unnecessarily couples them to the GUI.

Who's working on this stuff? I'm happy to help if I can get an idea of what the design direction is.

Tom

What replaces PluggableImport and Generator2? (and other language module questions)
Tom Morris tfmo...@gmail.com
September 23, 2006 - 13:12:51
rinjvef6xmcootka

51

2

3

4

Figure 4. An e-mail from the sample set

A. Class name, case insensitive

Intuition: The simplest way to reference a class from
an e-mail is to mention it using its name. For example,
in Figure 4 point 1, we see that the class Generator2 is
mentioned using only the name. Since it would be possible for
participants of an electronic discussion not to use uppercase
letters (as the context clarifies if they are discussing about a
class), in this approach we decided to ignore the case.

In addition, the class name could be used inside quotation
marks (i.e., “classname”), parenthesis or other characters. In
Figure 4, point 2, the name of the class CodeGenerator is
followed by a comma. For this reason, we did not impose
any restriction on the characters surrounding the class name.

Implementation: In this case, the implementation
consists in extracting all the class names from the model of
the system and verifying which class names appear in the
e-mail content. When traversing the e-mail content looking
for class names, the implementation takes into consideration
neither the case of the class name nor characters that precede
or follow it.

Results: Precision 0.09, Recall 0.70, F-Measure 0.16:
The most interesting result of this simple match is the recall
value: It reaches a significant value of 0.70. The trade-off is
a low precision, due to the many false positives.

Considering Figure 4 point 3, we note that the word
“Model” does not refer to the class org.argouml.model.Model,
as this simple approach wrongly assumes. This is one of
the many examples that make this approach generating false
positives.

All the matching techniques that will follow use this simple
class name match as the first step for their implementation:
They all consider the class name (extracted from the FAMIX
model) and require it to be present in one single word in the
e-mail content. For this reason, the value reached with this
first approach is the upper bound of the recall.

B. Class name, case sensitive

Intuition: In this case the match exploits the case
sensitivity of modern object oriented languages. It is a
widely used and accepted convention to define class names
starting with a capital letter and using media capitals (e.g.,
“ClassName”), also known as CamelCasing. From the usage
of this approach, we expected a slight increase of the
precision, without any major decrease of the recall value.
For example, in Figure 4 point 3, the word “model”, whose
first letter is not capital, is not going to be considered as a
valid reference to the classorg.argouml.model.Model. At the
same time, the references to CodeGenerator and Generator2
are going to be preserved.

Implementation: After extracting the class names from
the FAMIX model, the implementation searches for them
in every e-mail and reports a link when all the characters
of a class name are sequentially present in one single word,
respecting the capital letters.

Results: Precision 0.33, Recall 0.69, F-Measure 0.46:
As expected, the recall value did not decrease significantly.
On the contrary, the simple additional case sensitivity check
greatly increases precision (i.e., by 24%). The number of

false positives dropped, while the number of good links not
retrieved was almost as high as in the previous approach.

This result points out that class names are mainly men-
tioned respecting camel casing. This simple check thus helps
to separate common words of discussions from true references
to source code entities.

One of the false positive created by this approach is the
one marked with point 4 in Figure 4. The word “GUI” is not
a reference to the class org.argouml.ui.GUI, on the contrary
the author is writing about a component of the ArgoUML
application, from a user point of view. Also, the class
Generator is wrongly recognized as being referenced, because
its name is part of the word “Generator2” or “CodeGenerator”
(Figure 4 points 1 and 2, respectively).

C. Strict regular expression, case insensitive

Intuition: We also wanted to find a method that could
give an indication of the upper bound for the precision.
To achieve this, we took into consideration other intrinsic
characteristics of class entities, in addition to the name.

First, java class entities are stored in files that have
particular extensions: “java” for the source code, or “class”
for the bytecode. For this reason, class names can be followed
by those extensions. If extensions are not used, after the name
there must be some empty space, otherwise the string can
be part of another class name, resulting in a false positive
(e.g., the string “Model” matches a class named Model, but
also a class named ModelFacade).

Java classes are also always part of a package (e.g.,
“org.argouml”) and, if two classes share the same name,
they must be in two different packages. In many cases the
package name is cited in the e-mail before the class name.
We decided to take into account the package, however, to
avoid amplifying the decrease in the recall value, we decided
that only the last part of it has to be present before the name
(e.g., “argouml”). Before this part there can be either the
rest of the package or some empty space. Possible packages
separator are “.”, “\” and “/”.

Finally, as we imposed many other constraints, we decided
not to use the case sensitivity, to preserve the recall value.
In point 5 of Figure 4, we note that the only class that could
be detected by this method in that specific case. However, it
is not going to produce any false positives.

Implementation: To implement this approach, we
make use of a simple regular expression. First, we extract the
name and the package of every class from the FAMIX model;
then, we use them inside the regular expression, setting all
the constraints we want to impose. The resulting regular
expression code, according the IEEE POSIX Basic Regular
Expressions (BRE) standard, follows3 (the parts in angle
brackets are replaced with the class information retrieved
from the FAMIX model):

3For convenience the text is in multiple lines.

(.*)
(\s*)
(<beginning of package>)?
(.|\\|/)
<last part of package>
<class name>
(.java|.class|\s+)
(.*)

Results: Precision 0.94, Recall 0.10, F-Measure 0.18:
Using this strict match, the recall value radically changes
and reaches a very low value. On the other hand, as we
expected, the precision reaches a top value. Due to the small
number of links that this approach retrieves, a very few false
positives (i.e., 11 for the whole data set) are sufficient to
lower the precision from 1 to 0.94. Those false positives are
caused by classes that are not in the ArgoUML model, but
have the same name and last part of package, so they are
recognized as references with this approach. The F-Measure
value is as low as in the match based on the simple class
name approach, not case sensitive. The results are identical
whether using case sensitivity or not.

D. Loose regular expression, case sensitive

Intuition: Starting from the result of the previous
approach, to raise the recall value again we tried to loosen the
strictest constraint: We decided not to require the presence
of the last part of the package, before the class name. At
its place, there can be some empty space or the complete
package. Moreover, we specified that it was also possible to
have quotation marks, or a comma, after a class name, as well
as the others constraints applied in the previous approach.

Since the requirements were less strict, we decided to use
the case sensitivity to preserve the precision. From this we
did not expect a serious decrease in the recall, which did
not lower significantly, when case sensitivity was used in
the second method we experimented. Considering the e-mail
in Figure 4, this approach is going to correctly recognize
classes marked by points 1, 2 and 5.

Implementation: As we did for the previous approach,
we implement this technique using a regular expression and
class names and packages extracted from the FAMIX model.
The regular expression code follows:

(.*)
(\s*)
(<package>)?
(.|\\|/)
<class name>
(.java|.class|\s+|"|,)
(.*)

Results: Precision 0.45, Recall 0.54, F-Measure 0.49:
Results show that the recall gained up 42%, while precision
lost 49%. The F-Measure, which is slightly higher than the
match on the class name case-sensitive, points out that this
method is the best choice, up to now, if recall and precision
are considered equally important.

One of the false positives, considering Figure 4, is the word
marked by point 4. The string matches the regular expression,
however the author is not discussing a class named “GUI”.

E. Mixed, using Dictionary, case sensitive

Intuition: We suppose that the high number of false
positives in approaches which used the match on only the
class name (case sensitive and not case sensitive) was caused
by class names which were equal to common words that
can be found in a dictionary, such as the classes Dialog,
Text, and Critic. Under this assumption, we tried to mix
the most optimistic methods with the strictest one, using a
dictionary to select the right approach: For each class, we
searched for its name in a common English dictionary of
more than 2 millions words. If the string was present in the
dictionary (e.g., the word “Model”, as marked by point 3 in
Figure 4), then we used the strict regular expression approach.
Otherwise, if the string was not in the dictionary (e.g., the
word “CodeGenerator”, marked by point 2 in Figure 4), then
we switched to the simple class name match.

Implementation: The first step of this approach is
still to extract class names and packages from the model
of the ArgoUML system. As usual, we consider one class
at a time: When the class name is present in a common
English dictionary, we search for the presence of links inside
e-mails using the strict regular expression (see Section IV-C),
otherwise we apply the simple matching on the class name,
case sensitive (see Section IV-B).

Results: Precision 0.57, Recall 0.62, F-Measure 0.60:
To obtain a stronger comprehension of the results obtained,
we also tried to use the simple matching on the class name
not case sensitive (see Section IV-A), in place of the case
sensitive one. The results are: precision 0.20, recall 0.64. The
difference in precision, related to the usage of case sensitivity,
is evidence of the fact that the most cited classes are not part
of the dictionary. In fact, we recall that the simple match on
the class name is only used when the name is not on the
dictionary, otherwise we apply the strict regular expression,
which is not influenced by case sensitivity.

The F-measure shows that this approach, which makes
use of a dictionary to select the severity of the match, is the
most effective until now.

F. Mixed, using CamelCase, case sensitive

Intuition: Classes usually represent abstractions of real-
world categories of objects. For this reason, it is common
practice to give them names from common dictionary words.
However, since empty spaces are not allowed in class names,
whenever a class represents a concept which is clearer if
named with two, or more, words, those are compounded
using media capitals.

The intuition of this approach is that class names, which
are formed by compounded words, are not part of a common
dictionary word. For example, the class name ExplorerTree

is formed by the two dictionary words “explorer” and “tree”,
but their composition is not a dictionary word.

For this reason, we supposed that it was possible to
exclude the dictionary to select most appropriate match. If
the class name was a single word, then it was probably a
dictionary word (e.g., the class Trash has a name which
is in the dictionary). On the other hand, a name made
compounding words is probably not in the dictionary. To
distinguish compounded and simple words, it is sufficient to
check for the presence of media capitals.

Implementation: The implementation of this algorithm
is similar to the previous one, but, since it does not require
a dictionary, it is faster and requires less memory. For each
class, when its name is a compounded word, we employ the
simple match on the name, case sensitive (see Section IV-B),
otherwise we use the strict regular expression matching (see
Section IV-C). We keep the search for media capitals as
simple as possible, and we define a word as compounded
if it contains more than one capital letter. In this manner,
cases like the string “PGMLParser” are correctly marked as
compounded, even though the letters before the character
“P”, of the word “Parser”, are all in capital case.

Results: Precision 0.63, Recall 0.62, F-Measure 0.62:
The main goal of this approach was to lighten the previous
one removing the dictionary search. However the results
show that, in addition to performance, the precision value
increased, without any loss in the recall value.

These results can be explained through a few examples.
First, there are class names which are not in a simple English
dictionary, but are common computer science terms: Parser
is one of such terms. The previous approach did not find
the string “Parser” in the dictionary, thus it wrongly treated
it with the most optimistic match. On the contrary, this
new approach found only one capital character and correctly
switched to use the strictest match.

Second, there are class names that are part of dictionary
words. For example, the class Init has a name that is part of
many dictionary words (e.g., “Initialization”, “Initial”), thus
the most optimistic methods (which does not impose any
restriction on characters surrounding the class name) finds
wrong matches. On the contrary, this new method correctly
treats such words, which have only one capital letter, using
the strictest approach.

Finally, classes often have names that correspond to high
level design concepts. For example, “Modeller” is a class
name, and a concept in the ArgoUML dialect. It is possible
to find it mentioned both as a high level design concept (not
referring the class with the same name) and as a class of the
system. Also in this case, this new approach takes the right
decision of treating this case with the strictest matching.

The F-Measure shows that this method is the most effective
among all the approaches we implemented.

V. DISCUSSION

A

B

C

D

E

F

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

Precision

Approach Recall Precision F-measure
A Class name, case insensitive 0.70 0.09 0.16
B Class name, case sensitive 0.69 0.33 0.46
C Strict regular expression, case insensitive 0.10 0.94 0.18
D Loose regular expression, case sensitive 0.54 0.45 0.49
E Mixed, using Dictionary, case sensitive 0.62 0.57 0.60
F Mixed, using CamelCase, case sensitive 0.62 0.63 0.62

Figure 5. Precision, Recall and F-measure of all approaches.

In Figure 5 we have summarized the results of all
approaches. The case insensitive class name approach (A)
represents the upper bound for the recall (i.e., 0.70), as all
the other approaches we used, as the first step, check for the
presence of the class name. Then, they refine the precision
using different techniques, which necessarily reduces the
recall. We believe that this recall upper bound (i.e., 70% of
all the correct links are retrieved) was high enough for our
needs. However, it is still possible to implement lightweight
techniques to raise it. For example, during the benchmark
creation, we noted that, sometimes, class names that are made
of compounded words are mentioned in e-mails using those
words separately. This aspect can be implemented through
more refined regular expressions. Heavyweight approaches
may find implicit references, thus increasing the recall.

On the opposite extreme, there is the case insensitive strict
regular expression approach (C), which reaches top precision
but retrieves few links. From the results of the two mixed
approaches (E and F), the strict approach was useful to raise
the precision value when used together with the case sensitive
class name approach.

The two mixed approaches give the best results: They
are not only capable of retrieving 62% of all the correct
links between e-mails and source code entities, but they
also completed this task with the same significant level of
precision (i.e., 63% of the links retrieved were true positives).

The lightweight approaches, apart from being simple to
implement, are also fast: The slowest method (E), when
operating on a laptop with a 2.4GHz Intel Core Duo processor
and 4GB of RAM - using our implementation developed
in Cincom Smalltalk - required ca. 3 seconds to verify the
presence of a link to a class in all the mailing lists we used
(i.e., 29,024 e-mails).

Limitations: The main limitation of our experiment
is caused by the fact that it was performed considering
only one system: ArgoUML. The style of the discussions
in different mailing lists can vary, potentially changing the
results achieved. However, in our approaches we did not rely
on the specific dialect of the ArgoUML developers to avoid
reducing the generality of our results (e.g., we did not match
NSUML directly to the class “NSUMLModelFacade”). On the
contrary, we exploited naming conventions that are common
in all the Java systems. We plan to analyze systems that use
different programming languages and naming conventions,
include them in our benchmark, and then make it publicly
available.

The REVEAL research group accurately analyzed the
sample set of e-mails, which was used to create the bench-
mark. However, they are not ArgoUML developers, thus it is
possible that in some cases they did not manage to understand
implicit references to classes. Moreover, as they are human
beings, the possibility that they made mistakes in the analysis
should be taken into account. To avoid this last problem,
we manually revised all the false positives generated by the
most strict approaches, in order to see whether they were
“true” false positive or if they were caused by human errors.
Only two of them were “wrong” false positives, which we
corrected before re-evaluating all the results. It is reasonable
to think that such errors do not threaten the validity of the
benchmark.

VI. CONCLUSION

We created a statistically significant and easily extensible
benchmark to assess the quality of approaches to find
traceability links between source code and e-mails. The
benchmark can be used to test new approaches and verify
if they are able to improve the results obtained in our
experiments. The benchmark can also be exploited to train
learning algorithms, such as the unsupervised word sense
disambiguation algorithm proposed by Yarowsky [22], which
is capable of distinguishing the sense of ambiguous words
from their context. In our case, it could differentiate between
words referring to class names and their other usages.

We devised and evaluated several lightweight methods
to find traceability links between source code and e-mails.

Exploiting characteristics and naming conventions of
software artifacts, we showed that such lightweight
approaches can reach significant results in terms of accuracy.
This indicates that heavyweight techniques may be not
necessary to achieve good results in finding the traceability
links between source code and e-mails. In addition, since
our approaches are lightweight, they do not require
pre-computation (which usually is time-expensive and
compromises dynamism and interactivity of applications),
but can be directly used at run-time (e.g., to catalogue an
e-mail with its references, or to check for the references
to one class in all the e-mails archive). This allows the
developer to choose every time the most convenient method.

Acknowledgments: We gratefully acknowledge the
financial support of the Swiss National Science foundation
for the project “DiCoSA” (SNF Project No. 118063). We
thank the members of the REVEAL research group for the
effort they put in the creation of the benchmark, and Matteo
Bertoni who provided advice on the creation of a statistically
significant sample set.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering,
28(10):970–983, 2002.

[2] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella. Design-
code traceability for object-oriented systems. Annals of
Software Engineering, 9(1-4):35–58, 2000.

[3] O. Baysal and A. J. Malton. Correlating social interactions to
release history during software evolution. In Proceedings of
MSR 2007 (4th International Workshop on Mining Software
Repositories), page 7. IEEE Computer Society, 2007.

[4] J. Conklin and M. L. Begeman. gIBIS: a hypertext tool for
exploratory policy discussion. In Proceedings of CSCW 1988
(3rd ACM conference on Computer-supported cooperative
work, pages 140–152. ACM, 1988.

[5] M. D’Ambros, M. Lanza, and M. Lungu. Visualizing co-
change information with the evolution radar. Transactions on
Software Engineering (TSE), x(x):xxx–xxx, Feb. 2009.

[6] A. Dekhtyar and J. Hayes. Good benchmarks are hard to find:
Toward the benchmark for information retrieval applications
in software engineering. In ICSM 2006 Working Session:
Information Retrieval Based Approaches in Software Evolution,
2007.

[7] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Technical report,
University of Bern, 2001.

[8] R. Fiutem and G. Antoniol. Identifying design-code incon-
sistencies in object-oriented software: a case study. In Pro-
ceedings of ICSM 1998 (14th IEEE International Conference
on Software Maintenance), pages 94–102. IEEE Computer
Society, 1998.

[9] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advancing
candidate link generation for requirements tracing: The study
of methods. IEEE Transactions on Software Engineering,
32(1):4–19, 2006.

[10] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing
an artefact management system with traceability recovery fea-
tures. In Proceedings of ICSM 2004 (20th IEEE International
Conference on Software Maintenance), pages 306–315. IEEE
Computer Society, 2004.

[11] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[12] A. Marcus, A. D. Lucia, J. H. Hayes, and D. Poshyvanyk.
Working session: Information retrieval based approaches in
software evolution. In Proceedings of ICSM 2006 (22th IEEE
International Conference on Software Maintenance), pages
197–209. IEEE CS Press, 2006.

[13] A. Marcus and J. I. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing.
In Proceedings of ICSE 2003 (25th International Conference
on Software Engineering), pages 125–135. IEEE Computer
Society, 2003.

[14] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software
reflexion models: Bridging the gap between design and
implementation. IEEE Transactions on Software Engineering,
27(4):364–380, 2001.

[15] F. A. C. Pinheiro and J. A. Goguen. An object-oriented tool
for tracing requirements. IEEE Software, 13(2):52–64, 1996.

[16] B. Ramesh and V. Dhar. Supporting systems development
by capturing deliberations during requirements engineering.
IEEE Transactions on Software Engineering, 18(6):498–510,
1992.

[17] M. Sefika, A. Sane, and R. H. Campbell. Monitoring
compliance of a software system with its high-level design
models. In Proceedings of ICSE 1996 (18th international
conference on Software engineering), pages 387–396. IEEE
Computer Society, 1996.

[18] S. E. Sim, S. Easterbrook, and R. C. Holt. Using benchmarking
to advance research: a challenge to software engineering. In
Proceedings of ICSE 2003 (25th International Conference on
Software Engineering), pages 74–83. IEEE Computer Society,
2003.

[19] M. Smith, D. Weiss, P. Wilcox, and R. Dewar. The OPHELIA
traceability layer. In Cooperative Methods and Tools for
Distributed Software Processes (2nd Workshop on Cooperative
Supports for Distributed Software Engineering Processes),
pages 150–161. FrancoAngeli, 2003.

[20] M. Triola. Elementary Statistics. Addison-Wesley, 10th edition,
2006.

[21] K. C. B. Yakemovic and E. J. Conklin. Report on a
development project use of an issue-based information system.
In Proceedings of CSCW 1990 (5th ACM conference on
Computer-supported cooperative work), pages 105–118. ACM,
1990.

[22] D. Yarowsky. Unsupervised word sense disambiguation
rivaling supervised methods. In Proceedings of ACL 1995
(33rd Annual Meeting of the Association for Computational
Linguistics), pages 189–196. Association for Computational
Linguistics, 1995.

[23] W. Zhao, L. Zhang, L. Yin, L. Jing, and J. Sun. Understanding
how the requirements are implemented in source code. In
Proceedings of APSEC 2003 (10th Asia-Pacific Software En-
gineering Conference, pages 68–77. IEEE Computer Society,
2003.

	Introduction
	Related work
	Traceability support tools
	Traceability via intermediate abstraction
	Traceability via Information Retrieval

	Benchmarking the linking approaches
	Motivation
	Infrastructure
	Benchmark building procedure
	Evaluation

	Experiment
	Class name, case insensitive
	Class name, case sensitive
	Strict regular expression, case insensitive
	Loose regular expression, case sensitive
	Mixed, using Dictionary, case sensitive
	Mixed, using CamelCase, case sensitive

	Discussion
	Conclusion
	References

