
The Future of Open Source

Ilkka Tuomi

Introduction

Open source has seen phenomenal interest and growth in recent years. In many ways, it
has been a great success story. Clearly, it is no longer just hype, or a temporary fad. Yet it
is interesting to think about the conditions that would enable the open-source move-
ment to remain viable, and thrive. This chapter explores the driving forces behind this
model, and the constraints on it, discussing both the factors likely to promote the con-
tinuous growth of the open-source movement and those that could lead to its downfall.

The sustainability of the open-source model depends on several factors. Some of
these are internal to the model itself, including the economic viability of the model,
the availability of competent contributors, and the extensibility and flexibility of the
model. Other factors are external, including the potential reactions of proprietary-
software developers and policymakers, as well as technological developments leading
to evolutionary paths that are fundamentally incompatible with the model. Below
I will discuss these factors, in an attempt to locate potential discontinuities that
require new approaches from the open-source model if it is to maintain its vitality.

The history of open source

In the age of the Internet, new empires are rapidly built and lost. Successes quickly sow
the seeds of their own destruction. The Internet, however, has proven to be extraordi-

429



narily flexible and capable of overcoming many of its inherent technical limitations,
constraints and bottlenecks. This ability to innovate around emerging obstacles has
been based on the distributed social model that underlies the evolution of the Internet
and its key technologies. This distributed innovation model, in turn, is closely related to
the phenomenon that we now know as the open-source development model. One
might therefore expect that open-source software projects – and the open-source
approach itself – would show similar viability and robustness when the time comes for
them to reap the successes that they have sown.

The open-source software development model has been used since the first multi-
user computers became available in the early 1960s. Robert Fano, one of the key
architects of the first time-sharing system at MIT, described the phenomenon in the
following words:

“Some of the most interesting, yet imponderable, results of current experimen-
tation with time-sharing systems concern their interaction with the community
of users. There is little doubt that this interaction is strong, but its character and
the underlying reasons are still poorly understood.

The most striking evidence is the growing extent to which system users build
upon each other’s work. Specifically, as mentioned before, more than half of the
current system commands in the Compatible Time-Sharing System at MIT were
developed by system users rather than by the system programmers responsible
for the development and maintenance of the system. Furthermore, as also men-
tioned before, the mechanism for linking to programs owned by other people is
very widely used. This is surprising since the tradition in the computer field is
that programs developed by one person are seldom used by anybody else… The
opposite phenomenon seems to be occurring with time-sharing systems. It is so
easy to exchange programs that many people do indeed invest the additional
effort required to make their work usable by others.” (Fano, 1967)

Fano further argued that a time-sharing system can quickly become a major communi-
ty resource, and that its evolution and growth depend on the inherent capabilities of
the system as well as on the interests and goals of the members of the community.

430

Ilkka Tuomi



A system without a display, for example, could discourage the development of
graphical applications, or if it were difficult for several people to interact with the
same application this could discourage some educational uses. Moreover, Fano noted
that after a system starts to develop in a particular direction, work in this direction
is preferred and it accelerates the development in this direction. As a result, “the
inherent characteristics of a time-sharing system may well have long-lasting
effects on the character, composition, and intellectual life of a community” (cf.
Tuomi, 2002: 86).

The modern concept of proprietary software emerged in the 1970s, when the com-
puter-equipment industry began to unbundle software from hardware, and independent
software firms started to produce software for industry-standard computer platforms.
Over the decade, this development led to the realization that software was associated
with important intellectual capital which could provide its owners with revenue
streams. In 1983, AT&T was freed from the constraints of its earlier antitrust agree-
ment, which had restricted its ability to commercialize software, and it started to
enforce its copyrights in the popular Unix operating system. The growing restrictions
on access to source code also started to make it difficult to integrate peripheral equip-
ment, such as printers, into the developed systems. This frustrated many software
developers, and led Richard Stallman to launch the GNU project in 1983 and the Free
Software Foundation in 1985. Stallman’s pioneering idea was to use copyrights in a
way that guaranteed that the source code would remain available for further develop-
ment and that it could not be captured by commercial interests. For that purpose,
Stallman produced a standard license, the GNU General Public License, or GPL, and set
up to develop an alternative operating system that would eventually be able to replace
proprietary operating systems.

Although the GNU Alix/Hurd operating-system kernel never really materialized, the
GNU project became a critical foundation for the open-source movement. The tools
developed in the GNU project, including the GNU C-language compiler GCC, the C-lan-
guage runtime libraries, and the extendable Emacs program editor, paved the way for
the launching of other open-source projects. The most important of these became the
Linux project, partly because it was the last critical piece missing from the full GNU
operating-system environment. Eventually, the core Linux operating system became

431

The Future of Open Source



combined with a large set of open-source tools and applications, many of which relied
on the GNU program libraries and used the GPL.

The first version of the Linux operating system was released on the Internet in
mid-September 1991. The amount of code in the first Linux release was quite mod-
est. The smallest file consisted of a single line and the longest was 678 lines, or 612
lines without comments. The average size of the files in the first Linux package was
37 lines without comments. In total, the system consisted of 88 files, with 231 kilo-
bytes of code and comments. The program was written in the C programming lan-
guage, which the creator of Linux, Linus Torvalds, had started to study in 1990
(Tuomi, 2004).

During the 1990s, the Linux operating system kernel grew at a rapid pace. The over-
all growth of the system can be seen in Figure 1. The accumulated number of key con-
tributors recorded in the Credits file of the Linux system increased from 80 in March
1994, when they were first recorded, to 418 in July 2002, and 450 by the end of 2003.
The developers were widely distributed geographically from the beginning of the
project. In July 2002, there were 28 countries with ten or fewer developers and seven
countries with more than ten developers. At the end of 2003, the Credits file recorded
contributors from 35 countries (Tuomi, 2004).

432

Ilkka Tuomi



Figure 1 – Growth of Linux kernel, 1991-2000 (source: Tuomi, 2001).

Linux has become a particularly visible example of open-source software, as it has
often been perceived as a challenger to Microsoft’s dominance in personal-computer
operating systems. Other important open-source projects, such as Apache, Perl,
MySQL, PHP, Sendmail and BitTorrent, have also considerably shaped the modern com-
puting landscape. In fact, the global Internet now operates to a large extent on open-
source software. Commercial concerns, such as IBM, Sun Microsystems, Oracle, SAP,
Motorola and Intel, have become important players in the open-source field. Policy-
makers from South America to Europe, China, Republic of Korea, and Japan have
become involved in open-source initiatives.

433

The Future of Open Source



This widespread interest in open source, however, dates back only a few years. The
breakthrough of open source to public consciousness occurred only after the turn of
the decade. Although the first explorations of the open-source phenomenon appeared
already in 1998, the first empirical articles started to become available in 2000.1 The
first policy-oriented studies began to emerge in 2001, when the public authorities in
many European countries also became interested in open source.2

Driving forces behind the open-source phenomenon

There have been at least five major reasons for the growth of interest in open source.
The first has been the cost. Open-source systems typically do not involve license fees,
and users can download them from the Internet without paying for them.3 Second, the
open-source model has been claimed to produce better software than the proprietary
closed-source model. The argument has been that the open-source development model
allows multiple participants to peer-review effectively code developed by others. This
has been claimed to lead to the fast development of high-quality systems. Third, open-
source licenses and the availability of source code make it possible for users to modify
the system to the specific needs of the user. Thus, if someone has particular, idiosyn-
cratic requirements that will not be addressed by the producers of commercial soft-
ware, the open-source model allows this end-user to extend the system so that it
meets all his or her major needs. Fourth, the open-source development model has been
claimed to lead to the faster incorporation of innovative ideas and new useful func-
tionality than proprietary systems. This is because the distributed development model
allows all the developers to contribute to the development of the system and, for
example, to feed useful extensions to the system back to the developer community.
Fifth, the availability of the source code enables users to check the functionality. This is
expected to reduce the likelihood that the code may contain security vulnerabilities,
such as back doors or malicious code.

In fact, these rationales for open source have rarely been carefully justified or
studied. Proprietary-software developers have thus been able to make the counter-
argument that, when the total lifetime costs for installing, operating and maintaining

434

Ilkka Tuomi



software are taken into account, the low cost of open source becomes questionable. In
this argument, license costs are in any case a minor part of total costs.

The claims that open-source code is of better quality than proprietary code have
also been mainly anecdotal, partly because very little has been known about the quali-
ty of individual open-source systems, or the open-source approach in general.
Although its proponents have argued that the open-source development model leads
to high-quality software, a quick glance at historical open-source releases typically
reveals major quality problems even in the most successful of these systems.4

The argument that open source has more value for users than a closed system
because open-source code can be modified does seem to have some historical justifi-
cation. Successful open-source projects have grown because the end-users have been
able to solve problems that they know well, and which are important to them. This,
however, has typically meant that in successful open-source projects the “end-users”
are themselves competent software developers. Successful open-source projects have
an underlying social structure in which technology-producing communities substan-
tially overlap with technology-using communities.

This, indeed, is the main difference between the proprietary commercial model and
the open-source model. In the commercial model, users and developers typically form
independent communities that are only indirectly connected through economic trans-
actions. In the open-source model, by contrast, the development dynamic crucially
depends on users who are also the developers of the technical system. Although there
may be hundreds and even thousands of peripheral members in this community, the
core community typically consists of a relatively small group of people. If these core
developers stop the development, and no other developers take up their tasks, the sys-
tem quickly dies away.

In this regard, many popular accounts of the amazing number of people involved
in open-source projects have clearly exaggerated the size of open-source communi-
ties. It has often been argued that the success of the open-source model depends on
thousands and even hundreds of thousands of community members. A more careful
study of the nature of open-source communities, however, shows that, sociological-
ly speaking, there is no such thing as “the open-source community”, that almost all
contributions to open-source projects come from a very small group of developers,

435

The Future of Open Source



and that hardly any open-source projects ever succeed in attracting the interest of
more than a couple of developers or users.5 In fact, a back-of-envelope calculation
of the total resources used to develop Linux – the flagship of the open-source
movement – indicates that, on average, it has been developed by the equivalent of
perhaps a couple of dozen developers per year.6 This is by no means a trivial software
development project, but it could hardly be called an extraordinarily large develop-
ment effort.

The argument that the open-source model would lead to more innovative systems,
and the faster incorporation of new technological ideas, is an interesting one. It also
leads, however, to the difficult and important question of what, exactly, we mean by
innovation. At first sight, there is nothing particularly innovative in projects such as
Linux, which basically re-implements commercially available operating-system func-
tionality. Software engineering, in general, is engineering: the implementation of a
specific, given functionality using commonly accepted tools and methods. Innovative
operating-system architectures exist, including the Unix system architecture, on
which Linux is based, was innovative in the early 1970s, when it was first developed.
Instead of characterizing the Linux project as an innovation project, one might there-
fore be justified in arguing that it is more accurate to view it as an engineering and
implementation project.

If, however, by innovation we mean all kinds of technology development, a detailed
study of the evolution of open-source projects shows that they structure innovation
processes in very specific ways. In the case of Linux, for example, the social control of
technology development has become tightly aligned with the modularity of the tech-
nical system architecture. Some parts of the system were frozen and excluded from
modifications in the very early stages of the development. These stable, core elements
of the system have, in turn, allowed the rapid expansion of the system in the more
peripheral areas. Indeed, almost all of the growth seen in Figure 1 results from code
that has been added to link the core operating system with new hardware and peripherals.
This can se seen in Figure 2, which shows the incremental code changes in one of the
core modules of the Linux operating system – the kernel module – and one directory
path consisting of code that includes some of the main extensible parts of the sys-
tem.

436

Ilkka Tuomi



Figure 2. Growth of source code in two main Linux code directories (data from Tuomi, 2002).

This model of development has the social advantage that the developer community
can absorb enthusiastic new developers without any great difficulty. The new developers
can learn their skills and work practices by developing code that extends the system’s
functionality but does not interfere with its core functionality. Gradually, the novices
can then earn a reputation as reliable developers, and become masters and gurus in the
project community.

This process of social integration and skills development is closely related to the
architecture of the technical system that is being developed. Not all systems can be
built in a modular and incremental fashion that simultaneously supports skills devel-
opment, the socialization of community members and the development of a functional
technological artifact.

The roots of Linux’s success can be found in the architectural features of Unix. The
main architectural insight contributed by the Unix system was its modular structure,
which allowed new functionality to be added to the system simply by adding on new

437

The Future of Open Source



program modules which used the existing resources to get the job done. Historically,
the GNU project relied on the fact that a full replacement for the commercial Unix
operating system could be built piecemeal, by using the existing Unix platform as the
development platform. The GNU project, therefore, could start to replace the propri-
etary components of the Unix system one by one, and test the functionality of the
newly developed open-source modules in the context of the existing system. In this
sense, the GNU project tried to keep the functionality of the GNU system compatible
with the existing Unix, while incrementally reworking the commercial Unix in the
direction of an open-source version. Indeed, the GNU project gradually built almost a
complete system, which finally became a full operating system when the Linux devel-
opers plugged in the missing piece, the operating-system kernel.

The skills development model in GNU/Linux closely resembles the social learning
processes that underlie the dynamic in communities of practice. Such social learning
processes have already been studied for a long time outside the software-development
domain. Lave and Wenger (1991) proposed a model in which communities of practice
form the social entities that maintain particular social practices and stocks of
knowledge, and Brown and Duguid (1991) extended this model to organizational inno-
vation models. Historically, these models were based on ideas developed as part of the
cultural-historical activity theory, which emphasized the development of skills and
cognition as a process in the “zone of proximal development” where the performer was
able to show competent behavior when supported by others, but where autonomous
performance was still lacking.7 By borrowing skills and knowledge from others, the
learner was able to do things that still remained outside his or her current capabilities
and, through such socially supported action, learn them. In this model, parents, for
example, built mental and practical “scaffolds” that allowed their children to climb to
new levels of performance, where these new, advanced forms of cultural and cognitive
behavior could be experienced and learned, and eventually performed without support.
In technology-development communities, a similar process of skills development leads
to social structures that consist of “novices”, “old-timers” and “gurus”, and which
center around community-specific knowledge and artifacts (Tuomi, 1999).

The problem inherent in this model is that it is fundamentally a conservative one.
A commercial Unix system can be transformed into an open-source version piece by

438

Ilkka Tuomi



piece only if most pieces are kept stable at every point in time. As depicted by Lave and
Wenger, the “community of practice” model was focused on the transfer of existing
social practices and traditions. The power structure was concentrated in the “center”,
with the members of the core community defining what counted as knowledge and
development in the community in question. The novices could enter the community
gradually, by first gaining access to the community, then internalizing its values and
world-views, and eventually becoming full, competent members.

This community-centric developmental model, therefore, could be expected to be
particularly suitable for incremental innovations and extensions that enforce the basic
values of the community. In this model, it would be quite difficult to introduce radical
innovations that shake the current power structure or contradict the core values of the
community. For example, if the basic hardware architecture of personal computers
were to change radically, such a change might require extensive changes to the struc-
ture of the Linux developer community, possibly leading to the end of Linux.

The fifth reason for the increasing visibility of open source – better security through
the availability of the source code for inspection – has gained some importance in
recent years. In general, computer viruses, daily announcements of security problems
in commercial software and frequent hijackings of network-connected computers in
order to relay spam have pushed security to the forefront of users’ concerns.8 Computer
users have realized that their broadband-connected computers are accessible across
the globe, and policymakers have become worried that unauthorized access could lead
to problems with national security and computer crime. Well-publicized US initiatives
on monitoring and tracking electronic communications and the lack of transparency of
government efforts to fight terrorism have also increased the perceived possibility that
commercial software vendors may be required to incorporate unpublicized back doors
to their systems to permit and facilitate the monitoring of computer-based activities
around the world.

If the commercial software producers cannot be trusted, or held liable for damages,
the only alternative is to establish an independent control process that guarantees
that problems do not exist. At first, it might perhaps look as if the availability of the
source code would solve this problem. If the code can be inspected, then in theory the
inspectors can easily see a code that implements back doors or other unacceptable

439

The Future of Open Source



functions. In practice, this is more difficult, as can be seen from the constant flow of
security-related updates for both closed-source and open-source software. The
inspection of software code is relatively easy for the people who have been involved in
the development of the system, but it is difficult for people who are given source code
that represents perhaps years of accumulated work.

More fundamentally, however, the source code does not itself reveal all security
problems. When the system is compiled into a working binary code, the compiler
decides how the transformation of the source program code is done. If the compiler, for
example, instructs the programmed system to use code that includes a back door, all
systems compiled with this compiler will include the back door. Similarly, if the micro-
processor microcode, which the program eventually mobilizes to do its tasks, includes
undocumented instructions, no amount of inspection of the program source code will
reveal the related security problems. Such microcode instructions could be used to
bypass security mechanisms implemented in the open-source program.9

Although it is clear that the availability of source code does not completely solve
the problem of security or lack of trust, it does, however, considerably limit the types of
problems. Only microprocessor manufacturers can implement microcode on their
chips, and only compiler-developers can change the basic functionality of compilers.
The question still remains, however, whether the open-source approach leads to better
security than closed source. The argument for closed source has been that keeping the
source code unavailable makes it more difficult for hackers and computer criminals
around the world to develop malicious code. This “security through obscurity” argu-
ment, however, has been discredited by most security experts.

The proper argument would be that the developmental path of open-source leads to
systems that have different security characteristics than closed source systems. This
could happen, for example, because security problems were detected faster in the
open-source model, as more people were able to study the code, or because the avail-
ability of source code enabled the developers to build mental models of the system
architecture, system functionality and accepted development styles that facilitated
the detection of anomalies. It could also happen because existing security problems
were widely publicized within the development community, thus enabling its members
to learn faster how to develop code without security problems. The open-source model

440

Ilkka Tuomi



could also lead to better security simply because the transparent development model
makes the individual developers personally and socially liable for the quality of code.

All these reasons, of course, depend on the poor quality of commercial-software
development processes. In principle, one could invest in improvements of commercial
software development processes to make them start to produce software as good as
the open-source model. In theory, however, one might also argue that the open-source
model is inherently better than any closed-source models in addressing security
problems. Such a claim could be based on two separate points. The first is that the
open-source model allows users to organize independent quality-control mechanisms.
The second is that distributed development is inherently better, and that it requires
open access to the source code.

Independent quality controls and the possibility of inspecting code are important if
the quality-control mechanisms of commercial software developers cannot be trusted.
Normally, in such a situation, commercial partners try to manage the risks by agreeing
on liability and remedies in case damage occurs. In practice, however, this is an option
only when the risks are relatively small or controllable, for example by insuring against
them. In reality, many producers of prepackaged software and operating systems
would probably go bankrupt if they had to cover all the damage and loss generated by
quality problems with their products. For this reason, software vendors typically only
license the right to use their products under conditions where they are not liable for
any damage caused by such use. In this situation, the possibility of reviewing vulnera-
bilities and defects independently, and reacting to them, does have some value for
users.

The second argument for the inherent security of open source would be that
distributed and self-organized development processes always win in the end, even over
the best-organized development processes. This argument would be akin to the
Hayekian view that market-based economies are always better than command
economies because they allocate resources more effectively and process information
better than any hierarchical decision-maker. One could argue, for example, that
detecting and solving security problems requires local, context-specific knowledge
that always remains inaccessible to central decision-makers, who can therefore never
make optimal choices.

441

The Future of Open Source



This Hayekian story, of course, would not be the full story. Taken to its extreme, it
would leave open the question of why organizations exist. Indeed, this question is also
central to the future of open source.

The economic organization of open source

From the point of view of economic theory, the open-source development model is a
challenge. Much of the literature on economics starts out from the assumption that
economic players need to appropriate the returns of their investments. In this theoret-
ical world, economic players produce new technology only if they can make a profit.
Furthermore, if the developers are unable to perceive and appropriate all the benefits
of their development, investment may remain below the social optimum. As complex
production requires the division of labor and capital, entrepreneurs set up business
companies. Business organizations, therefore, emerge as the principal actors on the
stage of modern economy, and, in this theoretical framework, need to become owners
of the products they produce.

The concept of ownership is a central one in modern society. It translates the social
phenomenon of power into the domain of ethics, rights, and legal institutions. In prac-
tice, the concept of ownership makes it possible for people to exchange valuable
things and services in an orderly and predictable way, without relying on pure and ran-
dom violence. We can always take the goods we need if we are powerful enough, but if
the power is physical instead of social, the behavior can appropriately be called asocial.
Ownership stops us acting purely individually, as we cannot fulfill our own needs with-
out asking who the others are who control goods and resources, and what they want.
In this sense, the concept of ownership is the foundation of social worlds and ethical
behavior. The acceptance of ownership structures means that we have tamed our
nature as beasts, and accepted the structures of society.

In open-source communities, however, the concept of ownership becomes
redefined. Instead of controlling a given good, open-source communities control the
developmental dynamic of an evolving good. The “openness” of open source, therefore,
is more about open future than about access to currently existing source-code text.

442

Ilkka Tuomi



Simple extensions of conventional economic concepts, such as ownership and intellectual
property, are therefore bound to create confusion when applied in the context of open-
source development.

In economic discussions on open source it has frequently been argued that open
source may be understood as a public good. In economic theory, public goods are
goods that are non-exclusive and in joint supply. A feature of non-exclusive goods is
that if they are available, they are available to all. Public goods that are in joint supply,
in turn, are goods that do not lose value when someone benefits from them. Open
source fulfills both conditions: when it is made available, it can be downloaded by
anyone, and when someone downloads the system, its value for other users does not
decrease.10

Von Hippel and von Krogh (2003) have argued that the open-source model works
well because the developers have sufficient private benefits to keep the development
going. The traditional theoretical problem with the production of public goods is that
when the good is available to everyone, those who have not contributed to its produc-
tion can also benefit from it. This leads to free-riding and less-than-optimal invest-
ment in development. For this reason, economists often believe that in well-operating
markets all production should be private production where the producer is fully entitled
to maximize the profits from his or her investment. The von Hippel and von Krogh
argument was that free-riding does not necessarily have to be destructive. The devel-
opers may gain access to valuable learning and system functionality that is tailored to
their specific needs, whereas the free-riders can only benefit from the system itself. If
the private benefits to developers are sufficient, the open-source model can produce
public goods without the risk that all developers may end up free-riding on the work of
others. The apparent miracle of open source can therefore be compatible with the
established beliefs of economic theory. More specifically, the miracle is shown to be an
illusion, which reveals its true nature when the private benefits of the benefit-maxi-
mizing individual developers are taken fully into account.

O’Mahony (2003) pointed out that although open source may be a privately pro-
duced public good, one still has to consider the conditions that make it difficult to
steal this good. In particular, she highlighted the different tactics that open-source
communities have used to keep the system they have produced a public good. These

443

The Future of Open Source



include the open-source licensing terms and branding that restrict the possibility for
commercial players to extend the code to make it, effectively, proprietary.

O’Mahony also noted that open-source software could be described as a common-
pool resource. In economic theory, common pools have been used to analyze tragedies
of commons, where individual players maximize their benefits to the eventual loss of
everyone. Traditional discussions on common pools and tragedies of commons
assumed that economic players are norm-free maximizers of their immediate individual
benefits, without the capacity to cooperate. Empirically, these assumptions are obvi-
ously wrong when applied to open-source communities. Since the foundation of the
GNU project, the explicit goal of many open-source projects has been to collaborate in
the production of common goods, and history shows that they have successfully done
exactly that.

A feature of common-pool resources is that they are subtractable. In other words,
when someone uses the pool, its value diminishes. This, in fact, is a common feature in
real life if resources are not renewable or if their renewal occurs more slowly than their
depletion. From this point of view, open source is an interesting resource. As the future
value of the system depends on the amount of developers and the availability of com-
plementary products, the open-source pool may in fact become more valuable the
more people use it. In this sense, open source could be described as a fountain of
goods. Traditional economic theories have difficulty modeling such phenomena, as
they are built on the assumption that resources are scarce. In “fountains of goods”
models, the limiting factor for growth is not the decreasing marginal benefit and
increasing cost; instead, it is to be found in the dynamic of social change and the
development of the skills needed to seize the emerging opportunities. In other words,
such models require that we move beyond traditional economic theory.

Economists have typically tried to show that existing theoretical models can be
compatible with the open-source model when purely economic transactions are com-
plemented with concepts such as investment in reputation and network effects. Lerner
and Tirole (2000) highlighted the potential importance of delayed payoffs, such as
enhanced career opportunities and ego gratification generated by peer recognition.
Johnson (2001) showed that open-source development may be modeled as a simple,
game-theoretic model of the private production of a public good, where the developers

444

Ilkka Tuomi



optimize their benefits under the conditions of perfect knowledge about the prefer-
ences of others. Dalle and Jullien (2001), in turn, showed that network externalities
could make software users switch from proprietary systems to open systems, modeling
Linux users essentially as a magnetic material which jumps from one organized state
to another depending on external forces and the interactions between its nearest
neighbors.

In fact, many early models were quite independent of the empirics of open source,
simply because relatively little was known about open source. The models could easily
have been generalized to fit practically any economic activity where network effects,
interdependent investments, or delayed benefits would have been relevant. Economic
theory, however, has usefully highlighted the essential economic characteristics of
open source. It can be understood as a privately produced good, in the sense that
individual developers create contributions to the system that creates public benefits.
The developers make decisions about joining development projects based on their
perceived benefits and costs. The benefits may include enhancement of reputation, the
value of developed functionality to the developer, peer recognition, and other short-
term or long-term benefits. When the individuals are working for commercial firms
and paid for their work, they may also develop the system because they are paid for it.
Although it is not clear whether the developers maximize their benefits in any system-
atic sense, it is clear that they do take them into account. In addition to straightfor-
ward economic benefits, however, open-source developers consider a broad set of pos-
sible benefits, including the excitement of being part of a meaningful social project
that can potentially change the world.

In other words, open-source developers are motivated and incentivized in many
ways and for many different reasons. The particular strength of the open-source model
is that it allows multiple motivational systems to co-exist and to be aligned so that the
system development goes on. In open-source development, in particular, it is not only
money that counts. In this economy, sellers, buyers, and producers may market things
for example because they like being on the market, and because the game of social
interaction is fun and socially meaningful.

Conventional economic thinking has had conceptual difficulty in dealing with open
source because economic theory has historically centered on scarce resources. The

445

The Future of Open Source



basic historical problem for classical economists has been how to maximize the con-
sumption of scarce goods. This was a relevant question in a world where the lack of
consumption possibilities was a daily challenge and where people lived in poverty and
hunger. Open-source development, in contrast, is a social process that creates goods
where they did not exist before. The concept of scarcity cannot easily be applied when
the economy becomes creative. The open-source development model, therefore,
shakes one of the core building blocks of the modern economic worldview.

In fact, some of the excitement in open-source communities seems to result from
the realization that open source stands the basic principles of the modern global econ-
omy on their heads. In open-source projects, consumers become producers. Instead of
becoming alienated from the results of their work, open-source developers engage in
individually and socially meaningful production, and retain the moral authorship of
their work. In this sense, the social currents that express themselves in open-source
projects can also be viewed as a positive and productive version of anti-globalization
critiques, for example.

Perhaps the most obvious – if somewhat controversial – reason for the inability of
conventional economic theories to describe the open-source phenomenon is that eco-
nomic transactions and economic rationality operate only in limited social domains.
A modern economy has a very particular way of organizing social interactions. In its
present form, its history in industrialized countries goes back only a couple of
centuries. Many areas of social life, therefore, remain outside the sphere of economic
models and conventional economic theorizing.

Most fundamentally, perhaps, the concept of rational choice that underlies micro-
economics does not work well in innovative worlds. In practice, people are able to
revise their priorities and perceptions rapidly, and in the modern world, where new
social and technical opportunities emerge frequently, such revisions are common. In
effect, this means that people change the reasoning behind their actions and their
preferences in ways that make traditional economic models unable to predict social
behavior, except when social change is of minor importance. In new technology devel-
opment this is rarely a good approximation. The conceptual structure of traditional
economic models requires that the rules of the game remain essentially constant and
that the world of preferences is closed. In technology development, however, innovation

446

Ilkka Tuomi



produces essentially novel social phenomena, opens up new worlds for social action,
and constantly changes the rules of the game. This makes it necessary for individuals
and other economic decision-makers to re-evaluate and reinvent their value systems
continuously.

Economic theories normally cannot handle such situations, as, methodologically
speaking, they rely on an implicit empiristic and positivistic epistemology. In other words,
they assume that stable value systems exist, and that economic behavior consists of
expressions of individual preferences within objective value systems. The lack of stable,
objective value systems in society means that conventional economic theories do not,
in general, converge towards any social reality. Economic explanations of technology-
creation activities, such as open-source development, therefore remain abstractions
lacking predictive power.

This theoretical challenge, of course, does not mean that concrete economic factors
are irrelevant to the future of open source. In fact, both the sustainable evolution of
community-specific value systems and the accumulation of traditional economic
resources are critical for the success of open-source projects. These projects are inter-
esting for economic theory, as they highlight the importance of community-based value
systems and social structures at the foundation of an economy. The substructure of a
modern economy is revealed in these technology-development projects, which organize
themselves for the purpose of collective production and social exchange. The particular
characteristics of modern, monetarized economic transactions, in turn, become visible
when open-source projects need to interface their activities with the rest of the modern
economy.

The basic challenge for sustainable social activities is that they need to generate
and accumulate sufficient resources to maintain themselves. In conventional economics,
this requirement has often been understood as the need to generate profit. Businesses
are viable if they can pay for their activities and investments and pay their investors.

In the case of open-source development, early descriptions of the phenomenon often
argued that the developers worked completely outside the economic sphere. This, of
course, was never the case. Richard Stallman, for example, explicitly pointed out in the
1980s that he generates income for the GNU project by charging for the distributions of
the system, that he makes the work on the project possible by commercial consultancy

447

The Future of Open Source



and teaching, and that the continuity of the project depends on donations of money and
equipment. Open-source developers have used technology developed by commercial
firms and computer networks funded by universities and governments, and they have
often had to pay for their pizzas in real currency. In this sense, open-source develop-
ment can also be understood as a parasitic activity that has been free-riding slack
resources and activities within the sphere of economic transactions. In fact, the tradi-
tion known in French as la perruque, whereby workers skillfully transfer their employer’s
resources into gifts or meaningful and unintended productive activities, could easily be
used to explain some characteristics of the open-source economy (Tuomi, 2002:28).

A more careful look at the parasitic nature of open source, however, reveals that it is
not obvious who the parasite is and who is the host. All economic players – including
commercial software vendors – free-ride extensively. For example, they rely on skills
development processes that are paid for by others, often by the workers, competing
firms, or the public schooling system. Public and private investment in the Indian
university system, for example, allow many commercial software firms to lower their
expenditure. Non-commercial software activities, such as hobbyist development,
computer gaming, demo development, and various other forms of computer hacking
have provided critical sources of skills for commercial vendors at least since the 1970s.
Innovative commercial activities paid for by competitors have also been important. The
history of Microsoft is an illustrative example here.

It may therefore be claimed that open-source developer communities have been
possible because they have successfully appropriated resources without paying for
them. It may also be said, however, that commercial software vendors have been possible
for the same reason. Instead of one or the other being a parasite, these two modes of
software production have been living in symbiosis for a long time. The question for the
viability of the open-source model, then, is whether the growth of the open-source
movement disturbs this symbiosis in major ways, or whether open-source communities
may, for example, jump to a new symbiotic relationship where commercial software
vendors are no longer needed for open-source development.

Recent developments have shown that both commercial vendors and open-source
communities are transforming themselves in order to address this challenge. New
hybrid models are emerging in which open-source communities and commercial profit-

448

Ilkka Tuomi



making firms redefine their relations and explore mutually viable models. MySQL, for
example, has successfully developed a Janus-like model where it shows one face to the
open-source community at large and has a different, commercial interface available
for profit-making players. Several Linux distributors have developed business models
that combine value-added services with open-source community models. IBM and
other profit-making firms have internalized some open-source activities with the aim
of developing a competitive advantage over closed-source competitors.

The politics of open source

Experiments with hybrid models that combine community-based open-source develop-
ment with profit-making organizations will show what types of symbiosis are possible.
For the open-source community, however, there is also another alternative. If open
source is, indeed, a public good or a public fountain of goods, it could also legitimately
be supported through public policy.

The challenge of public policy, in general, is that if it is effective it changes the
world. Successful policy, therefore, by definition, cannot be neutral. In particular, if
public policy supported open-source activities, it would implicitly reorganize the field
in which software producers operate. When the assumption is – as it commonly is –
that policy should not interfere with market forces, all policy changes that have a mar-
ket impact appear problematic. For example, if public resources were used to fund
open-source software production, the producers of closed systems could claim that
such behavior threatened free competition. More importantly, if public authorities
required open-source licenses for publicly procured systems, they could easily be
viewed as interfering with competition.

The European Union has a particular challenge in this regard. National policies can
often override or balance competition concerns when other policy objectives – such as
wars against terror, national security, or industrial and economic development – are
involved. In the European Union, however, the legal basis for action is to a large extent
built on the assumption that competition in a free market is a priority. This apparently
neutral approach is not as neutral as it may seem at first sight. Free competition is not

449

The Future of Open Source



something abstract or absolute: it can only exist within given institutional structures.
Any change in these institutional structures, therefore, necessarily interferes with the
current state of competition. In this sense, the idea of free competition is inherently
conservative, and it often quite strongly influences existing and established interests.

Policy intervention with a clear market impact has, therefore, often focused on the
particular cases where theoretically accepted reasons allow policymakers to claim that
markets have failed to operate as they should. As a consequence, much of the compe-
tition policy in free-market societies has centered on antitrust issues and monopolies.

The open-source phenomenon opens up new challenges for policy. For example, it is
possible to argue that a feature peculiar to the dynamic of the software industry is
that, in this domain, positive returns, first-mover advantages, and scale-effects of pro-
duction generate an industry structure that is socially and economically not optimal.
New software is often adopted in environments where interoperability is important.
After new systems have been integrated into existing environments, switching costs
may become very high, and in practice users may therefore be stuck with the choices
they have made in the past. Producers of new, improved software may therefore find it
impossible to survive in this competitive landscape, where entry-points are tightly
controlled by existing players. The end result might be, for example, that the structure
of the software industry will evolve rapidly into one where those first in are the dominant
players, and where small newcomers have great difficulty in growing. From a policy point
of view, this could mean, for example, that fewer jobs and services are produced than
would be the case if the rules of competition were balanced by policies that mitigated
the excessive impact of network effects and first-movers’ historical advantages.

One could also argue, for example, that wider use of open-source software would
make it easier to find socially beneficial uses for new technology. When a society
becomes increasingly computerized and many of its systems depend on software, the
transparency of these systems can give entrepreneurs and innovators the chance to
see where their contributions might create value. This, essentially, is how the existing
open-source projects have become successes. When competent developers can access
the source code and see what functionality could best extend the capabilities of cur-
rent systems, they can maximize the impact of their work. One might expect that the
benefactors of such improvements would often be happy to reward this development

450

Ilkka Tuomi



work, thereby also providing commercial opportunities for software developers. In
policy terms, therefore, open source could lead to demand creation, economic growth,
and jobs.

These simple examples highlight the point that policies relating to software access
and openness may have serious social and economic consequences. Software is
becoming one of the main economic factors in society. Software-related policy issues
are therefore bound to become increasingly important. In the future, we may, for
example, need a better understanding of the development dynamic in software indus-
tries, as well as new concepts of system innovation and interoperability that will allow
policymakers accurately to define policy issues. Research on open-source projects will
provide useful insights on these challenges.

The future

The history of open source indicates some factors that will also be important for its
future. As was noted above, a critical characteristic of the open-source model has been
the ability to integrate new community members and to support them effectively with
social learning models. The access to competent community members, community
discussions and historical records has played an important role here.

This collaborative learning model could potentially be extended beyond software
development projects. For example, it could provide a foundation for community-
centered social innovation projects, where simultaneous knowledge creation and skills
development are important (Tuomi, 2003). This, in itself, could generate global demand
for open-source tools that support such processes.

A unique characteristic of software is that the description of the system is also the
system that is developed. In this domain, the technical artifact and its specification
coalesce into one. When developers have access to the source code, their technical
skills and knowledge about the functionality of the system can therefore be developed
with great effectiveness. For example, when the developers talk about specific problems
within the current system, they refer not to abstract descriptions of the system but to
the system itself. Alternative solutions to problems can simply be compiled into binary

451

The Future of Open Source



code and run on computer hardware to resolve different opinions about the functioning
of code.

This also makes open-source software development different from science. In the
empiristic scientific tradition, the idea was that abstract theories could be tested by
comparing their predictions with observable natural phenomena. Given an objective,
observer- and theory-independent reality, theories were expected to converge eventually
towards an accurate description of this reality. As philosophers of science have pointed
out, this project was, in itself, unrealistic. The relevance of observations depends on the
theories used, and theories depend on historically accumulated conceptual systems. In
open-source projects, the dream of objectivistic knowledge, however, is approximately
true. As long as the underlying technical architecture stays unchanged, it works as an
objective, external world, against which different theoretical models and abstractions
can be tested.

When the underlying technical architecture changes, the impact of this depends on
the nature of the change. If it affects only minor features, many of the previous
abstractions remain valid. If the changes are radical, the abstractions may need to
change radically.

In the world of open source, radical changes could be generated, for example, by
innovative new hardware architectures that require completely new approaches to
design. For example, if Intel suddenly switched its microprocessor architectures to
support parallel message-passing, quantum computing, or new adaptive information-
processing approaches, the Linux operating system community might have great
difficulty in adjusting its designs and its internal social structures.

The history of open source also highlights the importance of developer motivation
and needs. Open-source development has often met the needs of the developer, and
addressed the frustrations generated by constraints generated by others. If, for example,
Xerox had given access to the source code of its printer drivers, and if AT&T had not
restricted the sharing of Unix among universities, it is quite possible that the GNU
project would never have been launched. When commercial software vendors
increasingly make their source code available, therefore, some of the motivation for
launching open-source projects disappear. Indeed, this “embrace of death” strategy is
probably part of what underlies some current commercial open-source initiatives.

452

Ilkka Tuomi



Open-source developers have also often pointed out that they develop software
because it is fun. If software development were no longer fun, open-source projects
would look less attractive. For example, if programming tools become so advanced that
useful applications could easily be developed by anyone, many of the low-hanging
fruits of software development could be picked by people who are not particularly
interested in technical challenges.

Some technical and policy changes could also lead to dead ends in open-source
development. One widely discussed issue has been the conflict between open-source
licenses and legal restrictions to reverse-engineer or publish code and algorithms that
implement security or digital rights management. Open-source licenses require code
to be distributed in a form that allows its modification. If the system, for example,
interfaces with commercial products that protect against unauthorized copying, the
copy protection algorithms may need to be published whenever the system or its
modifications are distributed. Or if the system has encryption or privacy characteristics
that cannot be exported without government permission, the system may be incom-
patible with open-source principles. Similarly, in the future some governments might
require all operating system to include back doors for crime enforcement. Such
requirements could make open source impossible or illegal in its present form.

The ingenuity of the original GNU license was that it applied recursively a very
generic constraint that guaranteed the growth of the system. The name GNU itself was
a play on the principle of recursion, an acronym coming from “GNU is Not Unix.” The
C language that was used to program Unix is often used in this recursive way, where
program subroutines or functions iteratively use themselves to compute complex
programs in a simple and compact way. The GPL is a similarly recursive program. It
keeps the constraints of development constant for all unforeseeable situations, as long
as the development goes on. In this sense, the GPL license was a nice, clean example of
good programming. This time, however, it was social engineering: it programmed
social behavior, instead of computers.

Many modified open-source licenses lose this basic characteristic of the GPL. At the
same time, they allow a partially recursive process of open-source development to go
on as one specific developmental branch. The growth constraints and viability of this
open-source branch, however, are no longer defined from the start. Instead of having

453

The Future of Open Source



only the choice between growing and dying, the more restricted forms of open-source
licenses can also lead to privatized developmental paths and the withering of the original
open-source project. This is exactly the reason why additional social procedures, such
as those discussed by O’Mahony, become necessary. If open-source pools can be con-
verted into private wells or private fountains, branding and social sanctions such as
excommunication from the programmer community may become necessary. Such
social strategies, however, are rarely foolproof. If pool conversion is possible in principle,
in practice it may crucially depend on incentives and on the possibility of offsetting the
immediate damage generated during the conversion. If the price is high enough, open-
source developers may happily sell their fountains, even though they might afterwards
find themselves running out of water. A similar issue underlies much of European
thinking of privacy regulations and consumer protection, which often starts from the
assumption that individual bargaining power may sometimes need policy support, and
that some types of economic transactions should not be allowed on free markets.

One interesting challenge for future open-source development is also the issue of
liability. Commercial software vendors are able to make contracts that free them of all
liability. As open-source developers typically form open and undefined communities,
usually there are no institutionalized agents that could make contracts for open-
source systems. Modern legal systems simply do not acknowledge the existence of
such open, productive communities. Furthermore, the success of open source greatly
depends on the fact that its users and developers do not have to sign contracts with all
the people who have contributed to the code.

This opens up a loophole for competitive strategies that use the historical institu-
tions of the law as a weapon against new forms of organizing and acting. Relying on
the institutional blindness of justice, closed-source software vendors can make open-
source systems unattractive to established institutions. This, of course, is exactly what
has happened recently with Linux and its competitors, such as SCO. As another example,
in mid-2004 a think-tank from Washington, D.C., published a report alleging that the
Linux kernel code was probably borrowed or stolen from an earlier Minix system. The
fact that there was no systematic documentation on the history of Linux code, and no
simple way to trace the sources of all the various contributions, made it possible to
argue that someone might eventually sue Linux users for damages.11 As under the legal

454

Ilkka Tuomi



system in the US it is possible to claim very large punitive damages, this risk could
obviously be a problem for Linux users operating there. Similar approaches, where
existing legal systems are used as competitive weapons, could potentially slow down
or kill open-source projects in the future. For the viability of the open-source model, it
might, therefore, be necessary to develop liability rules that limit the possibility of mis-
using such competitive approaches.

The final challenge for the open-source model is its ultimate success. Many open-
source developers have built their identities around a project that has been designed to
resist the hegemony of the dominant software giant, Microsoft. If Linux one day
succeeds in conquering servers and desktops around the world, this basis for resist-
ance will evaporate.

In the Hegelian explanation of world dynamics, development is driven by contradic-
tions. Success sows the seeds of its own destruction, and revolutions eat their children.
Before this happens it, however, open source may become normal. Revolution may turn
into evolution. Open-source communities may traverse the historical phases of social
development in Internet time, finding again the traditional forms and problems of
community, organization, economy; and eventually moving beyond them. Commercial
developers may perhaps become open-source developers, as the software industry
finds new forms of synthesis, reconciliation, and symbiosis. This, exactly, is why open
source can survive: the future is open.

Notes

* The views expressed in this chapter do not represent the views of the Joint Research Centre, the Insti-
tute for Prospective Technological Studies, or the European Commission.

11 The early papers included several papers published in First Monday including Ghosh, 1998; Bezroukov,
1999; Kuwabara, 2000; Ghosh & Prakash, 2000; Edwards, 2000; Moon & Sproull, 2000; and other
important contributions such as Kollock, 1999; Dempsey, Weiss, Jones, & Greenberg, 1999 Mockus,
Fielding, & Herbsleb, 2000; Koch & Schneider, 2000; Feller & Fizgerald, 2000; Ljungberg, 2000; and
Yamauchi, Yokozawa, Shinohara, & Ishida, 2000. The research on open source got a boost when the
MIT Open-source repository was launched in the summer of 2000, distributing working papers such as
Lerner & Tirole, 2000; Lakhani & Von Hippel, 2000; Tuomi, 2000; and Weber, 2000. Many of the early
papers were inspired by the descriptions of open-source development models in Raymond, 1998 and
DiBona, Ockman, & Stone, 1999.

455

The Future of Open Source



12 A good early, policy-oriented study was Peeling & Satchell, 2001.
13 Some open-source systems, such as MySQL, use dual licensing, which requires license fees for com-

mercial use.
14 Some empirical and consultant studies, however, lend support to the claim that at least some parts of

the Linux system have smaller error ratios than closed-source code. Some survey-based studies have
also shown that the speed at which errors are corrected may be faster in open-source than in closed-
source projects. In general, comparative research between open- and closed-source projects has so far
been rare, however.

15 The distribution of effort among developers has been studied, for example, by Mockus, Fielding, &
Herbsleb, 2002, who found that only a few programmers contribute almost all code. The size distribu-
tion of open-source projects has been studied by Krishnamurthy, 2002, who found that half of the
hundred projects studied had fewer than four developers, with an average of 6.7 developers.

16 Using data from González-Barahona, Ortuño Pérez, et al., 2002, one may estimate that during the first
decade of Linux development the effort that went into developing the system was roughly equal to
500 person-years of commercial development. It is difficult to translate this number into actual work
hours or developer-community size, as it is difficult to estimate the productivity of Linux-kernel devel-
opers without further study. In general, individual programmer productivity differences are often
found to vary more than an order of magnitude, and one may assume that, on average, the core Linux
programmers have worked with relatively good programming productivity. One might also expect that
in recent years the programming effort has increased, partly because many commercial firms are now
involved in Linux development.

17 The cultural-historical school was developed by Lev Vygotsky and his colleagues in the 1920s in the
Soviet Union. For a historical review of the Vygotskian school and its central ideas, see e.g. Kozulin,
1990 and Wertsch, 1991.

18 In the first half of 2004, an average of 48 new vulnerabilities a week were reported for Windows-
based PCs. The total number of reported security vulnerabilities for Windows software reached 10,000
by mid-2004 according to Symantec’s Internet Security Threat Report.

19 Historically, microprocessors have included undocumented microcode instructions, for example for
testing and because the processor developers have left some options open for the final specification of
the processor.

10 Strictly speaking, it is possible that the value of an open-source system may decrease as more people
use it. As long as only a few users have found the system, it may have some temporary scarcity value,
for example because the early users may benefit from cost advantages that have not yet been appro-
priated by competitors. An innovative open-source user could even maintain such a competitive
advantage by continually adopting state-of-the-art open-source systems. Such situations, of course,
can not be described using economic theories that start out from the assumption that economic players
operate in an equilibrium.

11 The report, released by the Alexis de Tocqueville Institution in May 2004, was widely discredited by the
people quoted in it, but it created an avalanche of commentary in the public press and on the Internet. In
Europe, the report’s author interviewed Andrew Tanenbaum, the creator of the Minix system, and the

456

Ilkka Tuomi



author of the present chapter. After extensive discussions about Microsoft’s role in the production and
funding of the report, Microsoft eventually repudiated it, commenting that it was an unhelpful distraction.

References

BEZROUKOV, N. (1999). “A second look at the Cathedral and the Bazaar.” First Monday, 4 (12)
http:// firstmonday.org/issues/issue4_12/bezroukov/

BROWN, J.S., & Duguid, P. (1991). “Organizational learning and communities of practice: toward a unified
view of working, learning, and innovation.” Organization Science, 2, pp. 40-57.

DALLE, J.M., & JULLIEN, N. (2001). ”Open-source vs. proprietary software.” Guest lecture at ESSID Summer
School, Cargèse.

DEMPSEY, B.J., WEISS, D., JONES, P., & GREENBERG, J. (1999). “A quantitative profile of a community of open-
source Linux developers.” School of Information and Library Science, University of North Carolina
at Chapel Hill. Technical Report TR-1999-05.

DIBONA, C., S. OCKMAN, & STONE, M. (1999). Open Sources: Voices from the Open-Source Revolution.
Sebastopol, CA: O’Reilly & Associates, Inc.

EDWARDS, K. (2000). “When beggars become choosers.” First Monday, 5 (10)
http://firstmonday.org/issues/issue5_10/edwards/index.html.

FANO, R. M. (1967). “The computer utility and the community.” IEEE International Convention Record, 30-
34. Excerpts reprinted in IEEE Annals of the History of Computing, 14 (2), pp. 39-41.

FELLER, J. and FITZGERALD, B. (2000). “A framework analysis of the open-source software development para-
digm.” The 21st International Conference in Information Systems (ICIS 2000), pp. 55-69.

GHOSH, R.A. (1998). “Cooking-pot markets: an economic model for the trade in free goods and services on
the internet.” First Monday, 3 (3) http://firstmonday.org/issues/issue3_3/ghosh/index.html.

GHOSH, R.A., & PRAKASH, V.V. (2000). “The Orbiten Free-Software Survey.” First Monday, 5 (7)
http://firstmonday.org/issues/issue5_7/ghosh/index.html.

GONZÁLEZ-BARAHONA, J.M., ORTUÑO PÉREZ, M.A., HERAS QUIRÓS, P., CENTENO-GONZÁLEZ, J., & MATELLÁN-OLIVERA, V.
(2002). “Counting potatoes: the size of Debian 2.2.” 
http://people.debian.org/~jgb/debian-counting/counting-potatoes/.

JOHNSON, J.P. (2001). “Economics of Open Source.” Available at 
http://opensource.mit.edu/papers/johnsonopensource.pdf.

KOCH, S., & SCHNEIDER, G. (2000). “Results from software engineering research into open-source develop-
ment projects using public data.” Diskussionspapiere zum Tätigkeitsfeld Informationsverarbeitung
und Informationswirtschaft, p. 22.

KOLLOCK, P. (1999). “The economies of online cooperation: gifts and public goods in cyberspace.” In M.A.
SMITH & P. KOLLOCK (eds), Communities in Cyberspace. London: Routledge, pp. 220-239.

KOZULIN, A. (1990). Vygotsky’s Psychology: A Biography of Ideas. Cambridge, MA: Harvard University Press.
KRISHNAMURTHY, S. (2002). “Cave or Community?: An Empirical Examination of 100 Mature Open-Source

Projects.” First Monday, 7 (6) http://firstmonday.org/issues/issue7_6/krishnamurthy/index.html.

457

The Future of Open Source



KUWABARA, K. (2000). “Linux: a bazaar at the edge of chaos.” First Monday, 5 (3)
http:// firstmonday.org/issues/issue5_3/kuwabara/.

LAKHANI, K., & VON HIPPEL, E. (2000). ”How open-source software works: ‘Free’ user-to-user assistance.” MIT
Sloan School of Management Working Paper, 4117.

LAVE, J., & WENGER, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge
University Press.

LERNER, J., & TIROLE, J. (2000). “The simple economics of open source.” National Bureau of Economic
Research. NBER Working Paper No. 7600.

LJUNGBERG, J. (2000). “Open-source movements as a model for organizing.” European Journal of Informa-
tion Systems, 9 (4), pp. 208-216.

Mockus, A., Fielding, R., and Herbsleb, J. (2000). “A case-study of open-source software development: the
Apache server.” Proceedings of the 22nd International Conference on Software Engineering, pp.
263-272.

Mockus, A., Fielding, R., & Herbsleb, J. (2002). “Two case-studies on open-source software development:
Apache and Mozilla.” ACM Transactions on Software Engineering and Methodology, 11 (3), pp. 309-
46.

MOON, J.Y., & SPROULL, L. (2000). “Essence of distributed work: the case of the Linux kernel.” First Monday, 5
(11) http://firstmonday.org/issues/issue5_11/moon/index.html.

O’MAHONY, S. (2003). “Guarding the commons: how community-managed software projects protect their
work.” Research Policy, 32 (7), pp. 1179-98.

PEELING, N., & SATCHELL, J. (2001). “Analysis of the Impact of Open-Source Software.” QinetiQ Ltd. QINE-
TIQ/KI/SEB/CR010223. Available at
http://www.govtalk.gov.uk/interoperability/egif_document.asp?docnum=430.

RAYMOND, E.S. (1998). “The Cathedral and the Bazaar.” First Monday, 3 (3)
http:// firstmonday.org/issues/issue3_3/raymond/index.html.

TUOMI, I. (1999). Corporate Knowledge: Theory and Practice of Intelligent Organizations. Helsinki: Metaxis.
TUOMI, I. (2000). ”Learning from Linux: Internet, Innovation and the New Economy. Part 1: Empirical and

Descriptive Analysis of the Open-Source Model.” SITRA Working Paper, Berkeley, 15 April 2000.
TUOMI, I. (2001). “Internet, innovation, and open source: actors in the network.” First Monday, 6 (1)

http://firstmonday.org/issues/issue6_1/tuomi/index.html.
TUOMI, I. (2002). Networks of Innovation: Change and Meaning in the Age of the Internet. Oxford: Oxford

University Press.
TUOMI, I. (2003) “Open source for human development.” Paper presented at the EU-US Workshop on

Advancing the Research Agenda on Free/Open-Source Software. Brussels, 14 October 2002. Avail-
able at http://www.infonomics.nl/FLOSS/workshop/papers/tuomi.htm. 

TUOMI, I. (2004). “Evolution of the Linux Credits file: methodological challenges and reference data for
open-source research.” First Monday, 9 (6) 
http://firstmonday.org/issues/issue9_6/tuomi/index.html

VON HIPPEL, E., & VON KROGH, G. (2003). ”Open-source software and the ‘private-collective’ innovation model:
issues for organization science.” Organization Science, 14 (2), pp. 209-223.

458

Ilkka Tuomi



WEBER, S. (2000). “The political economy of open-source software.” BRIE Working Paper 140. 
http://brie.berkeley.edu/~briewww/pubs/wp/wp140.pdf.

WERTSCH, J.V. (1991). Voices of the Mind: A Sociocultural Approach to Mediated Action. Cambridge, MA:
Harvard University Press.

YAMAUCHI, Y., YOKOZAWA, M., SHINOHARA, T., AND ISHIDA, T. (2000). “Collaboration with lean media: how open-
source software succeeds.” CSCW ‘00, Philadelphia: ACM. pp. 329-338.

Biography

Ilkka Tuomi is currently working with the European Commission's Joint
Research Centre, Institute for Prospective Technological Studies, Seville,
Spain. He graduated in theoretical physics at the University of Helsinki, and
has a PhD on Adult Education from the same university. His recent research
has focused on innovation, open source, information society technologies,
and the knowledge society. Before joining the IPTS in 2002 he was a visit-
ing scholar at the University of California, Berkeley, where he conducted
research on the new dynamics of innovation networks, working with
Manuel Castells. From 1987 to 2001 he worked at the Nokia Research
Center, most recently as Principal Scientist, Information Society and Knowledge Management.
His most recent book, Networks of Innovation (Oxford University Press, 2002), studies Internet-
related innovations and the history of computer networking, the World Wide Web, and Linux.

459

The Future of Open Source


