Growth, Evolution, and Structural Change in
Open Source Software

[Position Paper]

Michael Godfrey and Qiang Tu
Software Architecture Group (SWAG)
University of Waterloo
Department of Computer Science
Waterloo, Ontario, Canada N2L 3G1

{migod, gtu}@swag.uwaterloo.ca

ABSTRACT

Our recent work has addressed how and why software systems
evolve over time, with a particular emphasis on software architec-
ture and open source software systems [2, 3, 6]. In this position
paper, we present a short summary of two recent projects.

First, we have performed a case study on the evolution of the
Linux kernel [3], as well as some other open source software (OSS)
systems. We have found that several OSS systems appear not to
obey some of “Lehman’s laws” of software evolution [5, 7], and
that Linux in particular is continuing to grow at a geometric rate.
Currently, we are working on a detailed study of the evolution of
one of the subsystems of the Linux kernel: the SCSI drivers sub-
system. We have found that cloning, which is usually considered
to be an indicator of lazy development and poor process, is quite
common and is even considered to be a useful practice.

Second, we are developing a tool called Beagle to aid software
maintainers in understanding how large systems have changed over
time. Beagle integrates data from various static analysis and met-
rics tools and provides a query engine as well as navigable visual-
izations. Of particular note, Beagle aims to provide help in mod-
elling long term evolution of systems that have undergone architec-
tural and structural change.

Keywords

Software evolution, software architecture, structural change, sup-
porting environments, open source software, Linux, GCC

1. EVOLUTION AND GROWTH IN OPEN
SOURCE SOFTWARE

Large software systems must evolve, or they risk losing market
share to competitors [5]. However, it is well known that maintain-
ing such a system is extraordinarily difficult, complicated, and time
consuming. The tasks of adding new features, adding support for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWPSE Vienna, Austria, September 2001

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

new hardware devices and platforms, system tuning, and defect fix-
ing all become more difficult as a system ages and grows.

Most studies of software evolution have been performed on sys-
tems developed within a single company using traditional manage-
ment techniques. With the widespread availability of several large
software systems that have been developed using an “open source”
development approach, we now have a chance to examine these
systems in detail, and see if their evolutionary narratives are signif-
icantly different from commercially developed systems.

Lehman’s laws of software evolution [5], which are based on
case studies of several large software systems, suggest that as a
system grows in size, it becomes increasingly difficult to add new
code unless explicit steps are taken to maintain the overall design.
Turski’s statistical analysis of these case studies suggests that sys-
tem growth (measured in terms of numbers of source modules and
number of modules changed) is usually sub-linear, slowing down
as the system gets larger and more complex [7].

Our analysis into the evolution of the Linux kernel [3] has led to
several surprising observations. First, we noted that the growth of
the kernel has continued at a geometric rate, even as it has surpassed
two million lines (MLOC) of source code. Our statistical analysis
indicates that a good model for Linux’s growth is

y=.21 x 2% 4+ 252 x = + 90, 055

y = size in uncommented LOC

z = days since v1.0

r2 = .997 (coefficient of determination calculated us-
ing least squares)

We measured system size in uncommented LOC; we noted that the
growth pattern is roughly the same for commented LOC, number
of source code files, and even t ar file size. Figure 1 shows the
graph of growth in terms of number of source files (the approach
favoured by Lehman et al.).

We hypothesize that Linux has been able to enjoy sustained super-
linear growth for a number of reasons:

e The use of an open source development process model has
permitted a large number of developers to contribute to the

project. The popularity of Linux combined with careful guardian-

ship over key parts of the kernel source has made for a reli-
able and well architected system as a whole.

! More formally, the Turski/Lehman growth model has been given

asy = y+ E/y* where y is number of source modules [7]; this
equation, when solved directly, can be proven to be approximately

y = (3Ex)'/3.

6000

5000 -»— Development releases (1.1, 1.3, 2.1, 2.3)
—— Stable releases (1.0, 1.2, 2.0, 2.2)

4000 f’/

3000 -

of source code files (*.[ch])

2000 M

-~
e

0 T T T T T
Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

Figure 1: Growth in the number of source code files of the Linux kernel (*. [ch]).

70.0
ol
o 60.0 e
o
-1
2
S 50.0 4 .
E -=—drivers
o ——arch
g ——include
S 40.0 e
£ —+—net
i) —fs
174
> —e—kernel
= 30.0 ——mm
:5.- —>—ipc
5 . —lib
o ——init
8200 \"'\\ —
o
)
<
&) "k""n
10.0 - =P o y v
0.0 - oy SRR E AR 2 3 RO RO MPRECWET O WRAARAR
Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

Figure 2: Percentage of total system LOC for each major subsystem (development releases only).

e As Figure 2 shows, more than half of the source code of the
Linux kernel consists of drivers. Drivers are largely indepen-
dent of each other and of the rest of the system. (However,
one should note that Figure 2 also shows that the rest of the
system is also growing at roughly the same rate as the system
as a whole — the percentage of Linux that consists of drivers
has increased only slightly.)

We also examined the growth of several other open source sys-
tems, including the VIM text editor, Eric Raymond’s f et chnai |
utility, and the GCC compiler suite. We have found that each sys-
tem has a different story to tell. For example, VIM’s growth seemed
to mirror that of Linux; that is, it has also been growing at a super-
linear rate for a number of years. However, a detailed analysis
suggests that VIM’s software architecture is decaying (e.g., the two
largest source files in the current distribution are named m scl. c
and m sc2. c). Our hypothesis as to why VIM is still able to en-
joy super-linear growth despite this decay is twofold: first, VIM
is still of a relatively tractable size ("150 KLOC), and second, its
architecture is that of a central global data structure being operated
upon by several largely independent subsystems.

In summary, we hypothesize that that successful open source
software seems to have a development dynamic — distinct from
that of most industrial software — that allows some systems to
grow at a super-linear rate for prolonged periods. We consider that
this phenomenon is worthy of additional investigation.

Future work in this project will include a detailed analysis of
the evolution of one of the major subsystems of Linux: the SCSI
drivers subsystem. We have chosen to examine this subsystem as it
is a collection of many small programs in widespread use that per-
form a similar task. This makes it a good candidate for a study of
parallel evolution. Additionally, we have noticed that code cloning
has occurred commonly throughout the history of this subsystem
making it a good case study on the effects on cloning in industrial
software and for providing validation on the effectiveness of exist-
ing clone detection tools.

2. EXPLORING ARCHITECTURAL
EVOLUTION WITH BEAGLE

We are developing a tool called Beagle? to aid software main-
tainers in understanding how large systems change over time. Our
goals for Beagle include that it should:

¢ have a flexible architecture, allowing for the addition of new
functionality;

e support both finely- and coarsely-grained analysis, plus pro-
vide infrastructure for moving between levels;

e support querying, navigation, and visualization of different
historical and architectural views;

e scale up to handle multiple versions of MLOC systems;

o explicitly address issues related to architectural evolution and
structural change, including
— extracting and modelling architectural-level relations,

— detecting and tracking how architectures change over
time, and

— providing support for locating program entities that have
“moved” between versions;

2We have named our tool after the HMS Beagle, the ship that Dar-
win sailed on.

e compare architectural snapshots of different versions of a
system (including support for pairs of versions as well as
multiple versions at once); and

« support identification and detection of change patterns[3].

Our implementation of Beagle consists of a DB/2 server popu-
lated with program “facts” (derived from static analysis and metrics
tools), together with the visualization engine from the PBS system
[1], and a Java-based infrastructure for querying, analysing, and
navigating the resulting information. Figure 3 shows a snapshot of
Beagle analysing the difference between two versions of GCC.

Of particular note is Beagle’s support for detecting how a sys-
tem’s architecture changes over time. For example, a software sys-
tem may be “refactored” by moving some functions to different
files, as well as by creating some new files and subsystems. A
naive analysis of the difference between two versions of a system
will typically indicate that there are many “new” program entities
in the newer version; however, many of these “new” entities are
actually present in the old version, but are contained in a different
file or subsystem, or have a slightly different name or parameter
list. Most tools for analysing software evolution that we are famil-
iar with make the assumption that the basic architecture of a system
will not change much, and provide little support if there is signifi-
cant change.

Beagle performs a smart analysis by examining “new” program
entities, and looking for likely matches within the old version of
the system. Beagle uses two approaches: a metrics-oriented entity-
based approach based on Kontogiannis’ work on clone detection
[4], and a relationship-based approach where candidates are sug-
gested if they engage in the same relationships (e.g., function calls)
with the same program entities. In this way, Beagle can aid a main-
tainer to build a more accurate model of how a system has changed
over time.

3. REFERENCES

[1] P. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Muller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Journal,
36(4), November 1997.

[2] M. W. Godfrey and E. H. S. Lee. Secrets from the monster:
Extracting Mozilla’s software architecture. In Proc. of 2000
Intl. Symposiumon Constructing software engineering tools
(CoSET 2000), Limerick, Ireland, June 2000.

[3] M. W. Godfrey and Q. Tu. Evolution in open source software:
A case study. In Proc. of 2000 Intl. Conferenceon Software
Maintenance (ICSM 2000), San Jose, California, October
2000.

[4] K. Kontogiannis. Evaluation experiments on the detection of
programming patterns using software metrics. In Proc. of
1997 Working Conference on Rever se Engineering
(WCRE' 97), Amsterdam, Netherlands, October 1997.

[5] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W. M. Turski. Metrics and laws of software evolution — the
nineties view. In Proc. of the Fourth Intl. Software Metrics
Symposium (Metrics 97), Albugquerque, NM, 1997.

[6] Q. Tuand M. W. Godfrey. The build-time software
architectural view. To appear in Proc. of 2001 Intl. Conference
of Software Maintenance (ICSM 2001).

[7] W. M. Turski. Reference model for smooth growth of software
systems. |EEE Trans. on Software Engineering, 22(8), August
1996.

[

@ : fe 3=t

| Address [@] hitp: flocalhost: BDED ser viet jcom. seb Formhander, EvolutionFormHandler

B¢
B

4 GCC 2841 (34M995) ALL

D Optimizer =5
B Parser 55]

odeGenerator 55
ampiler 55

-parser.c GCC 258 (1/241994 ;\"5‘
-parser h GCC 253 (1/241994 %’;
o-aUs-info.c GCC 2.0 (2/2/1992) fé
c-decle |
c-lang.c GCC 2.0 (2/211992)

c-parse.c GCC 2.0 (221992)

Measuring metrics of function "' decode

| Release | Line of Code |Lme of Comment ‘ Iz MNesting ‘ Cyclomatic | SComplex | DComplex ‘ Albrecht | Kafira
GCC 281

‘ (3/199%) ‘ 8 ‘ 0 ‘ 0 ‘ 1 ‘ 0 ‘ 0 ‘ 14 ‘ 144
GCC 142

‘ (3207195 1) 10 ‘ p ‘ 0 ‘ 1 ‘ 0 ‘ 0 ‘ 14 ‘ 400

Wiew Source Code
Wiew Function History

B

c-parseh

@ cExpS

B cpiclass.c GCC 263 (12001 o4y

cpldecl.c GCC 263 (12111934)

cpldecl2c GOC 263 (12M/1994)
cpferrfn.g GOC 2063 (12M1994) i
cpferror.c GCC 263 (12M1994) %
cplexcept.c GCC 263 (124188
cpfang-aptions h GCC 2.7.2 (11 I:B:
cplang-specs h GCC 27 2 (1 QE%

cpharse.c GCC 2.6.3 (1211994

Bl cpiparse h GCC 263 (124 N894

T8 cpitc GCC 2.6.3 (121/1934)
]--m cplzeatche GCC 263 (124199
18] except.c GOC 28,0 (1/1411938)
excepth GCC 280 (1141 938)
B told-const.c

add_double

all_ones_mask_p GCC 20020
build_range_check GCC 2.8.0

const_kinop GCC 2.0 (202492

decode_field_reference GCC
distribute_bit_expr GCC 202
div_and_round_double
encade

eval_subst GCC 222 (BA4N
fald

fold_convert

fold_range_test GCC 23.001,
fald_truthop GOC 2 3.3 (12026
force_ft_type

int_const_kinop GCC 28001

=

cpldeclh GCC 263 (1211934) |

cpimethod o GCC 263 (1271499 |

]7171@ Unknawn Zone (Mized)

Figure 3: A screenshot of the Beagle tool illustrating the differences between two versions of a subsystem of the GCC compiler suite.

