

Uniwersytet Łódzki

Wydział Ekonomiczno - Socjologiczny

Kierunek Informatyka i Ekonometria

Specjalność Informatyka Ekonomiczna

Błażej Borucki
Nr albumu 109432/s

Praca magisterska napisana
pod kierunkiem dr. Konrada Woźniackiego

Łódź 2006

The Economical Aspects of Free
Software and Open Source

Software Solutions in Modern
Business

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

2

1 Table of contents

1 TABLE OF CONTENTS ... 2

2 THE GENERAL OVERVIEW OF MY MASTER THESIS 3

3 AN INTRODUCTION TO FREE AND OPEN SOURCE SOFTWARE 4

3.1 HOW THE SAGA BEGUN .. 4

3.1.1 Meaning and extraction of terms 'Free Software' and 'Open Source

Software' .. 5

3.1.2 Free Software Foundation and Open Source Initiative presentation 8

3.2 COMPARISON OF FREE SOFTWARE AND OPEN SOURCE SOFTWARE LICENSES ... 9

3.2.1 Introduction .. 9

3.2.2 Licenses ... 10

4 WHY FREE/ OPEN SOURCE SOFTWARE .. 14

4.1 TECHNICAL ASPECTS .. 14

4.1.1 Reliability .. 15

4.1.2 Performance .. 19

4.1.3 Scalability ... 21

4.1.4 Security ... 22

4.2 SOFTWARE DEVELOPMENT ... 24

4.2.1 Advantages and features of dualism and parallelism in FOSS

development .. 25

4.2.2 Factors facilitating collaboration in development process 27

4.2.3 What kind of people and why do develop and maintain FOSS projects . 29

4.3 COMPARISON TABLE .. 34

5 FOSS BASED BUSINESS MODEL – RULES AND STRATEGY 36

5.1 PHILOSOPHY .. 36

5.2 RISK MANAGEMENT AND TCO ... 37

5.3 USE, MARKET AND MONOPOLY VALUE ... 39

5.4 DIFFERENCES IN PRODUCTS LIFE CYCLE ... 42

5.4.1 Alternative marketing forms ... 49

5.4.2 Support .. 51

5.5 MARKET SHARE AND COMPETITION ... 55

6 PROJECT DEVELOPMENT RELATIONS – EMPIRICAL STUDY 58

6.1 ASSUMPTIONS .. 58

6.2 SOURCE DATA AND METHODOLOGY OF MY STUDY ... 59

6.3 RESULTS .. 60

7 THE CONCLUSIONS OF THE THESIS .. 66

8 BIBLIOGRAPHY ... 67

9 APPENDIXES ... 69

9.1 THE LIST OF TERMS AND ABBREVIATIONS .. 69

9.2 LIST OF FIGURES .. 71

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

3

2 The general overview of my master thesis

This thesis investigates topic of advantages of Free and Open Source Software (FOSS)

solutions from the commercial users’ and developers’ point of view . During the last

couple of years FOSS community has transformed from the group of enthusiasts, who

were often regarded as anarchists and utopians, into a group of developers and users

wanted by every producer or software’ vendor. This paper focuses on differences

between development process of proprietary and non-proprietary software as well as

superiority of FOSS solutions over proprietary software during usage period as:

considering quality, ease of use, comfort of creation and usage of this type of software.

I have divided this desideratum into two parts: an introduction into economical point of

view of FOSS (chapters 3-5) and an attempt to empirical description of Free Software

development process (chapter 6).

First part of this thesis presents the history, some features and aspects of creating and

using non-proprietary software and already mentioned differences. The aim of this

chapter is to give an overview of Free/Open Source Software from the point of view of

subject, which wants to optimise the utility of software (whether it is a tool or the end-

product) along with continuous cost minimizing. In this part my opinions will be

presented as well as conclusions and ideas derived from existing data, observations and

researches.

Second part contains study with use of statistical data on projects hosted on

sourceforge.net site. In chapter 6 I tried to prove that such factors like number of

developers, number of downloads or traffic generated on message boards make

difference between process of developing Free Software from developing proprietary

solutions. Data for my research, was provided by faculty of Computer Science &

Engineering of University of Notre Dame. In fact this chapter is an empirical picture of

chapter 5.4, which describes differences in proprietary and non-proprietary software

products life cycle.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

4

3 An introduction to Free and Open Source Software

3.1 How the saga begun

Most of the “software consumers” are used to the fact, that they have to pay for every

single piece of application installed on their computers and the only thing they get is

program in its executable form. Not only the lack of source code restricts the software

usage, also licenses include clauses that forbid particular ways in which application

could be used. Such software - called proprietary software - may become very

inoperable in many specific environments like scientific labs or colleges. The creator of

non-proprietary software movement is Richard Stallman. He described himself
1
 as

inventor of EMACS
2
 editor and MIT Artificial Intelligence Lab employee who have

been working on, among other things, compilers, editors and debuggers.

In 1971, when Richard Stallman started his career most of software was proprietary, but

during scientific researches and projects Stallman and his colleagues used non-

proprietary software exclusively. It was a result of fact, that possibility of maintaining

1 Richard Stallman - The Initial Announcement ([27]).

2 EMACS is the extensible, customizable, self-documenting real-time display (text) editor.

Illustration 1: Richard Stallman

Source: “The danger of software patents” -

http://jimmysweblog.net/

http://www.gnu.org/gnu/initial-announcement.htmlRichard
http://jimmysweblog.net/

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

5

and developing the application - given by source code accessibility - hastens projects,

turns down its cost and increases application flexibility and feasibility. The problem

encountered by Richard Stallman was, that almost all of software that were used by

non-programmers was proprietary and owned not by users who bought it but by

companies, which sold it giving them right to prevent users from customizing

application to fit their needs. In the early 80's Stallman discovered that drivers for one

of the printers, which he was trying to use, has some critical bugs. These drivers could

not be corrected because of the license, which bans any changes in the code. He came to

conclusion, that creating hardware drivers by numerous groups of its users, would be

the much more effective. Furthermore, and at the end of the day drivers developed this

way should be more reliable than ones supplied by hardware vendor. It is said that

incident with non-free printer driver ultimately resulted in founding the GNU
3
 Project

(1984) and Free Software Foundation - FSF (1985).

3.1.1 Meaning and extraction of terms 'Free Software' and 'Open
Source Software'

The definition of the term 'Free Software' has it's origin in genesis of GNU Project. The

comparative definition maintained by Free Software Foundation indicates the proper

way of understanding meaning of the word 'free'. "Free software is a matter of liberty,

not price. To understand the concept, you should think of free as in free speech, not as

in free beer"
4
. What needs to be emphasize is the importance of verity of meaning of

word 'free'. Andrew Wheeler
5
 found in 'A Linux Today' posting

6
 very pertinent way to

express meaning of the word free – “Free, as in free speech, free beer, free cocaine (the

first one is on me)”.

3 GNU is the recursive acronym for GNU is Not Unix.

4 Free Software Foundation - The Free Software Definition ([6]).

5 Andrew Wheller - www.dwheeler.com

6 [[30].

http://www.gnu.org/philosophy/free-sw.htmlFree%20Software%20Foundation%20-%20The
http://www.dwheeler.com/
http://linuxtoday.com/news_story.php3?ltsn=2002-04%5b30%5d

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

6

By FSF definition any program is free software if its users have four freedoms:

freedom 0: "The freedom to run the program, for any purpose ().

freedom 1: The freedom to study how the program works, and adapt it to your

needs). Access to the source code is a precondition for this.

freedom 2: The freedom to redistribute copies so you can help your neighbour

freedom 3: The freedom to improve the program, and release your improvements to

the public, so that the whole community benefits. Access to the source

code is a precondition for this."

While referring to 'freedom of speech' one should not forget popular sentence from

Marx brothers show "...freedom of speech means that you can shout theatre in crowded

fire...". Each one of mentioned freedoms protects rights of author of original source

code - user freedom to use, change, and redistribute code does not confine authors and

other users' privileges and rights
7
.

Another commonly used term is Open Source Software (OSS). Definition of OSS is

maintained by Open Source Initiative (OSI) and states that open source does not mean

just access to source code but distribution terms of open-source software must grant

rights to redistribute (selling or giving away) software as component or derived work. It

says that the changed source code (if license permit distribution of such) must be

integral with original one, no persons, groups or fields of endeavour must be

discriminated and the license must not be specific to a product and restrict other

software. The term "Open Source Software" was used for the first time in 1998 by

people who belonged to free software community. The term Open Source refers to

7 This matter will be discussed in chapter devoted to licensing.

Illustration 3: GNU logo -

version 2

Source: www.gnu.org

Illustration 2: GNU logo -

version 1

Source: www.gnu.org

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

7

development methodology; free software is a social movement and these two terms

should not be used as synonyms. Unfortunately they are because of ambiguous meaning

of 'free software'. FSF emphasize two facts - that FS doesn't mean "Software you can

get for zero price" and that term "Open Source does not solve any problems, and in fact

creates ones"
8
. On the other hand Open Source Initiative states that equivocal meaning

of "free software" makes it misleading to the point where it becomes useless
9
. Each time

when FSF says that 'free' is for 'freedom' OSI reminds of fact, that some software is

called free because it costs no money. In OSI document "Why Free Software is too

Ambiguous" public domain software and Microsoft Internet Explorer are mentioned as

examples of software which is called 'free' (MsIE can be obtain for zero-price) but have

nothing in common with FS defined by FSF. In mid-2004 web-content analysis on

usage frequencies of the phrases 'open source' and 'free software' was made by the

President of OSI. In technology trade press and among developers usage of term OSS

exceed usage of FS by 90%, on general Web the usage ratio is 80% - 20%. Because of

equivocal meaning of 'free' 80% of Web searches gave false-positive result. Such results

may signify - how the OSI interpret them - that all efforts put by FSF to solve problem

of ambiguous meaning of expression 'free software' were ineffectual. FSF defend itself

stating, that it is better to use term ’free software’ because the 'freedom' is much more

than ability to look at source code - which stands behind phrase 'Open Source Software'

but agrees, that using term 'Free Software' makes some people uncomfortable. More

effective way to present idea of FS is to show practical benefits rather than describe

ethical issues, responsibilities and 'aspect of freedom'. According to Richard Stallman

his decision to start GNU project was based on similar spirit that can be found in phrase

attributed to Hillel:

“If I am not for myself, who will be for me?

If I am only for myself, what am I?

If not now, when?"
10

Effect of such statements often infers arguments that free software social movement is

rather ideological and because of fact that OSI focuses on technical matters OSS is

associated with adaptable and commercial features of non-proprietary software.

Reasons why such approach is completely vicious will be analysed in further part of this

8 Free Software Foundation - Why ”Free Software” is better than ”Open Source'” ([7]).

9 Open Source Initiative - Why "Free" Software is too Ambiguous ([23]).

10 Open Sources ([5]) - part devoted to Richard Stallman.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

8

chapter, dedicated to comparison of OSS and FS licenses. In the first place I am going

to present Free Software Foundation and Open Source Initiative.

3.1.2 Free Software Foundation and Open Source Initiative
presentation

On 27
th

of September 1983 Richard Stallman sent initial announcement
11

 of GNU

project to two newsgroups (net.unix-wizards and net.usoft) containing explanation why

he must write GNU and what it will become. In Stallman's scheme GNU has been

described as UNIX compatible system consisting of kernel and some utilities needed to

write and run C programs, which will be given away free to anybody who can use it

(there was no commentary on meaning of term 'free' in Stallman's post). His purpose

was to be able to share any program he likes with other people who like it too and to use

computers not being forced to use software, which cannot be preceded that way
12

. In

FSF's overview of the GNU project
13

 one can find note on why name "GNU" was

chosen for this Free Unix project:

 "The name GNU was chosen because it met a few requirements; firstly, it was a

recursive acronym for GNU's Not Unix, secondly, because it was a real word, and

thirdly, it was fun to say (or Sing)."

Before FSF was founded by Stallman he made necessary steps to protect his future

work from his current employer (MIT) claims. He quit his job at MIT AI lab in January

1984 because Institute could have claimed to employee’s own work. Stallman begun

writing non-proprietary software and he did not want it be used in an unintentional

manner. Afterwards Stallman published The GNU Manifesto - a document amplifying

initial announcement. Stallman has added the information on GNU, ways of

contributing to project, benefits from project and refutation to objections to GNU

goals
14

. To promote ideas mentioned in the initial announcement and manifesto in 1985

Free Software Foundation (FSF) was founded. Foundation encourages developing and

uses free software as well as it causes a political and ethical freedom issues in software

11 Richard Stallman - The Initial Announcement ([27]).

12 Richard Stallman - The Initial Announcement ([27]).

13 Free Software Foundation - Overview of the GNU Project ([8]).

14 Richard Stallmann - The GNU manifesto ([28]).

http://www.gnu.org/gnu/initial-announcement.htmlRichard
http://www.gnu.org/gnu/initial-announcement.htmlRichard
http://www.gnu.org/gnu/gnu-history.htmlFree
http://www.gnu.org/gnu/manifesto.html

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

9

usage to become more extensively known
15

. In 1998 from free software community new

institution emerged - Open Source Initiative (OSI). Some people began using the term

'open source software' (OSS) instead of 'free software' to diversify their approach to

non-proprietary software. The separation itself was a reaction to Netscape

announcement about plans to make source code of Netscape Communicator available

for free licensing purposes
16

. The term 'open source' came out on February 3
rd

 1998

when the session on new 'free software' strategy was held. According to OSI papers

representatives of 'Foresight Institute' (Todd Anderson and Chris Peterson), 'Linux

International' (John Hall and Larry Augustin) and 'Silicon Valley Linux User's Group'

(Sam Ockman) were presented among others.

They decided to abandon attitude of FSF and make their new viewpoint more pragmatic

and focused on business aspects of developing and maintaining non-proprietary

software. The OSI become alternative to FSF on non-proprietary software market, even

FSF competitor giving developers and users possibility to use non-proprietary software

without freedom.

3.2 Comparison of Free Software and Open Source Software
Licenses

3.2.1 Introduction

As I have already mentioned, term 'Open Source Software' is frequently used as 'Free

Software' alternative, which causes the misinterpretation of the philosophy and goals of

OSS and FS contributors. In practice, most of software which fill requirements of one

15 Free Software Foundation description([9]).

16 Netscape Announces Plans To Make Next-Generation Communicator Source Code A Viable.... –

([20]).

Illustration 5: The Open Source

Initiative Logo

Source: www.opensource.org

Illustration 4: The Free Software Foundation

Logo

Source: www.gnu.org

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

10

definition also meets the other one but 'open source' not always gives users the freedom

to do anything they want with the code (as long as what they need to do is conformable

to the piece of software license). Licenses, which cover Free Software, Open Source

Software and proprietary software shows approach and purpose of developers. In

reality, the majority of end users rather ask about reliability, performance, ease of use

and other technical aspects of system/application software than what determined its

authors to prefer one license to others. That is how Richard Stallman explains

differences between FS and OSS:

“Free software and open source are the slogans of two different movements with

different philosophies. In the free software movement, our goal is to be free to share and

cooperate. We say that non-free software is antisocial because it tramples the users'

freedom, and we develop free software to escape from that. The open source movement

promotes what they consider a technically superior development model that usually

gives technically superior results. The values they cite are the same ones Microsoft

appeals to: narrowly practical values.”

3.2.2 Licenses

A license in general - found on Collaborative International Dictionary of English
17

 - is:

 License: an authority or liberty given to do or forbear any act, especially,

a formal permission from the proper authorities to perform

certain acts [...] which without such permission would be

illegal.

Collaborative International Dictionary of English

The licenses, which I am going to analyse, mean the terms and conditions for use,

reproduction and distribution of software and/or source code. A typical license is

composed of several parts: its proprietor - in most cases it is a company, institution

person (group of people), introduction or preamble - this part usually describe contents

of license in general and defines terms used in license body. The most important

sections are those which cover rights, obligations, liabilities and warranty, which refer

to authors and/or end users.

17 The Collaborative International Dictionary of English v.0.48

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

11

Free Software Foundation maintains and encourages to use GNU General Public

License
18

 (GNU GPL). The GNU GPL preamble articulates importance of freedom

given to users of free Software. This license do not covers any another activities than

copying, distributing and modifying the program - in GNU GPL term 'program' reefers

to any program or its derivatives. As FSF states in GNU GPL FAQ that the crucial

aspect of free software is a cooperation between users, that means sharing fixes and

improvements with other users. To achieve this goal users are free to change the

original source code or its derivatives. Changed program may be used privately even by

commercial organizations without obligation to release new version. But if someone

decide to share modified version the GPL requires such person to make the modified

source code available to the public under GPL. To fulfil all GPL requirements modified

files must carry notices stating who and when changed them. If the program is

interactive it must display announcement including copyright notice and statement

about warranty - if there is warranty provided by author or not. When the program is

distributed under GPL the source-code must be given with executable version or the

author must offer a complete machine-readable copy of the corresponding source code

for a charge (which cannot be higher than cost of distribution). The GPL states that "any

attempt [...] to copy, modify, sublicense or distribute the Program [under different

license] is void, and will automatically terminate your rights under this License". In fact

if user do not want to accept the license, do not have to do that and can still use the

program, however such procedure causes in loosing rights to copy, modify or sublicense

the program. Because user does not sign the license, these actions signify acceptance of

it. There is another version of GNU GPL called GNU Lesser General Public License

(GNU LGPL). The word 'lesser' states that users' rights are less protected by the license

and developers are less competitive on software market. The LGPL is used for licensing

libraries for two reasons:

 Because the program or source code released under LGPL can be utilize in

proprietary software LGPL gives prospects to encourage larger group of people

to use given solution and fix a new standard. That is why developers - and at the

end of the day users - avail of Lesser GPL while releasing libraries.

18 Free Software Foundation - “GNU Public License” ([10]).

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

12

 More often LGPL is used when the 'Free'
19

 library has the same application as

widely used non-free library, in such situation it is aimless to limit library to free

software only.

It may be a little bit dangerous to use LGPL for wider adaptation and the license

preamble states to be careful with lesser version because of its disadvantages. Both –

GPL and LGPL – include section about warranty, which states, that program released

under *GPL is distributed with hope that will be useful but without any warranty – the

program and its source code comes “AS IS”. De facto 98% of proprietary software

licenses do not states licensor liability but when source code is available to the public

chance for abuse is much lower than in case of proprietary software. In general to make

program a free software (and to make sure, that all works derived from such program

will be free software too) method called “copyleft” is used. This term takes it origin

from “copyright” which is used – as states FSF – to take away users freedom so when

the copyrights guarantee freedom the opposite term has been adapted. The minor feature

of copylefting is to grant rights “...to use, modify and redistribute the programs' code or

any program derived from it but only if the distribution terms are unchanged”
20

.

Another very important and widely used license is Open Software License (OSL) which

“applies to any original work of authorship (the ‘Original Work’) whose owner (‘the

Licensor') has placed the following notice immediately following the copyright notice

for the Original Work: Licensed under the Open Software License version 2.1”
21

.

The main difference between GPL and OSL is that OSL grants rights to prepare

derivative works, copy and distribute both – the original and derived - program and/or

source code to the public under OSL. It seems to give the very same freedom to users as

GPL but in fact it does not. Where GPL makes certain that users can modify and

redistribute modified program under the same license, the OSL leave the licensor

admissibility to forbid some actions like the Trolltech's Q Public License (QTPL).

19 free as in free speech, not free beer :)

20 Free Software Foundation – www.gnu.org/licenses/licenses.html.

21 Open For Business – Philosophy ([22]).

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

13

This Norwegian company grants rights to copy and distribute unmodified (the whole

program package must remain unchanged) form of software code and to distribute ones

modifications in form absolutely separated from the original program (like patches)

under the QTPL. Only “initial developer” can distribute change versions of program

with modifications made by any third party. Trolltech's programmers have created qt

libraries – the C++ libraries for cross-platform gui programming, successfully utilized

in K Desktop Environment project – which are fully commercial, proprietary product

for Microsoft Windows and open source for other operating systems and to increase the

quality of its products makes developing and maintaining processes more controlled. It

is really efficient approach, but if such company – the “initial developer” - bankrupt or

simply shuts down itself, program under license like QTPL could be taken over by

creditors or be left without maintainers. To guarantee that the users and developers

community contribution won't be lost, Trolltech and KDE developers team made an

agreement. It states, that if Trolltechs won't be able to continue maintaining qt libraries

project on the same conditions as now, libraries would become Free Software.

The fully different approach is represented by the BSD License, which allows

everybody to use original or modified source code for any purpose – even as a part of

strictly proprietary software. Thanks to that, many good solutions can be generally used

in different types of software, but BSD license caused fears of free-software community

extinction in result of using free software in proprietary projects for wide range without

rewarding its contributors. Because of that, BSD license is becoming less popular

recently.

Illustration 6: Qt logo

Source: www.trolltechh.com

Illustration 7: KDE logo

Source: www.kde.org

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

14

4 Why Free/ Open Source Software

Starting to write my thesis I asked this question: why customers should choose FOSS

solutions for their home and business and why some developers contribute to such

projects. Answer for the first part is much easier because of some factors, which can be

easily measured or at least classified as desired or not.

4.1 Technical aspects

Features which are connected with Free Software, are not only ideologically fair from

end user point of view. I will try to discuss some fundamental attributes of a computing

system/ software design and its' implementation in Free/ Open source Software

solutions. The RAS – Reliability, Availability and Serviceability are features regarded

as ones, which describe software quality in the widest way.

 Availability: degree to which a system suffers degradation or interruption

in its service to the customer as a consequence of

failures of one or more of its parts.

The Free On-line Dictionary of Computing

In case of proprietary software the knowledge on internal influences in application is

unavailable, each and every proprietary application works like black box
22

 due to the

way it is distributed – binary version of program covered by license prohibiting at least

all activities which may help in analysing program internal logic. The software package

covered by GPL can be analysed and – if modifications are required – changed before

used for strategically purposes. End users have possibility to report bugs or fix them. It

is strictly connected with Serviceability, which is the ease with which corrective

maintenance or preventative maintenance can be performed on a system. Higher

serviceability improves availability and reduces costs of service and maintenance.

Proving that Free and Open Source Software has higher serviceability factor is nearly

needless because of the fact, that proprietary software can't be serviced by any third

party users/ developers who would like to, due to lack of access to source code and

proper technical documentation. More on maintaining FLOSS reader can find in

22 Black box - an abstraction of a device or system in which only its externally visible behaviour is

considered and not its implementation or "inner workings" ('The Free On-line Dictionary of

Computing').

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

15

chapters 4.2, 4.2.3 and 6. In this chapter I mention some tests and experiments I have

found in David A. Wheeler writing.

4.1.1 Reliability

Reliability as third part of RAS is an attribute of any system that consistently produces

the same results, preferably meeting or exceeding its specifications. If users put for

example value of 10 into the black box and it returned 42 it is supposed to return 42

every time 10 is given as an argument ceteris paribus and this is the key to measure this

issue.

 Reliability:. the ability of a system or component to perform its required

functions under stated conditions for a specified period

of time.

The Software Engineering Institute- Terms Glossary

Many companies interested in FOSS made run tests and done some experiments to

check whether or not Linux and other Free Software solutions are reliable. IBM run a

series of extremely stressful tests for 30 and 60 days periods
23

 and after these tests IBM

claimed that tests demonstrated that “the Linux kernel and other core OS components

are reliable and stable ... and can provide a robust, enterprise-level environment for

customers over long periods of time”. When Blur Research
24

 had Windows NT and

GNU/Linux running on relatively old machines for 12 months Windows NT crashed 68

times and GNU/Linux only once. The measured availability of former was 99.26% and

99.95% of the latter. This very interesting experiment showed, that GNU/Linux is much

better in avoiding and containing hardware failures. The Reasoning
25

 compared 6

implementations of TCP/IP – in GNU/Linux kernel, three as a parts of commercial

general-purpose operating systems and two were embedded in commercial

communication equipment. The company used automated tools to look five kinds of

defects in code:

 memory leaks,

 null pointer dereferences,

 bad deallocations,

23 An article about mentioned test [13].

24 http://gnet.dhs.org/stories/bloor.php3.

25 The article about Reasoning test - [31].

http://www.businesswire.com/cgi-bin/f_headline.cgi?bw.021103/230420300The

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

16

 out of bounds array access

 uninitialized variables.

The results were at least surprising, because the embedded systems should have the best

possible implementations of such protocol due to fact that their main aim is to enable

communication. In GNU/Linux kernels 81,852 lines of source code (SLOC
26

) 8 defects

were found - (SLOC), resulting in a defect density rate of 0.1 defects per KSLOC.

Three proprietary operating systems (two were versions of Unix) had between 0.6 and

0.7 defects/KSLOC and the two embedded OS’es were 0.1 and 0.3 defects/KSLOC. Of

course some of these defects were not sensus stricto problems. In case of Linux 4 bugs

have no effect on the running code. This test showed also how many bugs were repaired

by given product developers – in case of GNU/Linux it was only one bug while

proprietary implementations have 235 ones. It gave repair defect rate of 0.013 and 0.41

defects/KSLOC. The CEO of Reasoning - Scott Trappe explained this result by that the

FLOSS model encourages users not to report bugs – as it happens in case of proprietary

software – but tracking down and fixing them, developers works in different way too –

more on that matter you can find in chapter 4.2. Another factor, which influences

reliability, is code quality. The 'Communications of the ACM' has published article
27

, in

which authors recap their study of 6 millions lines of source code of several programs

over time with use of maintainability index
28

. Recapitulating results of their study they

made a statement that FOSS

“code quality appears to be at least equal and sometimes better than the quality of

[proprietary software] code implementing the same functionality. [...] May be due to

the motivation of skilled OSS programmers[...]. Code quality seems to suffer from the

very same problems that have been observed in [proprietary software] projects.

Maintainability deterioration over time is a typical phenomenon... it is reasonable to

expect similar behaviour from the OSS projects as they age.”

26 SLOC – Source Lines Of Code; KSLOC – thousands of Source Lines Of Code.

27 Samoladas, Stamelos, Angelis, Oikonomou – “Open Source Software Development Should Strive for

Even Greate Code Maintainability” ([26]).

28 maintainability index has been chosen, by Software Engineering Institute, the most suitable tool for

measuring the maintainability of systems.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

17

The results of Netcraft's ranking
29

, done during November 2005, of the most reliable

hosting companies shows, that FOSS solutions answer the commercial purpose. In the

first ten: three GNU/Linux and three FreeBSD web sites, two on Windows and one on

Solaris were found (one of sites which qualified to top ten was set on unknown server).

It may be interesting to take into consideration a report of longest running systems by

average uptime
30

. Here is the recap of the longest running systems focused on operating

systems and web servers:

Operating system Web server No. of occurrences in the top

50

BSD/OS Microsoft-IIS 3

BSD/OS Apache 24

FreeBSD Apache 16

Windows Microsoft-IIS 3

Windows Apache 1

IRIX Apache 1

Table 1: OSes and webservers in the top 50 of the 'Sites with longest running systems by average

uptime in the last 7 days (generated on 22nd march 2006)

Source: www.netcraft.com

The real-world reliability can be described using three factors:

 solutions has to be delivered predictably and consistently;

 reliable services has to be delivered efficiently;

 one can keep control over complex environment and 'keep it simple.

In November 2005, Security Innovation published 'Reliability: Analyzing Solution

Uptime as Business Needs Change' – the report founded under the research contract

from Microsoft. They have compared Microsoft Windows 2000 and SUSE Linux

Enterprise Server 8. During 12 months they simulated

“the evolution of e-commerce company, that has been changing the business

requirements while continuing to maintain security through patch application. At the

end of the [1 year] period, both systems are then transitioned to the more recent

29 The Netcrafts reports - [18, 19].

30 Discussed results descend from report generated on 22
nd

 March 2006

http://uptime.netcraft.com/up/today/top.avg.html.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

18

versions of their respective operating systems, Windows Server 2003 and SuSE Linux

Enterprise Server 9. Security patches were applied in 1 month increments, while new

business requirements appeared at three month intervals. The experiment was

conducted by three expert Windows administrators on the Windows side and three

expert SuSE Linux administrators on the Linux side.”

 Results show clearly, that Linux solution does not meet business requirements because

of too complex components dependencies which made 'painless' update impossible.

Grater number of patches that were needed to be applied to GNU/Linux (187 to 39 for

Windows) cause delays and in some cases administrators were unable to complete

upgrade due to cascading packages dependencies. Third thing that made GNU/Linux

unreliable for business solutions is, that the administrator – the only one who was

successful in meeting all requirements – used components which were not directly

supported by system vendor (SUSE/ Novel). Report says: “while the configuration did

meet the functionality requirements, the administrator is now on his own to resolve

potential future system failures.” Let's forgot that this experiment was sponsored by

Microsoft, and assume that it was perfectly unbiased. There are three arguments, that

intrude while reading summary of this report:

 Assuming that GNU/Linux administrators were experienced ones it is quite

interesting, why the Internet news groups and support boards were not full of

questions about applying patches. When I was reading Security Innovation

document, it was my first thought – why all users and administrators do not

complain over and over again of upgrading their systems.

 Another argument is connected with time devoted on patching. GNU/Linux

servers were always praised because of possibility of upgrading even the most

substantial components of system without the necessity of rebooting machine

and the number of patches was always treat as advantage of system which is

continuously improved and fixed.

 Last argument is an answer for objection, that administrator becomes 'on his

own' because he use third party components during update. Administrators have

always community support and using third party components when they are

more useful than 'official' ones is one of the main ideas of Free Software.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

19

This experiment and its' authors conclusions shows only that to a certain degree Free/

Open Source Software and proprietary software must not be compared because

applications of these two types have absolutely different origins and design philosophy.

4.1.2 Performance

The performance is not the most important feature of business application. Customers at

first want business processes to be carried over in correct ways . Only when they are

sure, that everything is as it should be, then they focus on performance issues.

 Performance:. The way in which a machine or other thing performs or

functions: behavior, functioning, operation, reaction,

working.

The Software Engineering Institute- Terms Glossary

 Performance benchmarks are very sensitive to the assumptions and environment, so the

best benchmark is one set up to model given setting. I could again mention that it is

much easier to find the bottlenecks in running system with full access to the source

code, but instead of that I will focus on other FOSS advantages that make application

much more effective keeping the high reliability. The strong argument that this is the

right approach is that real performance boost can be obtained only when all parts of

given system are fully compatible with each other and developers lay stress upon proper

parts of application. The right proportions in the performance to maintainability trade-

off can be easily lost -during application tuning, for example clear code which can be

easily modified is much more important in any GPLed application, than hyper effective

algorithm which is comprehensible only for small number of coders. Even in

proprietary projects code maintainability is often more important than it's productivity –

besides in most cases the bottlenecks are found not in the core algorithms but there,

where data is transferred between different media (like selecting data from database

before it is used in program flow). Here are some examples of how FOSS solutions

prove that they can fit excessive business requirements pertaining performance:

 in February 2003 scientists broke the Internet2 Land Speed Record using

GNU/Linux
31

 - they sent 6.7 GB of data from California (using Red Hat Linux)

to Amsterdam (European team used Debian GNU/Linux) at speed of 923

31 Dean Katie - "Data Flood Feeds Need for Speed" ([3]).

http://www.answers.com/topic/behavior
http://www.answers.com/topic/functioning
http://www.answers.com/topic/operations
http://www.answers.com/topic/reaction

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

20

megabits per second in 58 seconds. One can say that it was not because they

have been using GNU/Linux distributions, but the fact is that record has been

broke with use of Free Software;

 benchmarks comparing Sun Solaris x86 and GNU/Linux found many

similarities except web operations where GNU/Linux has obtained two times

better result than Solaris
32

;

 In IT Week article - Samba 3 extends lead over Win 2003
33

 - from October 2003

Roger Howorth recapitulate results of tests run by IT Week Labs which shows

that the then version of Samba
34

 “has widened the performance gap separating it

from the commercial Windows alternative”. In overall Samba 3 were performing

2.5 times faster than Windows Server 2003 and could handle at least 4 times as

many clients as Microsoft solution before performance began to drop off.

32 Bourke Tony – “Sun Versus Linux: The x86 Smack-down” ([2]).

33 Howorth Roger - "Samba 3 extends lead over Win 2003 Roger Howorth" ([12]).

34 Samba is a free suite of programs which implement the Server Message Block (SMB) protocol – in

other words it is a file and printing server software. The home web site of Samba project is:

http://www.samba.org.

Illustration 8: Samba outperforms Win2003.

Source: IT Week

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

21

4.1.3 Scalability

According to the definition scalability tells us how well a solution to some problem will

work when the size of the problem increases.

 Scalability:. the ease with which a system or component can be modified

to fit the problem area.

The Software Engineering Institute- Terms Glossary

The simplest example of estimating given application scalability is giving an answer to

the question if given software package/ system will work if the project/ business

become larger. Investing in cheaper system destined for operating in business

environment (where requirements are not relatively high) is very dangerous, because

along with the system's growths demands are growing too – in most cases meeting new

requirements without costly modifications is impossible. Switching to completely new

system is not a good idea either – process of migrating data and training all employees

is expensive and risky. Some scalability issues are connected with optimising source

code for given platform or adaptation and in this area Free Software is unbeatable.

Obvious example is growing company which main systems can be modified without

changing for example GUI or functionalities which are not affected by changes in

business activity. Another mentioned instance of scalability problem is porting

applications with the same core code to completely different hardware, when

functionality is one thing but the cost of software in case of many types of devices is a

very peculiar issue. The most universal software package I have ever heard about is

GNU/Linux. There are one-floppy versions, which are used as routers software.

GNU/Linux can be run even on old, obsolete hardware – there is no need to use the

cutting edge hardware technologies for many purposes. Of course such machines – old

or new – do not have to be PCs. GNU/Linux and NetBSD have been already ported to

over a dozen different chipsets (like x86, Intel Itanium, ARM, Alpha, IBM AS/400,

SPARC, MIPS, 68k, Power PC). GNU/Linux is commonly used for parallel processing

with use of Beowulf architecture
35

. Even the very process of developing FOSS can scale

to develop large systems. The RedHat Linux 7.1 has over 30 million SLOC – it stands

35 Beowulf – (1) the legendary hero of an anonymous Old English epic poem composed in the early 8th

century; he slays a monster and becomes king but dies fighting a dragon;

(2) multi-computer architecture which can be used for parallel computations. Frequently composed of

one tie-server.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

22

for 8'000 man-years and over 1 billion USD to implement this distribution.

4.1.4 Security

Quantitatively measuring security is very difficult. It is said that FOSS systems are

often superior to proprietary ones

 Security: the ability of a system to manage, protect, and distribute

sensitive information.

The Software Engineering Institute- Terms Glossary

Before I compare the security aspects of FOSS and proprietary solutions I would like to

mention an example of Coca-Cola company, which has the very secret recipe of

preparing their soda. The interesting thing is that that formula is not secured by any

patent. The security if the Coca-Cola company is successfully protecting it with use of

internal procedures since 50s. The Coca-cola recipe is an example of the fact that

commonly used procedures are not necessary the best possible. What Coca-Cola has

done was resolving that if recipe must remain as secret nobody should know it.

Software developers deal with similar situation – the commonly used technique is to

hide security bugs from public as long as it is possible and fix (or not) in the meantime.

The problem with hiding such bugs is that even they were not found by testers, they can

be found during everyday usage or crackers
36

 attack and exploited, it is just a matter of

time, after that all application system users are exposed to attacks and losses before – if

ever – appropriate patch becomes available. It would not be a problem, if only software

developers found vulnerabilities before people who are interested in breaking security

on a given system. Unfortunately in most cases such vulnerabilities are found after, or

rather because of successful attack. In my opinion testing is biased because of the fact,

that tests are prepared by the same people who design and develop programs. Nobody

can require they think out situation which in fact code they have designed or wrote does

not support. It cause that proprietary software has never an undetected error. Everyday

practice gives enough feedback to conclude that trustworthy software developed in

traditional – proprietary – manner is expensive and rarely customisable. FOSS is free

from mentioned disadvantages just because of full availability of the source code. Bugs

36 Cracker - an individual who attempts to gain unauthorised access to a computer system. The term was

coined ca. 1985 by hackers in defence against journalistic misuse of "hacker". (from definition in

'Jargon file' by Eric S. Raymond).

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

23

are found faster because more people can use programs/ systems and examine its code

in the same time. Bugs are patched more frequently even without need of engaging

main developers team. On 18
th

 January of 2005 vnunet.com informed
37

 about results of

test made by non-profit IT organisation Honeynet Project which shows that it takes, on

average, 3 months to break security of freshly installed GNU/Linux. Iain Thomson – the

article author – remind that in equivalent tests which were run in 2001 and 2002 it took

crackers only 72 hours. Result shows that distributions of GNU/Linux are ready to use

after installation without fear of systems being compromised, in contrary 'fresh' –

unpatched – version of Microsoft Windows lasts only few hours.

Symantec Internet Security Threat Report published on March 2006
38

 compares some

proprietary and non-proprietary packages in context of security. Below, in tables, I’ve

included some results of Symantec’s tests.

Configuration Average time needed to

compromise

Microsoft Windows 2000 Server - No patches 1:16:55

Microsoft Windows 2000 Server – Service Pack 4 1:32:08

Microsoft Windows 2003 Web Edition – No Patches 4:36:55

RedHat Enterprise Linux 3 Web – Unpatched Not compromised

Table 2: Time to compromise web servers.

Source: Symantec Corporation

Configuration Average time of

compromising

Microsoft Windows XP Professional 1:00:12

Microsoft Windows 2000 Professional – No Patches 1:03:18

Microsoft Windows 2000 Professional – Service Pack 4 4:36:55

SuSE Linux 9 Desktop Not compromised

Table 3: Time to compromise desktop computers with firewalls deactivated

Source: Symantec Corporation

37 http://www.vnunet.com/actions/trackback/2126530.

38 Symantec Internet Security Threat Report - Trends for July 05 – December 05 – Volume IX ([29]).

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

24

4.2 Software development

The development is the process of analysis, design, coding and testing software, some

will say that development includes creating documentation too. The more popular

project is, the more people contribute their work to it and the very process of

development becomes much more different from 'traditional' – proprietary software

development standards. Common factor in definitions of software engineering is, that

systems are built by teams and such team participants must be able to communicate.

Another factor is the need of documentation necessary to develop, use and maintain

programs. A single developer or small team which decide to create new piece of

software covered by one of GPL compliant license can decide to use any of life cycle

model
39

 that can be effectively applied. When the project begins to attract new

participants
40

 it is impossible not to introduce communications channels and developing

paths, which secures progress in project development. When ideas and new code start to

come from outside of core development team, most of the simple collaboration methods

become insufficient. In some cases it is easy – there are methodologies developed to be

used during FOSS life-cycle, some non-profit organisations – like sourceforge.net -

facilitate the process of collaboration. However not every application should be

developed in 'full bazaar mode' when everybody can contribute and main stream of

development is based on the community members collaboration. Especially business

and science projects shouldn't be treated this way – the requirements which follows the

agreement between developers team and the orderer, have the highest priority, but may

undergo a change under influence of 'outside' ideas. For example, if the project

development process was controlled by official project documents, new types of those

should be created. No matter which type of life-cycle given project represents, some

changes have to be led in respective phases. First and the most important modification,

which must be done, is switching to any incremental or quasi-incremental
41

development model to simplify implementation of new ideas, features and requirements

modifications.

39 More on life-cycle models can be found in “Software Requirements: Analysis and Specification” by

A.M. Davis ([4]) and “Requirements Engineering: Processes and Techniques” by G. Kotonya and I.

Sommerville ([14].

40 By participants I mean developers and users who contribute to the project in any way possible

(coding, giving a feedback on bugs, coming with new ideas, etc.).

41 For example if project was developed during waterfall process at least feedback loops should be

added.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

25

4.2.1 Advantages and features of dualism and parallelism in FOSS
development

As I have already mentioned in some situations development process should be dual and

parallel for the purpose of filling customer/ orderer requirements and at the same time to

take advantage of community support and give the project chance to 'live its own life'.

There are two main ways of creating software in such dual and parallel system:

 First one is used by some Open Source Software producers like Trolltech does –

the official 'product' can be changed, patched etc. only by its vendor. Those who

want to make a modification can create only plug-ins but not modify and

redistribute the source code. Of course Trolltech developers do implement

community members ideas and such plug-ins in official versions of their

products and thanks to that it remain conformable to the company policy. Such

procedures can't be introduced to GPL covered application because GPL secures

freedom to redistribute source code.

 Second way of dual development is to develop one version of application which

can be supplied to the orderer and second version which is developed without

any restrictions. It seems not to differ from Trolltech's model described above

but in this case community, core developers and their employer benefit from the

very best practices of Free Software development without loosing touch with

projects main objectives.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

26

Now I will describe what activities should be incorporated into individual life-cycle

phases during FOSS development. It’s important to mention, that there are not required

in case of standard development process but dual development won't be effective

without them. The requirements analysis should involve the revision of ideas and

features submitted by users and developers from outside of core developing group. It is

highly possible, that someone will find better way of doing something what has been

already coded, or will bring brilliant idea neither orderer not developers have thought

about. Normally, after some iterations, project falls into decline phase where it can pass

away or new requirements are set (and practically new development process starts).

Thanks to FOSS developers approach it becomes more dynamic and it stays in the

maturity phase because of its main features, which are added continuously. The blue

curve shows add-ons state over time. Such approach is useful only when this phase is

repeated in each iteration. If risk analysis is done during projects life those who make it,

has to take into consideration, that additional functionality – acquired thanks to outside

contributions – can increase developed application functionality. On the other hand,

such additions could decrease application performance, it’s level of customisation,

Illustration 9: Life cycle product

Curve no.1 – proprietary software project

Curve no.2 – 100% finished FOSS project

Curve no.3 – FOSS project, requirements redeveloped during decline phase

Source: Own elaboration

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

27

reliability - such synthesis should be a part of requirements validation phase. Assuming

that this way added functionality is absolutely desirable during risk analysis, somebody

has to decide if extending test area and implementing idea or even ready code into given

project is cost effective. On the other hand, before unit tests developers should inculcate

modifications which follows from testing done by users who gave feedback on that.

Such testing should not replace internal unit and system tests because of different

system/ application structure (but they are valuable source of hints on programs

behaviour).

4.2.2 Factors facilitating collaboration in development process

The very process of development does not differ in case of dual-parallel and standard

developing. There are some factors, like modularity, documentation, infrastructure, plan

of releases, which make collaboration much easier. In 1962 Kristen Nygaard and Ole-

Johan Dahl designed SIMULA 1 and created foundation of Object Oriented

Programming (OOP). From that moment, the idea of creating smaller parts and building

complicated system with use of them develops. This idea becomes popular not only in

the field of programming, many system and applications are designed as set of blocks

which are also called modules, plug-ins/ add-ons etc.. GNU/Linux kernel is created and

developed as small core program and many additional modules, which face many

functionalities –from hardware drivers to security issues. It won't be easy to develop

such system as one program, when many people work on different parts of application/

system it is easier to create universal interface responsible for unification of system and

its plug-ins than rebuilding whole system. System based on modules is easier to

customize for end user and – what is the most important issue I think – it is easier to

develop modularised application by programmers. If one wants to create new

functionality has only to learn how modules work in given system and how they should

be created, nothing else. It is much more difficult to create developers community

around project on the stage, when it’s development requires newcomers to learn how

the system works as a whole and in details. The main disadvantage of managing

modularised project is a must of verification if submitted modules really service new

and useful functionality. The most widely known projects based on modules are

GNU/Linux, OS Commerce, TYPO3, Apache, PHP, Magnolia, eZ publish, Cocoon
42

.

42 Here you can find more information on mentioned projects:

OS Commerce – http://www.oscommerce.org ;

http://www.oscommerce.org/

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

28

Documentation can improve collaboration. It is obvious – it answers questions that new

developers and users ask. There are many types of documents which are commonly

used in connection of FOSS projects: manuals, tutorials, feature lists, change logs,

guidelines, end-user documentation, etc. Well documented application is easier to

maintain and to develop. Users should be aware of fact, that there is project

documentation, so they won't ask questions, which are already answered in prepared

documents and they familiarize themselves with the project as a whole. Maintaining

modularised code, creating and providing high quality documentation as well as

maintaining the project need infrastructure, which enables communication between

community members, makes application and documentation accessible for users,

provides tools, the process of development and maintaining would be impossible

without. Sourceforge, for instance, provides many services which are essential for

FOSS projects, but the phenomenon of mature and successful projects moving to other

collaboration platforms, often to ones created for given project, is perceptible. It follows

fact that it does not matter if we are analysing proprietary or FOSS project development

– the more complicated project is, the more 'sophisticated' tools are need by it’s

developers. Last factor I want to shortly described is a release management. I have

noticed two main approaches dominant on the FOSS market – of frequent releases and

one representing theory of reaching huge milestones at the end of each cycle. A good

example of the latter is one of GNU/Linux distributions – Debian. New releases were

often postponed because developers want the end product to be stable and reliable as

much as it can become nearly 'bullet-proof' – Debian is the only GNU/Linux

distribution which has the ISO certificate and it is said that is the best one on the

market. I can not say that such policy is not good, but too long periods of time between

releases, may result in market share loss. Of course during three years between two last

Debian releases continuous support for previous version has been maintained, updates

for all components were kept, new applications were included to test and development

releases. But on the other hand, publishing new, stable and 'complete' release has greater

influence on both current and potential users as much as on developers and marketing &

TYPO3 – http://typo3.com ;

Apache – http://www.apache.org ;

PHP – http://www.php.net ;

Magnolia – http://www.magnolia.info ;

eZ publish – http://ez.no;

Cocoon –http://coccon.apache.org.

http://www.uzupelnic.com/
http://www.apache.org/
http://www.php.net/

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

29

social impact on the market. The contrary approach can be found in many minor

projects, which are released with new version number after each patch or even cosmetic

modification. Such policy helps to control changes and keeps users up to date with

current version, but can easily discourage and/or bore them. The PHP
43

 is an good

example – security patches were published often (at least they were in early releases,

now there is no need to do that) but releases of completely new versions (like from 4 to

5) are done only due to introducing considerable functional changes and improvements.

4.2.3 What kind of people and why do develop and maintain FOSS
projects

The community of people who contribute their work to Free and Open Source Software

projects is not composed of good Samaritans, who spend their time just to create tools,

which can be used by individual and institutional users. Developers and users, who

often have share in development process, have their own motivations and aims. Some

are intrinsic but most are not. To describe contributors motives better, I am going to

describe the structure of the community. I base my conclusions on results of 'Survey of

Developers'
44

 published on June 2002 by The International Institute of

Infonomics
45

.Most of developers who are share of the sample is younger than 27. One

third was between 16 and 21 old and one third was between 21 and 25 age old, when

started developing FOSS.

43 More info on PHP can be found at http://www.php.net.

44 Survey was done between February and April 2002 in cooperation with Berlecon Research GmbH

(Berlin). More info and the original report can be found on http://www.infonomics.nl/FLOSS/report/.

45 The International Institute of Infonomics is a department of University of Maastricht (The

Netherlands).

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

30

Another thing is that 60% of developers live in a kind of partnership but only 17% of

developers have children.

Illustration 10:Curent Age of OS/FS Developers

Source: Free/ Libre and Open Source Software: Survey and Study. Part 4: Developers

Illustration 11: Civil status of OS/FS Developers

Source: Free/ Libre and Open Source Software: Survey and Study. Part 4: Developers

http://www.kde.orgfree/
http://www.kde.orgfree/

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

31

To try sketch the possible motives which follow current behavioural standards, I need to

describe educational

Level of education share of the sample (%)

Elementary school 2.0

High school 17.0

A-Level 8.0

Apprenticeship 3.0

University – Bachelors 33.0

University – Masters 28.0

University – PhD 9.0

Table 4: Level of education of FOSS Developers

Source: Free/Libre and Open Source Software: Survey and Study. Part 4: Developers

 and professional (employment) background of FOSS developers

Profession share of the sample (%)

Software engineer 33.3

Engineering (other than IT) 3.2

Programmer 11.2

Consultant (IT) 9.8

Consultant (other sectors) 0.6

Executive (IT) 3.2

Executive (other sectors) 0.3

Marketing (IT) 0.2

Marketing (other sectors) 0.0

Product sales (IT) 0.1

Product sales (other sales) 0.0

University (IT) 5.0

University (other sectors) 4.3

Student(IT) 15.8

Student(other sectors) 5.1

Other (IT) 5.2

Other (other sectors) 2.7

Table 5: Professional structure of FOSS developers

Source: Free/Libre and Open Source Software: Survey and Study. Part 4: Developers

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

32

The group of employed is about 79% (65% are employed and 14% self employed) of all

developers questioned during the survey. Students are the separate group of 17% of all

developers and are not treated as unemployed who are in the 2% share. Another group

of 2% are those, who are changing the job – generally not working at the moment when

they were asked. This results show, that people who spend their time working on FOSS

projects do not perform that because they have to, or they do not know what to do with

their spare time. The level of education and employment field of most of FOSS

developers indicate, that they are finding some values they have not discovered in

private/ professional life. The answer for question “why somebody, who is a software

engineer, devote some of his free time to non proprietary projects – in most cases not

being paid for that?” can be found in recap of surveyed developers expectations from

other members and community as a whole and reasons they join and stay in FOSS

community for.

Reason share which join (%) share which

stay (%)

learn and develop new skills 78.90 70.50

share knowledge and skills 49.80 67.20

participate in a new form of cooperation 34.50 37.20

improve OS/FS products of other developers 33.70 39.80

participate in the OS/FS scene 30.60 35.50

think that software should not be a

proprietary good

30.10 37.90

solve a problem that could not be solved

by proprietary software

29.70 29.60

improve my job opportunities 23.90 29.80

get help in realizing a good idea for a

software product

23.80 27.00

limit the power of large software companies 19.00 28.90

get a reputation in OS/FS community 9.10 12.00

distribute not marketable software products 8.90 10.00

make money 4.40 12.30

Table 6: Share of developers who join and stay in the FOSS community because of particular

reasons

Source: Free/Libre and Open Source Software: Survey and Study. Part 4: Developers

Most of developers do they job for different reasons than money and these reasons can

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

33

be divided into two types – intrinsic and extrinsic. The most important determinants

should be considered from the point of view of developers expectations and their

origins. The most of developers claim, that they do participate in FOSS community

because they want to learn and develop new skills. Two most numerous groups are the

software engineers and IT students – they can do FOSS for fun along with rising their

skills level and at the end of the day they are improving current and future job

opportunities or use newly acquired skills in they paid work. Solving problems that

could not be solved by proprietary software is a very good example that the idea of

bazaar developing proves true. Some task cannot be finished with use of software,

which comes without source code, especially in the various science fields – it can be

assumed basing on the educational and professional structure of the sample. 27% of

questioned developers have joined the community to get help, on the other hand nearly

40% of sample claimed they contribute to improve others' programs – it cannot be said

why members of former group need help either members of the latter one contribute

their time to the FOSS projects
46

, but both groups surely reach their aims (otherwise

they would not stay in the community). Summarizing – the three most important

determinants, which make people to contribute their work to Free/ Open Source projects

are:

 intellectual curiosity
47

,

 a need to solve developers own programming/ software related needs
48

 promise of higher future earnings
49

.

These determinants can be easily derived from the fact, that most of developers are

young, educated man who are affiliated in some way to IT sector. Nearly 60% of the

sample is single or live alone – this figure gives partial answer to the question why 35%

declare, that they stay in FOSS community to participate in it. Cristina Rossi and

Andrea Bonacorsi in their elaboration
50

 point at 'fun factor' and ego boosting incentives

accompanying the process of developing software. Two of them is the sense of

46 Lerner, J., Tirole, J. - “The Economics Of Technology Sharing: Open Source And Beyond” ([16]).

47 Boston Consulting Group - “Boston Consulting Group/OSDN Hacker Survey” ([1]).

48 Lakhani, von Hippel - “How Open Source Software Works: 'Free' User-to-User Assistance” ([15]), pp

923-943.

49 Free Software Foundation - "GNU Public License" ([10]).

50 Rossi, C. and Bonacorsi, A. - “Intrinsic motivations and profit-oriented firms in Open Source

software. Do firms practise what they preach?” ([25]).

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

34

belonging to the community which is based on (mentioned in chapter 5.3) gift culture

and economy and collective identification enhanced by presence of an enemy – the

proprietary software producers and vendors. Figures in Table 6 demonstrate, that such

factors play a substantial role in developers view of private and professional world.

4.3 Comparison table

 proprietary software non-proprietary software

error detection

process

Done during preprepared test phase,

based on test scripts and test data.

Some test are done by the beta testers

who are not directly connected with

the developing company but this

method bear different security

matters. Taking into consideration

number of bugs in end versions this

method is untrustworthy.

Bugs are detected during

testing phase but tests are

mostly done by persons who

are only interested in getting

100% working application.

Test are done with use of data

with is highly probable to be

the real – 'production' data.

Proven reliability of FOSS

products shows this method

efficiency.

bug fixing after

testing phase

Can negatively affect sale of given

product and other products of the

same producer. The cost of a patch

can be high depending on magnitude

of patch and the method of main

product distribution.

Can be done even by the end

user, patching or releasing new

version is not connected with

additional cost (except of

software created in result of an

agreement which covers case

of handling bugs detected in

'100% working' versions.

end user availability

to foresee application

behaviour in

changing business

environment

Based only on experience of other

users, but some licences forbid

publishing negative opinions about

covered product.

Product's scalability can be

verified with use of test paths –

which can be well prepared

due to source code availability.

Users can easily obtain

knowledge on the cost of

widening application

functionality and

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

35

 proprietary software non-proprietary software

implementing additional

features.

methods of

preserving end user

security

The source code and features

responsible for security are protected

from unauthorised access, which

simply means that no one can make

use of them.

The whole source code is

available to anyone who want

to make use of it. Thanks to

that bugs are detected faster

because users can not only test

application in everyday usage

but also analyse the source

code and test chosen pieces of

code.

sources of ideas

during and after

main development

processes

Implemented features can follow

particular customer needs or needs of

possibly the most numerous group of

potential customers. Once the

product is released implementing

new features is connected with cost

bore by either producer or customer.

Ideas can be implemented

without regard to development

phase by project main

developers or developers/ users

who need given feature.

methods of

preserving end user

interest in the

product

End user must get what he/ she wants

but some functionality/ features must

be always missing to tie customer to

the software vendor/ maintainer for

as long as it is possible.

Improving software in addition

to be always step before end

user demands or bring project

to the end when all

functionality, which can be

needed is implemented and

100% working.

methods of

encouraging

developers/ reasons

developers do

develop

Mainly financial profits. Mainly to learn and develop

new skills, share knowledge

and skills, improve job

opportunities.

Table 7: Comparison of proprietary and non proprietary software

Source: Own elaboration

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

36

5 FOSS based business model – rules and strategy

5.1 Philosophy

Along with increasing availability of software as a tool, it becomes less differentiating

for business. Bruce Perens
51

 described two forms of technology used in business:

differentiating and non-differentiating
52

. Software is mostly used as a tool which makes

companies more efficient and in most 'fields technology non-enabled' companies simply

wouldn't have a chance to make any business. As long as company is not a software

manufacturer its customers do not care what office suite or database engine company

use. It does not matter for one who runs business if competitors know what software

tools he use because such tools – from 'off-the-shelf' software packages to software

created during in-house or contracted development process - are available for everyone.

That is why paying each time to buy different software package for the same

functionality is pointless. Software development process is different from any other.

One who works in building, can not copy and paste foundations, even if during the

construction identical buildings are going to be build. The very same problem occurs

during proprietary software development. Imagine, that a designer need two different

graphical tools, just because one has couple features not implemented in the second one

and contrariwise. Excluding that couple of distinctive features first package parallel the

second, and at the end of a day company, which employs that designer pays twice for

most of the functionality. Another thing is the must of creating suitable environment to

run mentioned two products – simply by paying for the operating system. The most

popular one includes some tools needles for a designer, but one can not buy it without

them. Modern business came to the point, when companies pay many times for the very

same products, pay for unwanted software, pay for another software tools to cut some

functionality in others, pay for employees' trainings and an the end: pay people to

maintain systems which grows larger and larger just because of proprietary software

vendors strategy and market philosophy.

51 Perens Bruce - “The emerging economic paradigm of Open Source” ([24]).

52 The software have differentiating role when it does make an economical or strictly business difference

if the competition use the very same software package. Software tools chosen by given company

influence its’ competivity. An example of differentiating software tool can be a scoring system used

by creditors. The non-differentiating role has software which is used for general purposes, like – for

example – text editing. At the end of the day it does not matter which office package is used – end

products – documents will be the same.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

37

The Open for Business Project philosophy mentions rules which enables 5 'E's':

 1. Ease of Cost,

 2. Ease of Installation,

 3. Ease of Customisation,

 4. Ease of Integration,

 5. Ease of Use.

Rules presented above summarize briefly the main ideas of FOSS. Sharing the code

enables developers to collaborate during processes of software creation, usage and

review. Not only code is shared, but ideas and overall knowledge on development tools

too – it means that customers and users can give feedback to software creators to get

useful product and programmers can minimize the code size and work needed to

implement given functionality. Use the main idea of sharing the software and not

reinvent the wheel but reuse existing solutions and components in new applications. The

conclusion is: the best way to satisfy the biggest group of software users and developers

is to concentrate on what everyone wants and do everything to get it as cheap and fast as

it is possible.

5.2 Risk management and TCO

When choosing right software for commercial usage one should be concerned in

production factors Total Cost of Ownership (TCO). The cost of maintaining software,

training users, customizing 'off-the-shelf' packages is often much higher than the cost of

buying it, or hiring contracted developers to create needed applications. There are two

most common paths, which company can choose while selecting software – use of 'off-

the-shelf' software and hire developers to create needed applications. Both bring

different problems and expenses. The 'off-the-shelf' software represents about 25% of

all software development
53

 that is why it has to satisfy needs – be capable of serving a

many different purposes well - of the largest possible group of customers to be

profitable for its manufacturer – which/who usually bore whole cost of development of

such package. In fact only 10% of typical package meets the need of customer, residual

53 In that report [21], "Packaged Software" represents 24.6% of the industry. All other industry sectors

that represent computer programming, including all of Computer Programming Services, Computer

Integrated Systems Design, Computer Processing and Data Preparation and Processing, Information

Retrieval Services, Computer Facilities Management Services, and some sub-categories of Software

Publishing represent the remainder.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

38

part remains useless, but greater functionality means making work given application for

a particular purpose more complicated. The latter path does not bring in such problem –

ordered software includes only the very needed functionality and process of training

users is much less complicated, because stuff have to know only how to use

implemented functions and do not need to know which part of functionality should not

be used. Such customized software restricts the number of distractions during every day

work and possibility of problems caused by superfluous functionality. In-

house/contracted projects are efficient in about 70% but the risk of project failure

reaches 50% - invested money can never bring any profit. On the other hand, this is the

only way of acquiring software, which protects customer differentiation. When

company decide to choose solution based on FOSS, the most efficient way is to

customize existing FOSS application. The superiority of such solution is obvious – it's

much faster and cheaper to pay developers only for changing source code, than for

creating every feature from the very beginning. Another important factor that should be

concerned, before company decide to use given software package, is application

maturity. There is no difference if it is proprietary or non-proprietary tool – more

mature means lower risk of bugs, implementing/customizing failure, better support.

Because of the fact, that FOSS application development is different from other types of

software, development some indicators of maturity may differ. Such indicators can be

found on www.sourceforge.net
54

 how long piece of software is in development, how

many project leaders and developers are working on in. Activity of project developers

and feedback that they give to the users community is very important. Users activity –

for example on projects boards – can be use to estimate projects popularity to check, if

the application meets users requirements in real life situations. Project maturity may be

considered as application quality – more numerous and active developers and users

group means better support and faster development which means higher reliability,

better performance and more secure end product. In terms of proprietary software such

characteristics would indicate quality level of application. Next aspect of software,

which makes it useful, is compatibility. Proprietary applications are often certified to be

54 SourceForge.net is the world's largest Open Source software development web site, hosting more than

100,000 projects and over 1,000,000 registered users with a centralized resource for managing

projects, issues, communications, and code. SourceForge.net has the largest repository of Open

Source code and applications available on the Internet, and hosts more Open Source development

products than any other site or network worldwide. SourceForge.net provides a wide variety of

services to projects we host, and to the Open Source community.

http://www.sourceforge.net/

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

39

compatible with one another. Smaller producers often make their software in

cooperation with huge ones just to make sure that their product is fully compatible with

other applications or operating system. The open standards used in the world of FOSS

development make non-proprietary applications more interoperable than its proprietary

equivalents – in most cases such fact won't be formally certified. It means, that before

choosing particular package, it should be precisely checked, if it meets requirements

related to compatibility and interoperability. When company acquire needed software,

the question is how much it will cost from the moment of application selection.

Software have to be installed, users trained, problems which occurred during everyday

usage solved, requirements may changed that leads to two essential for altering original

code questions: documentation and source code. In terms of implementing FOSS

application institution should make sure that source code is available in form, which

enables developers to change it easily – properly formatted and commented. Whatever

company is going to customize application by changing the source code or not chosen

application should be well documented. In spite of common view that hackers
55

 do not

like to write documentation most of FOSS programs come with a lot of documentation.

This is an effect of developers will to make their code and application useful and

popular. Another positive aspect of well documented source code is lower risk in

situation, when developers abandon their project and nobody will decide to continue

their work. The main costs of maintaining FOSS application (cost of support, training,

customisation, lack of contingency) can be easily reduced just by use of well known

good programming practices (like keeping integrity of code and documentation, and

participating in developers and users community).

5.3 Use, market and monopoly value

Software, like any other product, has its value. In terms of economy, we can distinguish

three types of value: use, market and monopoly. By definition the monopoly value is the

one, which is set by the sell party, which has exclusive control of given good market.

The monopoly value of software is the indicator of application value generated when

given application is unavailable for competitors. As I have mentioned, software as a tool

has non-differentiating role in business - as long as software manufacturing is not

55 Hacker – [Jargon File v0.4] - One who programs enthusiastically (even obsessively) or who enjoys

programming rather than just theorizing about programming.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

40

considered – almost everyone has access to commercially used applications. The

monopoly value of such tools is convergent to zero, only in-house or contracted project

give advantages of monopoly value, but cost of such solutions and risk connected to

them is very high. Another type of value is the market one, which tells customers what

is the real value of the product on the competitive market – the market with more than

one seller and buyer in it. Competition – at least in theory – brings to situation when

every products' price is placed in the point, where curves of demand and supply

intersect. Of course every seller want to earn as much as it is possible and each user

rather get needed software without a charge. That leads us to the use value of product –

the economic value of application as a tool that means “the amount of money that is

considered to be fair equivalent for something else”. The problem arise when customer

pays for the software package which is in 90% useless for him/her – popular

applications are not sold for 10% of their real value - adapting such strategy would lead

to bankruptcy. Customer is the one who covers all lids, which follow inconveniences of

retail software production.

The main idea of every cost management theory is to cut costs everywhere where it is

possible. So why to pay for the generally accessible software which in approximately

90% consist of unwanted and - in fact - useless functionality, or why anyone should

invest money and time into project which can fail with 90% probability. If most of the

software have got zero monopoly value why not to cooperate and share cost of creating

application – like many companies do. From the customer point of view a lot of

software only supplement different product and buyer do not want to pay for it, so

supplier bore the whole costs of creating such program – the best example are hardware

drivers. The consequence is higher price or less quality of main product and in fact the

one who pays is customer. First solution is to create some software in cooperation with

another company – like IBM and DELL do – but it brings some difficulties which

cannot be resolved without fund flows, so at the end of the day product costs less but it

could cost much less if some new factors – like increased spendings on logistics -

wouldn't arise. Fact, that software became a generally available tool, should be a

consolation for its users. Because of factors mentioned in this chapter and intricate legal

issues it is not. FOSS reveal as a remedy for the most matters, which gnaw milieu of

institutional software users. There is no monopoly, nor market value of Free/Open

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

41

Source Software, but the costs generated by these values does not exist neither. One can

call zero monopoly/market value a price, which is pay by FOSS users – in terms of free

market this 'price' is pay by producers of proprietary software. Considering given

application the most important question is how much users save and producers lost due

to using Free and Open Source Software by former ones. If theoretical market value of

FOSS would be taken in consideration users save much more than producers/developers

and vendors lose, but we can't do such calculation – rules of developing and vending

proprietary software make it impossible to create software of such great merit as FOSS

distinguish itself. Full customisability make Free Software the best solution for

companies which do not want to spend money on features they do not need. Every

GPLed tool can reach the highest utility level in given conditions thanks to possibility

of changing and redistributing application source code. The effective decision can be

hiring developer who will be responsible for adapting existing FOSS application to

institution's needs. Such programmer have only to change existing source code, add

some new functionality, but time and money are not wasted for coding things that were

coded by somebody else. Using application, which is coded and tested by somebody

else, is the fastest way to create own program. Good idea is to redistribute changed

application, or contribute developer's changes to given program users/developers

community. Besides of putting something back into proverbial pot there is huge chance

that somebody will use, test, improve 'our' code and make it available the same way we

did. Earlier our solution becomes generally available grater is the chance for attracting

more users and developers - this is the first mover advantage. The first company which

GPLs their software has incomparable advantage over it's competitors. More developers

who are interested in developing certain project will work on it and more stick to it for

good. Why it is good when the biggest possible group of people is involved in a project

I will discuss in chapter 6. Giving a summary of FOSS economical value is simple. It's

features cause lack of monopoly and market value – because of being generally

available in most cases for zero cost - but also create a phenomenon of product which

can became very effectual. FOSS effectiveness comes from users freedom of sharing

ideas, code and contributing work to the very same project. A sample company can save

– and even profit - in couple realms by switching to Free Software. Firstly FS and most

of OSS can be downloaded from the Internet free of charge. Full customisation – even

achieved in result of employing programmer – makes much more effective and cheaper

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

42

training of users and application usage. Instead of buying couple of programs institution

can pay only for implementing some features into existing code. With good approach

that effect can be gained without spending even a single penny – making developers and

programmers interested in project can create a community that will develop and support

software used in sample company.

5.4 Differences in products life cycle

In 80's and 90's situation on software market caused growth of FOSS popularity and

hasten its evolution. Now Free Software is so common and popular, that some roles in

business model have changed. Different product structure means different structure of

its producer and vendor. Let's have a quick look at typical product's life cycle phases:

 proprietary software non-proprietary software

INTRODUCTION PHASE

Price High due to customers will to pay

premium for possibility of using

new product.

Zero or fixed in case of

contracted or in house

development processes.

Promotion Limited and focused on attracting

specific group of customers.

Focused on attracting only those

who need the given product or

those who will find interesting

contributing to the project. In

case of contracted/in house

project limited.

Distribution Direct or limited. Through channels known by

potential

users/customers/developers

Sales Limited to small team of highly

skilled salesmen with good

knowledge of market.

Unlimited - product is available

on the Internet. In case of

contracted/in house project it

might be limited.

Development Focus on time to market and

uniqueness.

Focused on adding new features,

extending functionality of

existing ones and bug fixing

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

43

 proprietary software non-proprietary software

Manufacturing High expenditure for new

production capacity.

Non applicable

Support Direct factory support.

Engineering involvement is

required.

Mainly technical, the aim is to

attract new developers.

Training Focused on new product features,

benefits, differentiation,

pricing and functionality.

Focused on showing new users

benefits from using the product

and receiving the feedback –

opinions on new product

Technology New and innovative. The one – covered by GPL or

GPL compliant license - which

suits given enterprise the best.

Competition New and innovative. Limited.

May be offering different solution

for the same

problem or application.

There may be no competition, or

existing solution or its part can

be used in new project or became

a external part of it.

Market share Low overall. Low overall

GROWTH PHASE

Price 10% of market level. – 10% if the

brand name is weak and

competition is severe, + 10% if

sales are good and

competition does not have similar

product to offer.

Zero or fixed in case of

contracted or in house

development processes

Promotion Heavy. Targeted promotions,

trade shows, direct mail, sales

seminars, articles and press

releases.

Articles covering product's

functionality, focused on

informing potential users that

such application has been

recently made available.

Distribution Highly skilled. Focused channels

with strong technical skills

Through channels known by

potential

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

44

 proprietary software non-proprietary software

if needed, complementary

products and services.

users/customers/developers (the

Internet, magazines)

Sales Everywhere possible. Retail

shops, telephone, Internet.

Unlimited - product is available

on the Internet – may be found

on more websites. In case of

contracted/in house project it

might be limited.

Development Complete development. Market

penetration is sustained with

variations and improvements of

the product.

Main and the most wanted

features should become stable.

Bug fixing and adding new

functionality.

Manufacturing Addition of capacity and

automation.

Non applicable

Support Phone support. On the Internet – covers usage in

general. First line in bug fixing

process.

Training Transition to newer version of

product.

Includes forms of

implementation into existing

applications, usage in general

and ways of developing.

Technology Newer and leading edge. The one – covered by GPL or

GPL compliant license - which

suits given enterprise the best.

Competition New appearing worldwide. No competition or competitors

have different goals.

Market share High growth. All out market

warfare with competitors.

Increased mainly on private

users market and FOSS

experienced corporate users.

Corporate users who want to

switch from proprietary

application covering similar

functionality are waiting for

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

45

 proprietary software non-proprietary software

stable version which reliability

has been proved true by the

former ones.

MATURITY PHASE

Price Stable. Zero or fixed in case of

contracted or in house

development processes

Promotion Focused on reliability, quality,

predictability, new

enhancements.

Focused on reliability, quality,

predictability, availability and

usage statistics (covering

individual and corporate users)

Distribution Many distributors, alternative

channels, offshore sales.

Through channels known by

potential

users/customers/developers (the

Internet, magazines)

Sales Direct sales focused on hi-

volume, high profit.

Unlimited - product is available

on the Internet – may be found

on more websites. stable version

are published in magazines. In

case of contracted/in house

project it might be limited.

Development Focused on cost reductions. Bug fixing and adding new

functionality.

Manufacturing Focused on increasing yield and

productivity.

Non applicable

Support Local channels lead support. On the Internet – covers usage in

general. First line in bug fixing

process.

Training Competition differentiation. Includes forms of

implementation into existing

applications, usage in general

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

46

 proprietary software non-proprietary software

and ways of developing.

Technology Ageing. The one – covered by GPL or

GPL compliant license - which

suits given enterprise the best.

May be changed easily.

Competition Well established. No competition or formed.

Market share Predictable market share every

year. Limited opportunities

for quick gains.

High growth. Depending on how

the project will fill users

requirements from the end of this

phase market share will drop or

slowly rise.

DECLINE PHASE

Price High compared to the demand. Zero or fixed in case of

contracted or in house

development processes

Promotion Limited – no promotion or

advertising efforts.

Focused on reliability, quality,

predictability, availability and

usage statistics (covering

individual and corporate users).

If project has high market share

can be presented as stable leader.

Distribution Use of existing channels. Through channels known by

potential

users/customers/developers (the

Internet, magazines)

Sales Maintenance. Unlimited - product is available

on the Internet – may be found

on more websites. stable version

are published in magazines. In

case of contracted/in house

project it might be limited.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

47

 proprietary software non-proprietary software

Development Focused on cost reduction. None.

Manufacturing No capital expenditures,

outsourcing.

Non applicable

Support Phone support. On the Internet – covers usage in

general.

Training None Includes forms of

implementation into existing

applications, usage in general.

Technology Old and outdated. The one – covered by GPL or

GPL compliant license - which

suits given enterprise the best.

(Even if is outdated... so what ;))

Competition Limited. No competition or formed.

Market share Shrinking fast. Depending on project status on

the market it can slowly increase

or decrease rapidly.

Table 8: Product life cycle phases [First two columns based on product life cycle management]

Source: Own elaboration

Because of FOSS quality applications can't be sold as proprietary software is, I would

like to make a simple experiment and compare – in general - FOSS and proprietary

applications life cycle. The very first phase is project introduction – the longest and the

most expensive. Every piece of software has its design, each developer analyses users

needs, every application is coded, tested, improved, etc. Of course company, which

decide to create its product during traditional – cathedral – development process, has to

pay for these activities. Process of creating application can be started because such

program is wanted by customer or there is niche on software market or developer or

group of them decide to create their own package for fun. The most risky situation is the

second ,one when the task is to create 'off-the-shelf' package, which functionality will

cover needs of the biggest group of potential users possible at the lowest cost. It is

nearly impossible to get to know, what features average user want to use, because of the

cost of reaching large group of people interested in piece of non-existent part of

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

48

software. During contracted/in-house development process, detailed specification is

given by customer. Any change, that has to be made after phase of requirements

analysing is finished is the most money and time consuming way. Average cost of

changing part of program requiring repeated need analysis is equal to 82 cents for each

dollar spent on changing program in overall. In case of FOSS is needless and

uncommon to publish final release on the spot GPLed application which contains only

main 'engine' and some features is enough. FOSS developers publish their code

frequently just to give other people (users, potential developers) chance to work with

new application, read code and express their opinion - thanks to that mediocre project

has the most wanted features. Such way of working gives solution to problem of coding

and testing. Another – more interesting from economical point of view – difference

between proprietary and non-proprietary software is fact, that developers are not

directly pay by 'customers' (users). When FOSS is developed during contracted

developing process only ones who are immediately employed by client are paid directly.

Introduction phase is not only a development process, it includes marketing and

logistics – in other words sketching overall strategy. Main differences in these parts are

a result of 'zero' market and monopoly value of applications, which come covered by

GPL or GPL compliant licenses. There is no need to set price – software come for free

(except contracted projects). There is no need to care of sales team – it's free, or

customer already has bought it – that fact also levels the problem of competition in

traditional understanding
56

. Another thing is when the application comes with source

code competing is aimless. Joining the project or contributing to it is always more

efficient than starting new one. Creating derived works – if the license does approves

that – is not a good idea when such derived program differs from the original one only

in few aspects. The real use value is a factor taken into consideration when individual or

corporate customer makes choice of application to use. Because most projects are found

by it’s end users on the Internet the key to success on FOSS market is finding the way

to inform the most possible group of people that given project exists. Mentioned vortal

“sourceforge.net” hosts circa 130'000 of projects and is the most popular (and in fact the

best) place, where people look for and find software, which supports their needs.

Of course not everyone will risk and use an early version of given application. During

introduction and growth phases program will be used only by those, who exactly know

56 see chapter 5.5 for details.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

49

what they are doing. Usually they are developers and corporate users who have a lot of

experience in maintaining such applications. Thanks to their work project reached the

maturity phase. The mature phase is for non-proprietary software as important as

growth phase for proprietary soft. During this stage free and open source software

packages can gain and hold onto market share. Users and potential users are estimating

given package technical and economical features. If it turns out, that the new product is

reliable, secure, has low TCO and go on the product has a chance to become a leader,

what within the FLOSS market means becoming immortal. That is another feature,

which differs FOSS projects from proprietary software. Thanks to many iterations of

'development – testing – bug fixing – normal usage – modifications' process developers

can create – and users obtain - desirable program, which covers all needed functionality,

has no bugs, and due users approval (by using) -became a market leader. Creating

another program, which will do same – maybe in different way, but the effect will be

the same – is needless and would be completely waste of time. There are many such

applications running under GNU/Linux, most of them is responsible for basic system

functionality. Because everyone can see exactly how the program works, it is easy to

implement it in another
57

. Proprietary software does not give such chance and even the

simplest programs are rewritten all over the time.

5.4.1 Alternative marketing forms

When customer can obtain product without charge or for cost of shipment
58

, then

probably will choose the one, which gives sensation of representing the highest quality.

In the world of 'transparent software' the process of making popular package requires

only a well coded, useful program with documentation and legible and intelligible

source code. This sentence is true even if at the beginning of given project life cycle it

covers only small part of functionality desired by end users and even creators.

Developers, while choosing projects they will contribute to, concentrate on the values

and experience they can gain. Different people devote their time and skills to FOSS

projects for different reasons. –As I have mentioned intrinsic and extrinsic motivations

of Free and Open Source developers, but users do not really care about anything else,

than what they will do profit by using particular piece of software. It is not hard to

57 As a new application understood as external piece of software or simply include its source code in

new project..

58 Which is convergent to zero in case of downloading data from the Internet.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

50

estimate if given application is enough secure or stable if it is not already popular, like

for example Apache, which is analysed by many individual and institutional users.

Proprietary software vendors use traditional methods of attracting new customers to use

particular product or group of products. Some companies creates their picture as

supporting development in large and small scale by assisting any one – from individuals

to whole countries in their way on the path leading to progress. Some want to show

themselves as creators of professional and extremely productive solutions for business

or user friendly products useful at home or school. Almost every company supports

charitable and educational institutions. It is easy to say 'we are nice people, we support

those who are in need, our products are good and surely you will make a good use of

them' when even a license bans users from publicly expressing their negative opinion on

given product. Such prohibition proves that users opinion on program is the most

pictorial and renders the real use value of application better than any other description.

In the middle nineties Japanese marketing specialists discovered, that the most effective

way of product’s promotion is so called 'word of mouth'. This technique based on

giving young people subjects of promotion - to test or just use it – and some hints how

they should praise these products among their friends, colleagues, acquaintances, etc. to

encourage them to buy it. It turns out that this simple method is very effective –

customers do trust other customers even if there is possibility that person who's advice

we are taking is pay and trained to make us to buy particular product. Such trend of

promotion is perceptible on the FOSS 'market'. When user can choose one from couple

of programs covering the same functionality the chosen application will be the one with

the best feedback given by existing users. When program is available free of charge

probability, that anybody would pay for positive review or write one discordant with

actual state, is convergent to zero. Developers can boast of positive reviews only when

their code factually deserve such opinions – they know it and do everything to make

code they stand behind as useful as they can do. By having a possibility of verifying

what and how professionally implemented features program includes, customer can

make clear choice if program is worth interest. Another thing that should be done is to

answer to a question if user-customer should use particular product in form in which it

is offered by its authors. We can assume, that there is a demand for every new program

or at least for a part of it. If an idea occurred to developer there must be at least couple

of persons who will find that idea interesting – sometimes such people just require

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

51

enlightening that they are in need of newly developed product. If traditional marketing

is a process of hiding products fault and bringing into relief its advantages or pretence

such existence marketing in GPLed form may be defined as creating product which

becomes desirable because of its easily verifiable advantages. Conferring full control of

program upon users - by giving them freedom to change, redistribute, create derivatives

and etc. - brought to perfection all marketing forms. Product speak for itself, everyone

can redistribute program and it’s source code and many people do that relieving authors.

People just by using non-proprietary software become members of the largest self

supporting community. There is no other type of product, which users can boast of

being a part of social movement with such intrinsic philosophical background, complex

infrastructure, clear and fair rules. Thanks to the fact that cost of product multiplication

is convergent to zero, everyone can profit by this 'membership'.

5.4.2 Support

As long as proprietary software is taken into consideration support can be defined as

“after sale handholding. Something many software vendors promise but few deliver

[...]”
59

.

 Software Support: Service that software manufacturers, and third-party

service companies, offer to customers.

The Software Engineering Institute- Terms Glossary

Vendors usually make promises to answer questions about program functionality,

questions which mostly begin with 'how', 'why' and 'it is not working'. Most of

proprietary software users, who use any form of support, do it because of lack of

knowledge, lack of time or lack of proper documentation, which would help to solve

their problems. For a company it is less expensive to pay any third party company or to

hire somebody with very good knowledge of software packages, which that company is

using than to train every employee. Such proceeding save employees time, which

results in limiting employer losses directly connected with software unreliability.

Following the dictionary definition:

“[...] most support people are useless – because by the time a hacker calls support he

59 From definition in Free Dictionary of Computing.

http://www.webopedia.com/TERM/C/software.html

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

52

or she will usually know the software and the relevant manuals better than the support

people [...]. A hacker's idea of 'support' is a teete-a-teete with the software's designer”.

That is true – many users search the Internet resources, read documentation or learn

programs by using but mentioned teete-a-teete is impossible in most cases. Does user

knows who is responsible for part of program he or she has problem with... rather not.

There are different group of people – those, who create program and those who support

its users and that is what makes a huge difference in everyday usage of proprietary and

non-proprietary software. It is characteristic for FOSS projects that developers – those

who start the project as well as those who only contribute to the project – are in

continuous contact with users
60

. Users are interested in getting the most reliable and

useful program it can be so they are contributing to the project by using application

during many different real life scenarios. Such exploring of application features, most of

proprietary software producers have to pay great amounts of money for such testing,

leads to improving given piece of software during every phase of its life-cycle. One said

that users never know what functionality they would like the new program to cover,

they are always unhappy with what they get and it seems that the only cure for that

eternal problem is bazaar development style. Existing information exchange channels –

board, forums, mailing groups, Usenet, even simple e-mail – give users possibility for

describing their needs and experience connected with given application. Freedom to

change source code results in frequent patch releases and modifications. Users can

became developers and introduce their ideas directly by changing program. Free

Software market is one of not numerous markets where informal – based on users &

developers community support exists. Before I describe profits that can be obtained by

corporate users in the course of support examination I want to recap main features of

FOSS support:

 users by reporting questions give feedback about how the program should look

like,

 users have actual influence on the program final functionality,

 users are in fact program testers,

 users can become developers and modify programs themselves,

60 They are not only helping users or gathering data about bugs. Users are the best source of information

about how the program should look like and what additional functionality it should covers.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

53

 developers gather vital information any software project could be successful

without,

 one more time I want to stress importance of fact that FOSS project can be

released frequently even if contains untested and buggy code
61

.

FOSS users and developers form community within smaller communities, which

display is connected to particular projects are formed for the purpose of receiving

reciprocal profits. The developers objectives of contributing to Free and Open Source

projects, besides the ones described in chapter 4.2.3, are similar to the goals intended by

users to gain. Users want to use high quality software and developers wish to create

such. The individual user can switch and start using another program more or less

easily, but for corporate users such process is much more complicated (that is why

continuous
62

 support is urgent for them). When a proprietary application producer

decides to cease maintaining given software package for any reason (it may become

unprofitable due to decreasing demand) or is made to do that (for instance company

bankrupt) users are left with binary and documentation alone. If they are lucky

management of another company will find it profitable to take over abandoned project

along with the existing market and uphold supporting existent group of users. But

commercial projects do not die without a reason and such take over is rather

improbable. Those who do not want to be held as hostages do switch to FOSS because

of source code availability. The most common things companies using non-proprietary

software do are:

 use of generally available support channels
63

,

 employ coders who fix bugs and/or change program functionality to fit employer

needs,

 pay program authors for modifications and to encourage them to work on a

particular project.

The first method is the cheapest one, but does not assure that particular problem will be

solved in predictable period of time. The number of authors and developers contributing

61 so called unstable versions.

62 continuous means held even after given project is finished and/or founding developers loss interest in

it.

63 projects related websites, forums, boards, Usenet groups, etc.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

54

to the project are major factor, which determines mentioned period of expectation.

Number of developers depends to a great degree on number of end users – mostly

because some users became developers and thanks to the fact that developers are more

interested in devoting their time to project which is successful (or at least seems to

become one). So it’s visible, that the number of contributors should not be the only

factor taken into consideration when choosing product with the smallest chance for

abandoned. The same fact that a company is going to switch to given application means,

that this very package is successful. Of course when the better-known, larger company

inform, that their employees will use non-proprietary software, it will attract more

developers
64

. Second means to guarantee continuous support is employing programmer.

Combining this method with the former one by developing given program in-house and

sharing knowledge attained this way with community and at the same time use available

resources will not only magnify own productivity but also fasten main developing

process. Of course hiring program author or one of main developers is the best solution

because such person has the best knowledge on own program and can take the best from

other people's contributions. For a huge company adding such people to its payroll is

cheaper than these, which it would bear in case of using proprietary packages. From the

point of view of small firm’ owner ,who keeps busy many fewer employees such

disbursal may be comparable to the cost of licenses, paid support and switching to new

software in case of mentioned problems. That is why small companies do not establish

standards but avail of these constituted by companies, which can afford that. Small

companies can simply profit from expenses born by leaders – like smaller animals,

which follows an elephant in dense jungle. Problems occurring during everyday

program usage in small company will occur or have already occurred if the same

program is used by a larger one market competitor. If the problem has not appeared

small company can count that it will be solved by a community members much faster

than it would be in case of less popular application
65

. All of that brings about situation

in which we can charge whole community with solving our problem and it will be done

by the first person who find it interesting and achievable. A problem solver does not

expect to be paid by us, but there is a possibility that he or she will be paid by our

competitor on the market.

64 to see why go back to chapter 4.2.3.

65 advantages of higher market share are described in chapter 5.5.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

55

5.5 Market share and competition

Why it is important for users to use application which has significant market share and

what menaces it brings follows reasons of product's market share during each life cycle

phase
66

?

The developers and two kinds of people who are interested in contributing to new

project: programmers and users who need this very application so much that can not

wait any longer have real contact with a new piece of soft during the introduction phase.

During next phase – growth – program's main features should become stable. The stable

version which covers functionality program was destined for is the one, which is a base

version for most of users. The moment when developers can supply users with stable

version of program
67

 and people who only want to use the program – in fact they are

becoming very important group of testers - start using such stable version is the end of

growth phase and the begging of maturity one. The boost of number of users, which

result in growth of developers group, is noticeable during this phase for two main

reasons. First one follows the fact that people gain access to useful piece of code, which

binary version do things that they need to be done by computer program. In other

words: people use program because it is useful. Second is about possibilities which

come along with stable version of program – customisation of such application is not

biased by main module errors what makes changing it easier and cheaper. Even if

somebody does not want to make changes in the program knows that program which

already covers main functionality is going to evaluate and become more and more

useful with every new version. Maturity phase is the period of time when most of

potential corporate users decide to start using given program. Some of them, especially

those who are have experience maintaining and using FOSS programs join users/

developers group during first two phases but FOSS newbies
68

 and smaller institutional

users wait for the moment, when program's popularity guarantee continuous support.

David Wheeler wrote, that program's significant market share is lemming-like [wheeler

look at the numbers]. The most important advantages of being a market leader is the

main reason product become one for – large group of users. Having more customers

means greater number of well trained users, greater number of developers willing to

66 see chapter 5.4 for product life cycle walkthrough.

67 version which covers program's base functionality.

68 newbie - any new participant in some activity.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

56

contribute to successful project, lower chance for project abandoned. More interested in

given project users/customers means bigger chance for developers for profit. With

increasing number of users and developers main factors of package improve but some

of them – like security – suffers from programs popularity. I think that when measuring

GPLed application
69

 market share I should distinguish two different cases:

 The first is based on comparing given application to other GPLed applications

which covers the same functionality.

 The second, gives information on position of given application on the market

composed of non-proprietary and proprietary software as well.

Because there is no need to multiply existing code, new projects which covers

functionality of existing ones, are predestined either to replace their ancestors
70

, or

become an application with completely different development trend. Sometimes new

program replicate the functionality and the source code just because authors want to do

everything from the very beginning. It is a common practice that authors include

features from different programs as external modules and focus on creating new

functionalities. Authors of media player Amarok
71

 did it. Amarok is using plugins,

which are responsible for decoding media files. While they are developing additional

features completely different people are maintaining the program's part of engine

responsible for – actually the most important feature of media player – decoding and

playing media files. Media players running under GNU\Linux – each is of use to play

media files – have such different secondary functionality that they are in fact different

programs directed to the different groups of users. At the end of the day competition on

the FOSS application market leads to creating products of such different features that

makes it interesting for group of users or to death of some products. These commonly

used or 'challengers' – or, at the end to the merge of new and existing applications and

its developing teams. The only factor, which makes given application popular is its

effectiveness, efficiency, supporting team – in overall - application quality so becoming

a market leader or part of the same market margin is a simple process. There is no way

to persuade anybody into using particular application when there is better one available

on the same conditions and switching won't cause additional expenses.

69 or application covered by GPL compliant license.

70 A good example is Apache web server which grew up on the base of NCSA httpd web server. NCSA

the project and some of its users decide to maintain it on their own.

71 A project developed by Mark Kretschmann (2002 – 2003) and Amarok Programmers Team (2003 –

2006). More information can be found on Amarok web site (http://amarok.kde.org).

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

57

The main technical differences between proprietary and Free/ Open Source software –

described in chapter 4.1make FOSS more competitive in some fields and less in others.

One of the most successful non-proprietary application on the market is the web server

Apache
72

 - in fact since 1995 non-proprietary web servers are the most popular
73

.

Illustration 12: Market share for top servers across all domains. August 1995 - February 2006

Source: http://news.netcraft.com/

It is clearly visible on the graph, that whenever the rapid fall of Apache market share

occurred, comparable rise of Microsoft and other companies' products took place. From

November 2005 to December 2005 Apache loss 1.01% and the Ms IIS gain 0.68%. We

have similar data from different periods (like February 2002 – November 2002). Some

Apache market share drops are connected with the expiration of bulk-registered domain

names – in December 2005 1 million of hostnames end its' existence at Zipa servers
74

 it

means that the Apache fits requirements of companies which need fully reliable and

productive tool. Decision of registering additional one million of hostnames is strictly

connected with forecasts about number of customers which will decide to pay for

domain name registered during such promotion – about 80% of such hostnames is going

72 See www.apache.org for details on Apache the web server.

Based on Netcraft's statistics on web servers - http://news.netcraft.com/.

73 The web servers market share can be measured in couple of different ways. Some web site are inactive

– domain names are registered but not being used. Web sites can be counted basing on their IP address

or their host name. Former way help to remove from statistics computers which hosts multiple sites

and sites with multiple names. Some entities also measure number of physical machines.

74 Miller Rich – “Zipa Gains Nearly 1 Million Sites As It Weathers Katrina” ([17]).

http://news.netcraft.com/
http://www.apache.org/

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

58

to expire, but remaining 20% have to be maintained. Domain registrars are not

concerned about Apache reliability or scalability, it seems that web server which is so

popular among private users who set it up for fun or for educational purposes can be

used to host thousands hostnames and websites. During February 2006 Windows

servers gained substantial number of active sites on German and Japanese markets –

Intergenia and Excite switch to IIS.

Next graph (illustration 2) illustrates increasing number of sites across all domains, the

market is continuously expanding and Apache is a reliable product which create

opportunity to set up a business without bearing expenses of proprietary software and

licensing.

Illustration 13: Total sites across all domains. August 1995 - February 2006

Source www.netcraft.com

On the other hand such dynamically developing fields acquire solutions, which fits the

most requirements possible and fact, that Apache has such favourable position on web

servers market means, that Free Software Solutions are competitive because of its'

advantages.

6 Project development relations – empirical study

6.1 Assumptions

I have been highlighting the importance and impact on software usage of the

community’s members, who participate in given project development in many ways.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

59

Such people give feedback on the software usage, come with new ideas and implement

them. They inform about bugs, or/and fix them. Of course they help other users/

programmers by answering various questions. We can call such mechanisms a

support
75

. In this chapter I want to show numbers describing community members

cooperation using the example of SourceForge.net projects’ groups and forums. The

figures I use prove not only that such cooperation exists but that it has impact on

projects development process and popularity.

6.2 Source data and methodology of my study

All calculations are based on sourceforge.net statistics from database snapshot taken on

January 2006. All data presented in this chapter I have received from professor Gregory

Madey, who represents faculty of Computer Science & Engineering of University of

Notre Dame (Ma, USA). In fact I have gain access to the database, which contains

snapshots of most of the tables from sourceforge.net database.

I give careful consideration to relations between projects’: completion status, popularity

and particular projects’ forum traffic. The following table briefly describes used figures.

Figure description

No. of bugs closed

Number of closed tasks, connected to bugs

maintaining, per projects’ percentage completion

level.

No. of bugs opened Average number of opened tasks, connected to bugs

maintaining, per projects’ percentage completion

level.

No. of downloads number Average number of project source/ binary files, per

projects’ percentage completion level.

No. of help requests Average number of help requests per projects’

percentage completion level.

No. of hours per completion

status

Average number of hours which were spent during

development process per projects’ percentage

completion level.

75 More about support one can find in chapter 5.4.1.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

60

Figure description

No. of patches closed Average number of closed tasks, connected to process

of developing patches, per projects’ percentage

completion level.

Number of patches opened Number of opened tasks, connected to process of

developing patches, per projects’ percentage

completion level.

Number of posted messages Number of messages posted on projects forums, per

projects’ percentage completion level.

Number of support closed Number of closed tasks, connected to support threads,

per projects’ percentage completion level.

Number of support opened Number of opened tasks, connected to support threads,

per projects’ percentage completion level.

Number of developers Number of developers working on particular projects

per projects’ completion level.

Completion percent Projects’ completion level. Every project is described

by one from 21 percentage values (from 0% to 100%).

Number of answered messages Total number of all messages on all forums which

were followed by one or more messages.

Number of forums Total number of forums.

Number of threads Total number of all threads on all forums.

Number of threads per group Average number of threads per project forum.

Number of unanswered

messages

Total number of all messages on all forums which

were not followed by any message.

Table 9: List of figures

Source: Own elaboration

6.3 Results

On January 2006 there was 102124 registered projects, it means that using this service

users were able to search through and download source code of 102124 different Free

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

61

Software and Open Source Software programs. Projects are divided into 24864 groups.

Statistics are available for 90268 projects in 21926 groups.

The relation between completion level and the average number of developers who work

on a project during each level shows that the highest number of developers contribute to

projects which are 35% complete. Intensified developers works during this level may be

comprehended as the begging of projects’ growth phase – period when the most of main

program functionality is being implemented. Another interesting thing, which

characterise this figure and should be observed, is the initial fall (from 1.98 to 1.89) and

fact that from the level of 20% completion average number of developers increase and

decrease alternately. It indicates that in the very begging of projects development people

who belongs to the group which initiate the project leave project when tasks they were

interested to are finished. Afterwards the same or different developers join and leave

project dependently on current ‘to-do list’
76

.

Next very interesting indicator is the average number of downloads which took place

during each completion level. The average of 50561 at level of 5% shows the potential

76 todo list – functionalities which will be implemented.

Illustration 14: Relation between projects’ completion level and number of developers

Source: own elaboration based on SourceForge statistics from January 2006.

1.86

1.86

1.98

1.95

1.89

1.98

1.88

2.35

1.79

2.01

1.89

2.00

1.76

1.97

1.80

1.99

1.88

2,04

1.79

2.03

1.95

0 0,5 1 1,5 2 2,5

0

10

20

30

40

50

60

70

80

90

100

Average Number Of Developers

C
o

m
p

le
ti

o
n

 L
e

v
e

l
(%

)

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

62

users and developers interest in newly registered projects. Decreased values at levels

from 10% to 20% are the result of boost at 5% and immaturity of projects, which

undeveloped functionality does not satisfy users. The second boost can be observed

when the project is completed in 30 and 35%. This phenomenon is connected with the

beginning of growth phase and increasing number of developers. The levels of 45%

draw the end line of growth and begging of maturity phase at 50% of completion. Huge

number of average downloads (92065) points that projects’ main functions are

implemented. From that moment to level of 80% users are waiting for bugs correction

and report such during programs usage. The number of projects’ tasks connected to

bugs maintenance significantly rises on levels of 15, 45, 75, 95 and 100 percent of

project completion. First rise precedes growth phase, after which begging at level of

35% is characterised by low number of bugs connected tasks as the result of

implementing, testing and correcting primary set of functionality. Second rise is a direct

result of introducing to users next part of programs during growth phase which ends

with fall of discussed type of tasks to completion level of 55%. Next rise – at 75% -

follows bugs reported by users and detected by developers during usage of mature

Illustration 15: Relation between projects’ completion level and average number of developers

Source: own elaboration based on SourceForge statistics from January 2006.

29606

50561

15779

18293

13004

37064

39243

28161

19772

92065

20464

6626

6269

21604

13521

41275

53589

24958

21784

50726

53084

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

10

20

30

40

50

60

70

80

90

100

Average Number Of Downloads

C
o

m
p

le
ti

o
n

 L
e
v
e
l

(%
)

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

63

versions of programs. This is also the cause of last two rises, during decline phase,

when projects are still developed, bugs may be found in code covering new

functionality (also number of patches indicates this theory). The relation of average

number of patches to bugs points that depending on projects’ development phase rises

and falls of numbers of this two types of tasks induce themselves in turns or are parallel.

For example the rise of bugs’ connected tasks at level of 15% induces increase of

patches a level later. At the same time number of patches at level of 15% results in

series of patches at level of 20%. Bugs detected during growth phase seem to be

corrected by patches at level of 40% of project completion. Of course many bugs are

corrected in new versions of software and patches and bugs are not strictly related.

The very important feature of FOSS development is the communication aspect. By

analysis of the average number of messages sent on projects’ forum groups I can draw

following conclusions: developers during introduction and growth phase have clearly

traced tasks and communication is relatively limited. When projects come into maturity

phase number of forum traffic increases mutually with increase of number of

Illustration 16: Relation between projects’ completion level and average number of tasks.

 green bars – opened tasks purple bars – closed tasks

Source: own elaboration based on SourceForge statistics from January 2006.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

64

downloads, bugs and patches. In my opinion the traffic boost, which takes place during

maturity phase at level of 45% project completion, indicates interest of new users who

find project useful. Such traffic may covers help requests, bugs reports, new ideas. I

want to remind the enormous rise of number of downloads and fact that average number

of developers increases from 1.79 (level of 40%) to 2.01 at this level. Projects

completed in 45% are enough reliable and functional to attract people interested in

software covering given functionality. In January 2006 in SourceForge forums’ archives

users could found 752’167 threads. In case of 370’339 threads there was at least on

response message – the average was 3.2 message per thread.

In overall – considering all threads average amounts to 1.6. It means that – on an

average - every post was answered, or on the other hand that every second post has been

answered. Considering that some of threads can be treated as spam (questions already

answered in documentation, problems previously reported) I think that such response

coefficient can be regarded as satisfactory. Another thing is, that forum threads are

addressed to whole community in with hope that there is somebody who knows the

Illustration 17: Relation between projects’ completion level and projects’ forums’ traffic

Source: based on SourceForge statistics from January 2006.

31,93

82,70

18,23

11,46

22,62

14,47

10,73

41,02

36,14

437,69

35,63

9,40

6,68

6,77

8,35

174,71

8,69

6,84

9,64

39,20

46,64

0,00 50,00 100,00 150,00 200,00 250,00 300,00 350,00 400,00 450,00 500,00

0

10

20

30

40

50

60

70

80

90

100

Average Number Of Messages On Projects' Forums

C
o

m
p

le
ti

o
n

 L
e

v
e
l
(%

)

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

65

answer or who finds the problem interesting. In terms of proprietary software users,

especially companies, which use dedicated software, such way of getting help is nearly

impossible. Everybody can freely ask for help or present ideas of needed functionality

for free with at least 50% chance for response. The chance for response rises with the

project popularity and development level. In terms of using external work sources for

own purposes this way of getting help could be a kind of ultra outsourcing.

I want to recapitulate my conclusions by comparing increment of average number of

developers, downloads and messages per completion level. The increment of average

number of developers is in turns positive and negative. Interesting is fact that during

begin of growth and maturity phases. The straight line (purple line) representing linear

trend of increments of this variable is tangent to axis of abscissas – the overall number

of developers during development process can be treated as stabilised. The blue and

green lines – which represents linear trends of, in sequence, increment of average

number of downloads and messages – indicates that along with project completion level

number of downloads slowly rises and number of messages about given project also

Illustration 18: Increments of avg. no. of developers, downloads and messages (%) per completion level.

Source: Own elaboration based on SourceForge statistics from January 2006.

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Δ of avg. no. of
developers

Δ of avg. no. of
downloads

Δ of avg. no. of
messages

1912 1128

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

66

rises – especially during growth phase. The significant rise of interest during growth

phase – based on the messages traffic per average project along with the number of

downloads may results in number of processed bugs and . The software package, which

is well developed, and can be treated as useful generate less forum traffic and more

downloads.

Life cycle phase Levels of completion (%)

Introduction 0 – 35

Growth 35 – 50

Maturity 50 – 80

Decline 80 - 100

Table 10: Relation between life cycle phases and levels of completion

Source: Own elaboration

7 The conclusions of the thesis

In my thesis (chapters 3, 4 and 5) I have described my personal approach to some

aspects of creating and using Free and Open Source Software. I think that phenomenon

of FOSS is so fascinating because of the intuitive and natural way of forming more

complicated ways of using it – from philosophy, through law and software life cycle

aspects, to technical and logistic solutions. In my opinion the success that FOSS

communities have achieved as a result of pointing clear and simple aim – useful and

generally available software – was possible thanks to one of basic people’s

characteristic the desire of freedom. For years many users choose the possibility of

having impact on tools they are using for price of nice looking and theoretically ready to

work proprietary software. During this years, they have created hundreds of thousands

of fully functional, useful, user friendly software packages, which in most cases surpass

proprietary ones in case of fundamental, for software products, features like security,

reliability and scalability. Simultaneously FOSS community members develop their

skills and the culture of knowledge sharing society. In chapter “Project development

relations – empirical study” I have proved, above all other things, that the success of

Free Software can be measured and described. It means, that it is not a chaotic Utopia.

The philosophy introduced by Richard Stallman was transformed into global mental

movement, which gives everybody chance for use, create, change and redistribute of

software code.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

67

8 Bibliography

1 Boston Consulting Group - “Boston Consulting Group/OSDN Hacker Survey”

(2003);

2 Bourke Tony – “Sun Versus Linux: The x86 Smack-down”. Osnews.com -

http://www.osnews.com/story.php?news_id=4867;

3 Dean Katie - "Data Flood Feeds Need for Speed" – Wired News, 13.02.2003 -

http://www.wired.com/news/infostructure/0,1377,57625,00.html

4 Davis, A.M. – “Software Requirements: Analysis and Specification” - Prentice-

Hall, 1990

5 DiBona Chris, Ockman Sam, Stone Mark - "Open Sources - Voices from the

Open Source Revolution"

6 Free Software Foundation - "The Free Software Definition" -

http://www.gnu.org/philosophy/free-sw.html

7 Free Software Foundation - "Why 'Free Software' is better than 'Open Source' " -

http://www.gnu.org/philosophy/free-software-for-freedom.html

8 Free Software Foundation - "Overview of the GNU Project" -

http://www.gnu.org/gnu/gnu-history.html

9 Free Software Foundation – “Free Software Foundation” -

http://www.gnu.org/fsf/fsf.html

10 Free Software Foundation - "GNU Public License" -

http://www.gnu.org/licenses/gpl.html

11 Haruvy, Wu, Chakravarty - “Incentives for Developers' Contributions and

Product Performance Metrics in Open Source Development: An Empirical

Investigation” - University of Texas, Dallas, 2003

12 Howorth Roger - "Samba 3 extends lead over Win 2003 Roger Howorth" - IT

Week 14 Oct 2003 - http://www.itweek.co.uk/News/1144312

13 IBM - "Putting Linux reliability to the test" - http://www-

106.ibm.com/developerworks/linux/library/l-rel/

14 Kotonya, G., Sommerville, I. – “Requirements Engineering: Processes and

Techniques” - John Wiley and Sons, Inc, New York, 1998

15 Lakhani, von Hippel - “How Open Source Software Works: 'Free' User-to-User

Assistance” - 2003 - Research Policy

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

68

16 Lerner, J., Tirole, J. - “The Economics Of Technology Sharing: Open Source

And Beyond” - Working Paper no. 10956 – National Bureau of Economic

Research, December 2004 - http://www.nber.org/papers/w10956

17 Miller Rich – “Zipa Gains Nearly 1 Million Sites As It Weathers Katrina” -

Posted on Oct 26, 2005 -

http://news.netcraft.com/archives/2005/10/26/zipa_gains_nearly_1_million_sites

_as_it_weathers_katrina.html

18 netcraft.com – “Hosting Providers sites ordered by failures” -

http://uptime.netcraft.com/perf/reports/Hosters

19 netcraft.com - "Hostway most reliable hoster in November” – 2005 -

http://news.netcraft.com/archives/2005/12/14/hostway_most_reliable_hoster_in

_november.html

20 Netscape Communications Corporation – Press Release, 22.01.1998 - "Netscape

Announces Plans To Make Next-Generation Communicator Source Code A

Viable....” - http://wp.netscape.com/newsref/pr/newsrelease558.html

21 Office of Technology and Electronic Commerce (OTEC) division of the

International Trade Administration, U.S. Department of Commerce - Size of the

U.S. Computer Software Industry – 14.04.2003 -

http://web.ita.doc.gov/ITI%5CitiHome.nsf/AutonomyView/87200518f179196c8

5256cc40077ede1

22 Open For Business Project, The - "Philosophy” -

http://www.ofbiz.org/philosophy.html

23 Open Source Initiative - "Why 'Free' Software is too Ambiguous" -

http://www.opensource.org/advocacy/free-notfree.php

24 Perens Bruce - “The emerging economic paradigm of Open Source” –

http://perens.com/Articles/Economic.html;

25 Rossi C. and Bonacorsi A. - “Intrinsic motivations and profit-oriented firms in

Open Source software. Do firms practise what they preach?” – (2003)

26 Samoladas Ioannis, Stamelos Ioannis, Angelis Lefteris and Oikonomou

Apostolos - "Open Source Software Development Should Strive for Even

Greater Code Maintainability" - 'Communications of the ACM' – October 2004,

pp. 83-87

27 Stallman Richard - "The Initial Announcement" -

http://www.nber.org/papers/w10956
http://www.opensource.org/advocacy/free-notfree.php

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

69

http://www.gnu.org/gnu/initial-announcement.html

28 Stallman Richard - "The GNU manifesto" -

http://www.gnu.org/gnu/manifesto.html

29 Symantec Corporation - "Symantec Internet Security Threat Report – Trends for

July 05 – December 05 – Volume IX"

30 Wheeler David - "Open Source Software / Free Software (OSS/FS) References"

- http://www.dwheeler.com/oss_fs_refs.html

31 "Reasoning Releases New Study Showing Open Source Model Produces High

Quality Software" - http://www.businesswire.com/cgi-

bin/f_headline.cgi?bw.021103/230420300

9 Appendixes

9.1 The list of terms and abbreviations

 Availability degree to which a system suffers degradation or

interruption in its service to the customer as a consequence of

failures of one or more of its parts;

 Beowulf multi-computer architecture which can be used for

parallel computations. Frequently composed of one tie-server;

 Copyleft the minor feature of copylefting is to grant rights “...to use,

modify and redistribute the programs' code or any program

derived from it but only if the distribution terms are unchanged”;

 Cracker an individual who attempts to gain unauthorised access to a

computer system. The term was coined ca. 1985 by hackers in

defence against journalistic misuse of "hacker". (from definition

in 'Jargon file' by Eric S. Raymond).

 EMACS the extensible, customizable, self-documenting real-time display

(text) editor;

 F/LOSS Free/Libre Open Source Software;

 FAQ Frequently Asked Questions;

 FOSS Free Open Source Software;

 FS Free Software;

 FSF Free Software Foundation;

http://www.gnu.org/gnu/initial-announcement.html
http://www.businesswire.com/cgi-bin/f_headline.cgi?bw.021103/230420300
http://www.businesswire.com/cgi-bin/f_headline.cgi?bw.021103/230420300

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

70

 GNU the recursive acronym for GNU is Not Unix;

 GPL General Public License (aka. GNU GPL);

 GPLed covered by GNU GPL;

 Hacker One who programs enthusiastically (even obsessively) or who

enjoys programming rather than just theorizing about

programming;

 KDE K Desktop Environment;

 LGPL Lesser General Public License (aka. GNU LGPL);

 License an authority or liberty given to do or forbear any act, especially, a

formal permission from the proper authorities to perform certain

acts which without such permission would be illegal;

 Newbie any new participant in some activity;

 OOP Object Oriented Programming;

 OSI Open Source Initiative;

 OSL Open Source License;

 OSS Open Source Software;

 Performance The way in which a machine or other thing performs or functions:

behavior, functioning, operation, reaction, working;

 QTPL Qt Public License;

 RAS Reliability, Availability and Serviceability are features regarded

as ones, which describe software quality in the widest way;

 Scalability the ease with which a system or component can be modified to fit

the problem area;

 Security the ability of a system to manage, protect, and distribute sensitive

information;

 SLOC Source Lines Of Code;

 Support Service that software manufacturers, and third-party service

companies, offer to customers.

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

71

9.2 List of figures

Table 1 – (p.17) - OSes and webservers in the top 50 of the 'Sites with longest running

systems by average uptime in the last 7 days (generated on 22nd

march 2006);

Table 2 – (p.23) - Time to compromise web servers;

Table 3 – (p.24) - Time to compromise desktop computers with firewalls deactivated;

Table 4 – (p.31) - Level of education of FOSS Developers;

Table 5 – (p.31) - Professional structure of FOSS developers;

Table 6 – (p.32) - Share of developers who join and stay in the FOSS community

because of particular reasons;

Table 7 – (p.36) - Comparison of proprietary and non proprietary software;

Table 8 – (pp .42-47) - Product life cycle phases;

Table 9 – (pp.60-61) - List of figures;

Table 10 – (p.67) - Relation between life cycle phases and levels of completion.

Illustration 1 – (p.4) – The Photo of Richard Stallman;

Illustration 2 – (p.6) – GNU logo - version 1;

Illustration 3 – (p.6) – GNU logo - version 2;

Illustration 4 – (p.9) – The Free Software Foundation logo;

Illustration 5 – (p.9) – The Open Source Initiative logo;

Illustration 6 – (p.13) – Qt logo;

Illustration 7 – (p.13) – KDE logo;

Illustration 8 – (p.20) – Samba outperforms Win2003;

Illustration 9 – (p.26) – Life cycle product;

Illustration 10 – (p.30) – Current Age of OS/FS Developers;

Illustration 11 – (p.30) – Civil status of OS/FS Developers;

Illustration 12 – (p.57) – Market share for top servers across all domains;

Illustration 13 – (p.59) – Total sites across all domains;

Illustration 14 – (p.62) – Relation between projects’ completion level and number of

developers;

Illustration 15 – (p.63) - Relation between projects’ completion level and average

number of developers;

Illustration 16 – (p.64) – Relation between projects’ completion level and average

Błażej Borucki:
„The Economical Aspects of Free Software and Open Source Software Solutions in Modern
Business”

72

number of tasks;

Illustration 17 – (p.65) – Relation between projects’ completion level and projects’

forums’ traffic;

Illustration 18 – (p.66) – Increments of avg. no. of developers, downloads and

messages (%) per completion level;

