
Advances in the SourceForge Research Data Archive

Matthew Van Antwerp
Department of Computer Science and

Engineering
University of Notre Dame
mvanantw@nd.edu

Greg Madey
Department of Computer Science and

Engineering
University of Notre Dame

gmadey@nd.edu

ABSTRACT
The SourceForge Research Data Archive (SRDA), located
at http://zerlot.cse.nd.edu, is a collection of Open Source
Software (OSS) data and resources [6]. Over 100 researchers
worldwide use the archive for research in many fields. In this
paper, we describe the recent changes, the work in progress,
and future plans for making the archive easier to use and for
allowing more advanced research to be done with the data
available.

1. INTRODUCTION
We receive monthly database snapshots from SourceForge.
They are about 11GB uncompressed. Each dump is a snap-
shot of SourceForge’s back-end database and is loaded into
the timeline database as a new schema associated with that
month (of the form sfMMYY ). In early 2008, our Post-
greSQL database eclipsed 600GB total. Project data avail-
able in the monthly dumps includes descriptive and statis-
tical data on projects and users. Two notable missing kinds
of data are mailing list and versioning (CVS/SVN) data,
which will be addressed in this paper.

We make this data available for researchers who have com-
pleted a license form. The data can be accessed through use
of a web form as well as through a web service interface. A
documentation and instructional wiki is provided as well as
a schema browser. Query history and autocompletion are
two features that help users make correct queries to retrieve
the data they desire.

2. OTHER OSS RESEARCH WEBSITES
In addition to the SourceForge Research Data Archive, there
are other websites hosting OSS data or resources for per-
forming research. FLOSSMole (ossmole.sf.net) [12], Libre-
Soft (libresoft.es), related projects FLOSSMetrics [3], the
CVSAnalY tool [14], and SQO-OSS [4] which aims to help
analysis and benchmarking of OSS projects. We have the
benefit of getting the data directly from SourceForge, saving

us much time and energy screen-scraping the data or acquir-
ing it by other means. The FLOSSMole project releases data
sets every month and they gather the data from multiple
sources. They have the advantage of obtaining the data di-
rectly from the SourceForge pages that your browser sees. It
can be difficult to find data in timeline that is easy to locate
directly on a project’s SourceForge page. Also, occasion-
ally data in timeline appears to be incongruous with project
page data. FLOSSMole also has data from other sites be-
sides SourceForge. Many of our users also use FLOSSMole
to supplement their research. There are occasionally differ-
ences between FLOSSMole data and SRDA data, for nu-
merous reasons. While an examination of such differences
is warranted, that is outside the scope of this paper. The
CVSAnalY tool helps a researcher manually inspect CVS
metadata from OSS projects. An examination of the SRDA
along with other research repositories can be found in [13].

3. DATA ACCESS
Data access is restricted to registered users. A query form
(found in figure 1) is a guided form that helps a researcher
form the appropriate query to obtain they data they need.
The most recent addition to this page is autocompletion of
text fields. Every potential valid string for the associated
SQL field (select, from, and where) is listed that begins
with the text already entered in the field by the user. This
feature is shown in the aforementioned figure. Data format
options are a few record separators as well as XML format
(all illegal characters get encoded), and the option to include
the query itself as part of the result set.

Additionally, a SOAP (formerly Simple Object Access Pro-
tocol) web service interface is available. The SOAP request
must authenticate over SSL so this is also restricted to reg-
istered users. This programmatic access is more versatile
for researchers and more efficient. Users can script as many
requests as they desire and obtain results from thousands
of queries in the same amount of time it would have taken
them to hand craft and submit a few dozen queries using
the web form.

Upon successful query completion, that query is saved to
that user’s query history and automatically loaded into the
fields the next time the query page is accessed. The most
recent queries are displayed on the query form page in a
possibly abbreviated form (they are truncated after a certain
length to keep the page from being stretched) and all queries
are available in their entirety on the query history page,



Figure 1: The query form page. The autocompletion feature is displayed.

which is found in figure 2.

4. DOCUMENTATION
The Monthly data dumps come to us undocumented except
for what the attribute and table names may indicate. To
facilitate querying the data, a wiki (using the mediawiki en-
gine) is provided which hosts researcher and administrator-
contributed content. Foreign key constraints are not present
in the database, but are implied between certain tables (for
example the group id row appears in many tables, which is
an unique project identifier). Every table has its own entry
in the wiki along with the database table description from
the most recent schema in which that table appears. There
are around 80 tables that appear in every schema. Addition-
ally, a brief description of the data contained in that table
and information about data accuracy may be available de-
pending on the table.

Another documentation resource provided is the schema
browser. Descriptive output is produced dynamically by
querying the database with either a schema name (returns
the list of tables in that schema) or a schema name and a ta-
ble name (returns the PostgreSQL table description). Users
can query from the top level links to each schema or use the
query field to enter a query of one of the following formats:
schema.table, schema, table. If just a table name is entered,
that table’s description will be retrieved from the most re-
cent schema. This capability is placed on the right side of

the query page to ease table lookup. The schema browser
can be seen in figure 5.

5. ADDITIONAL DATA
In addition to the descriptive and quantitative statistics
available from the SourceForge data dumps, there are two
often requested kinds of data missing, specifically CVS/SVN
versioning data and mailing list data. In a working paper
[15], we describe the acquisition of CVS (Concurrent Ver-
sions System) and Subversion metadata from all Source-
Forge projects that use those resources and allow public
access to them. That data has been loaded alongside the
SourceForge data dumps. This metadata is important to
OSS researchers. Versioning metadata consists of who made
a change (a commit), when the commit was made, the files
that were changed, a user-supplied comment, and in the
case of CVS, the number of line changes made to the file.
Subversion is relatively new, but its adoption is widespread
throughout the OSS community and many projects migrated
from CVS to SVN (potentially creating difficulty for those
studying such projects). This data is now available for
querying along with the SourceForge data dumps. More
details of the CVS/SVN metadata and the database it is
stored in can be found in the aforementioned working paper
[15]. Entity-relation diagrams for the versioning metadata
are available in figures 3 and 4.

5.1 CVS and SVN Research



Figure 2: The query history page. Queries are color-coded by section of the SQL statement.

Versioning metadata is an often-used and valuable OSS project
resource. In [8], CVS metadata is visually depicted from
both a file and author perspective. In both [7] and [9] the
authors graph data chronologically and examine the number
of modification requests (MRs) in a particular timespan. A
modification request is equivalent to a CVS or SVN code
commit (check-in). Grouping file changes into one atomic
commit is important because it represents one user com-
mitting changes to possibly more than one file. This can
be useful for determining patterns, such as which files are
closely related. While SVN logs are inherently grouped in
this manner, CVS logs are not and require careful inspec-
tion to determine which files, if any, were committed simul-
taneously. In [9], they also display social network statistics
(which can be determined from the CVS or SVN users data)
at different points in time. In [1], the researchers use a tool
called cvs2cl (http://www.red-bean.com/cvs2cl/) to group
CVS logs into change logs, which can allow a better grasp
of code changes. Number of CVS commits has been used as
a metric for project activity [10] [11]. In [2], CVS activity
and many other metrics were used to cluster contributors.
In [5], CVS data was studied in various ways in conjunction
with data from the SRDA.

5.2 User and Project Data and Connections
CVS and SVN user-project networks can be created for any
point in the history of the data. Since it may be useful for
a researcher to look at how this network changes over time,
it is essential we provide this capability and it can be cal-
culated fairly easily. In the pre-processing phase, first and
last commit time are recorded for each user for each project.
This data is stored in the user group tables. With this data
and a supplied time, we can determine the user-project net-
work at that time with minimal overhead for small networks

Figure 3: Entity-relation diagram for new CVS data.

Figure 4: Entity-relation diagram for new SVN
data.



Figure 5: The schema browser. Autocompletion is also shown here.

or cliques by checking if the supplied time is within the first
and last commit window. This serves another purpose in
that we can easily compare versioning data to timeline data
which is tied to a particular moment in time.

5.3 Other Open Source Hosting Sites
While SourceForge is the largest OSS development website,
BerliOS Developer and GNU Savannah are some other pop-
ular OSS hosting websites. BerliOS is a German website
with about 1500 users and nearly 3200 projects. GNU Sa-
vannah is another hosting site that started when the Source-
Forge project itself was relicensed as proprietary software.
While SourceForge has over 100,000 projects, these small
and potentially tight-knit hosting sites offer another rich set
of research data. GNU Savannah has an enormous num-
ber of revisions on extremely mature and widely used OSS
projects dating back decades. We obtained CVS and SVN
metadata from all projects on GNU Savannah and BerliOS
that use these services. Additionally, java.net hosts software
projects and provides CVS repositories. Apache.org is an-
other hosting site for Apache Software Foundation projects,
many of which use the Subversion repositories. If possible,
we hope to obtain versioning metadata from these sites in
the future.

6. ADMINISTRATIVE CONCERNS
For each month when we receive a new data dump, there
are hundreds of wiki pages that need to be updated. The

reason for regularly updating wiki pages with static data is
to show which schemas each table appears in and to display
the most recent instance of each table since occasionally mi-
nor changes are made to them by SourceForge. Most of
these pages need to be updated in a similar way in similar
places. To ease this process and improve robustness, updates
to many pages are automated. Using a mediawiki version-
ing tool called mvs (http://search.cpan.org/ markj/WWW-
Mediawiki-Client/bin/mvs), which provides a command line
client, all necessary wiki pages are retrieved and updated
using perl scripts. Updates made to other parts of the wiki
pages by users remain intact after this update process.

The registration process consists of a scholarly researcher
completing a form (which can be found through the wiki for
those interested in access requirements and data restrictions)
and faxing it to the Principal Investigator (Greg Madey).
Then a user is created through the wiki and finally, results
directories and symbolic links are created. An authenti-
cation module is used by the server to authenticate users
through the wiki database when accessing the query page.
This has the added benefit of using the wiki infrastructure
for password management. Obviously, the same username
and password are used when making changes to the wiki.

7. FEATURES IN DEVELOPMENT
A development server was recently deployed, which should
help speed development of new and current features. In this



environment, major changes can be tested without worry of
interrupting researchers who may be scripting thousands of
queries or investigating table information. Features in some
phase of development are detailed in this section along with
the benefit they will provide.

7.1 Stored Queries
Although the wiki provides a Web 2.0 aspect, we can take
things further. Users must query the database using SQL,
although many of our users are newcomers to the declar-
ative language. Potentially, there is overlap between the
queries researchers are performing. Stored queries would
allow users to access their own or other user’s previously
executed queries that they thought others may find helpful.
For example, here is the query to obtain operating system-
related information on project with group id 235:
SELECT b.*
FROM sf0208.trove group link a, sf0208.trove cat b
WHERE a.group id = 235 and a.trove cat id = b.trove cat id
and b.root parent=199
This query is difficult to remember and may be difficult to
distinguish from similar looking queries that retrieve pro-
gramming language data, for example. When the stored
queries feature is complete, a user will be able to store a
query, give it a descriptive name, and identify the variable
part (in this query, it is the group id 235). Then a researcher
can access a list of these queries, load one, enter the variable
data specific to the project or user they wish to retrieve in-
formation from, and execute the query. By default, queries
will be public, with the option to hide your queries from
other users. Additionally, users will be able to comment on
the reliability of a query and view the popularity of a query.
This feature will lower the learning curve for new researchers
and encourage others not to repeat work that has already
been done (typing in a complex query).

7.2 Automated Graph Production
In [7], numerous graphs are provided which visually depict
the development history or current state of an OSS project.
Researchers will likely be graphing data obtained from the
database. Automating this process will save them time and
allow them to see interesting trends earlier on in the re-
search process. Versioning metadata plotted over time is
one such interesting category that is easily automated given
our database structure. In figures 6 and 7, cumulative line
changes over time are graphed for the gcc compiler and
the emacs editor. Cumulative changes are shown instead of
number of changes because when plotted over a large range
of time, it is difficult to see smaller changes. A cumulative
graph shows sustained development more clearly. Both the
gcc and emacs projects span many decades of development.

7.3 Web Service Improvement
The SOAP interface is useful from a programmatic stand-
point, but currently limited. The web service actually just
executes a query. The user must retrieve the results (which
can also be scripted). We also do not provide a WSDL file
for users, but rather a wiki page with some sample client
code they can use. Result format is also restricted to text
with a user-specified field separator. Result sets in XML
and programmatic schema browser access are being devel-
oped to provide a more complete, cleaner, and more robust

Figure 6: Cumulative line changes over time for the
GNU C Compiler. The first tick is Nov 1985 and
each tick is approximately 3 years and 2 months.
1.2e9 is Jan 2008.

Figure 7: Cumulative line changes over time for the
emacs editor. The first tick is Sep 1982 and each
tick is approximately 3 years and 2 months.



web service interface to the database and the new versioning
metadata tables.

8. PLANNED FEATURES
Result sets can be very large, often around 20MB of text.
For such sets, local examination (and probably postprocess-
ing) is necessary. Attempting to view such sets can hang a
browser. Result pagination or smart inspection is a planned
feature to ameliorate this shortcoming. Such a feature would
also allow for visual postprocessing and reordering. Another
shortcoming of the archive is that results simply clobber the
most recent results. That is, all queries output to the same
two files (one for text results, one for XML results). This
was a naive default decision to deal with space constraints in
an easy to implement manner. However, this means queries
are potentially being repeated if a user forgets to download
results before executing the next query. A helpful feature
would be to store results in a database and allow users to
name result sets or provide short descriptions for later re-
trieval. This would help researchers from a logistical stand-
point.

Another improvement to be made is to the autocompletion
feature. Currently, it is naive and will offer completions
that make sense syntactically but not logically with regards
to the database (e.g. select a field name from a table that
does not have that particular field). A smarter solution is
to parse text entries asynchronously and only return rele-
vant and valid options for the autocompletion feature. Ad-
ditionally, we are in the process of obtaining mailing list
data. Conceivably, the only other widespread data related
to SourceForge to be obtained after this is source code itself,
which is another long-term goal of the SRDA.

9. CONCLUSIONS
In this paper, we described the state of the SourceForge Re-
search Data Archive, a valuable resource for Open Source
Software research. Notably, new versioning metadata for
over 100,000 projects has been added and features were im-
plemented to ease the research process for our users. Fea-
tures and resources under development were described as
well as plans for the future. Current work should yield help-
ful user contributions in the form of stored queries. We hope
the archive continues to help researchers around the world
and that our users find our additions helpful.

10. ACKNOWLEDGEMENTS
The material presented in this paper was supported in part
by grants from the National Science Foundation’s CISE IIS-
Digital Society & Technology program under Grant ISS-
0222829 and by the National Science Foundation’s CISE
Computing Research Infrastructure program under Grant
CNS-0751120. Y. Gao and S. Christley contributed to early
versions of the SourceForge Research Data Archive (SRDA).

11. REFERENCES
[1] D. Beyer and A. Noack. Mining co-change clusters

from version repositories, 2005.
[2] S. Christley and G. Madey. Global and temporal

analysis of social positions at sourceforge.net. In The
Third International Conference on Open Source
Systems (OSS 2007), Limerick, Ireland, June 2007.

[3] C. Daffara and J. Gonzalez-Barahona. Flossmetrics
project, 2007.

[4] A. de Groot, S. Kügler, P. J. Adams, and G. Gousios.
Call for quality: Open source software quality
observation. In E. Damiani, B. Fitzgerald, W. Scacchi,
M. Scotto, and G. Succi, editors, OSS, volume 203 of
IFIP, pages 57–62. Springer, 2006.

[5] D. P. Delorey, C. D. Knutson, and A. MacLean.
Studying production phase sourceforge projects: An
exploratory analysis using cvs2mysql and sfra+. In
2nd International Workshop on Public Data about
Software Development (WoPDaSD), co-located with
The Third International Conference on Open Source
Systems, Limerick, Ireland, June 2007.

[6] Y. Gao, M. VanAntwerp, S. Christley, and G. Madey.
A research collaboratory for open source software
research. In FLOSS ’07: Proceedings of the First
International Workshop on Emerging Trends in
FLOSS Research and Development, page 4,
Washington, DC, USA, 2007. IEEE Computer Society.

[7] D. German and A. Mockus. Automating the
measurement of open source projects. In Proceedings
of ICSE 03 Workshop on Open Source Software
Engineering, Portland, Oregon, 2003.

[8] E. Gilbert and K. Karahalios. Lifesource: two cvs
visualizations. In CHI ’06: CHI ’06 extended abstracts
on Human factors in computing systems, pages
791–796, New York, NY, USA, 2006. ACM.

[9] L. L.-F. Gregorio. Applying social network analysis to
the information in cvs repositories.

[10] K. Healy and A. Schussman. The ecology of
open-source software development, 2003.

[11] D. Hinds. Social Network Structure as a Critical
Success Condition for Open Source Software Project
Communities. PhD thesis, Florida International
University, 2008.

[12] J. Howison, M. Conklin, and K. Crowston. Flossmole:
A collaborative repository for floss research data and
analyses. In International Journal of Information
Technology and Web Engineering, 1(3), pages 17–26,
2006.

[13] G. Madey and S. Christley. F/oss research repositories
& research infrastructures, February 2008.

[14] G. Robles, S. Koch, and J. M. González-Barahona.
Remote analysis and measurement of libre software
systems by means of the cvsanaly tool. In In
Proceedings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software Systems
(RAMSS), 26th International Conference on Software
Engineering, Edinburgh, Scotland, 2004.

[15] M. VanAntwerp and G. Madey. Warehousing, mining,
and querying open source versioning metadata, 2008.


