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Abstract. Open source software (OSS) development communities are
typically very specialised, on the one hand, and experience high turnover,
on the other. Combination of specialization and turnover can cause parts
of the system implemented in a certain programming language to become
unmaintainable, if knowledge of that language has disappeared together
with the retiring developers.

Inspired by measures of linguistic diversity from the study of natural
languages, we propose a method to quantify the risk of not having main-
tainers for code implemented in a certain programming language. To
illustrate our approach, we studied risks associated with different lan-
guages in Emacs, and found examples of low risk due to high popularity
(e.g., C, Emacs Lisp); low risk due to similarity with popular languages
(e.g., C++, Java, Python); or high risk due to both low popularity and
low similarity with popular languages (e.g., Lex). Our results show that
methods from the social sciences can be successfully applied in the study
of information systems, and open numerous avenues for future research.

1 Introduction

Open source software (OSS) development is typically characterised as a decen-
tralised, self-directed, highly interactive, and knowledge-intensive process [14]. In
OSS, programmers with different skill sets and skill levels, supporters, and users
organise themselves in virtual (online) communities, and voluntarily contribute
to a collaborative software project [22].

OSS communities are typically very specialised [26,29,37]: contributors fo-
cus on few activity types and are very territorial, touching only few parts of
the system. OSS communities also co-evolve together with the associated OSS
systems [22]: faced with turnover [28], these communities are sustained and re-
produced over time through the progressive integration of new members [6].
However, with the abandonment of existing developers, OSS communities lose
human resources with knowledge of the system or of some of its components,
or, stated differently, with mastery of certain programming languages. Ensuring
the heterogeneity of an OSS community in terms of the skills of its members is
important for a project’s survival and performance [9]. To further put this issue
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into context, software systems are increasingly developed using multiple pro-
gramming languages, as illustrated by the growing proportion of multi-language
software developed in the United States from 1998 (30%) [16] to 2008 (50%) [17].
In addition, as languages become obsolete and development teams are faced with
the problem of maintaining legacy code, or migrating it in order to survive, find-
ing developers with knowledge of obsolescent technologies becomes more chal-
lenging. As the case may be, OSS communities are exposed to the risk of not
finding suitable contributors with knowledge of certain programming languages.
Although new to software maintenance research, quantifying the risks asso-
ciated with knowledge of programming languages in OSS communities around
multi-language systems is related to the well-known concept of linguistic diver-
sity from the study of natural languages [11]. Drawing inspiration from measures
of linguistic diversity (Section 2), in this paper we attempt to quantify the afore-
mentioned risk, associated with a given programming language in an OSS com-
munity (Section 3). Our model assumes that contributors are polyglot, i.e., they
can “speak” more than one programming language. Moreover, analogously to di-
alects of a natural language being regarded as similar (mutually intelligible), our
model also considers certain programming languages to be related. To quantify
the strength of this relation, we mine patterns of shared knowledge of program-
ming languages from developers participating in StackOverflow, a popular Q&A
website (Section 4). Such relations need not be symmetrical: just like “Swedish
is more easily understandable for a Dane, than Danish for a Swede” [20], our
StackOverflow-based measure considers, e.g., that a C+4 developer would be
able to take over code written in C with less difficulty than the other way around.
By design, we can distinguish between two types of programming languages:
those causing high risk within an OSS community (due to limited spread and
low “similarity” with other more popular languages), and those causing low
risk (either due to their popularity, or to their closeness to other more popular
languages known to members of the community). Finally, to illustrate our risk
measure, we track its evolution throughout the evolution of Emacs (Section 5).

2 Linguistic diversity for natural languages

Measuring linguistic diversity for natural languages is an old research topic,
dating back to Greenberg in 1956 [11]. For a given geographical area, Greenberg
considers the probability that two randomly-chosen individuals do not speak
the same language as a measure of the region’s linguistic diversity. In this model
(the first in a series of eight such measures proposed by Greenberg), if everyone
speaks the same language, the probability that two randomly-chosen individuals
speak the same language is, naturally, 1. Similarly, if everyone speaks a different
language, this probability is 0. In general, for a language ¢, the probability py
that a randomly-chosen individual speaks ¢ is the proportion of ¢-speakers to

the total population, i.e., py = %7 where Sy is the set of /-speakers, P is the

entire population, and |-| denotes cardinality. Consequently, the probability that
two randomly-chosen individuals speak ¢ is p?, hence the probability that two



randomly-chosen individuals speak the same language is >, p7, where L is
the set of all languages spoken in that region. The Greenberg linguistic diversity
index A [11], corresponding to this simple model, is defined as'

A=1-3 0 (1)

LeL

A reaches its minimum of 0 when everyone speaks the same language (linguistic
uniformity). Similarly, A reaches its maximum of 1 when everyone speaks a
different language (maximal linguistic diversity). However, this model is overly
simplistic, since (i) it does not consider mutual intelligibility between different
languages (linguistic diversity should be lower in areas where related languages
or dialects are spoken), and (ii) it does not consider polyglotism (a member of
the population can speak more than one language). Concerns (i) and (ii) above
are orthogonal. To account for (i), Greenberg proposed B [11], defined as

B=1- Z DePim - sim (€, m), (2)
¢,meL

where sim (¢, m) is a measure of mutual intelligibility interpreted as the similarity
between languages ¢ and m (ranging between 0 when ¢ and m are completely
independent, and 1 when ¢ = m). Clearly, B reduces to A if sim (¢, m) = 1 when
¢ = m, and 0 otherwise.

To account for (ii), if polyglot, an individual is considered equally probable
to speak any of the languages she commands, hence the expressions for A and
B above are adjusted accordingly. Let £ be the power set (set of all subsets)
of L, excluding the empty set; |£| = 2" — 1, where n = |L|. For example, if
L = {A,B,C}, then £L = {A,B,C,AB, AC,BC, ABC}. Let X, be the set of
exclusive ¢ speakers, i.e., individuals that speak ¢ but do not speak any other
language besides ¢. For a subset s € L, by abuse of notation, we write X
to denote the set of individuals that speak the combination of languages in s
exclusively (i.e., they speak all languages in s, but no other languages besides
those). By definition, 3 . . [Xs| = |P|. Index B becomes [11]

D, sim (¢, m)
F=1- pp- Es’wll;t. m ; (3)
stel
where p; = ||)1(;“, for all s € L. Clearly, F reduces to B in the monolingual case,

since |s| =1 for all s € £. B further reduces to A as discussed above.

Indices B and F as defined above interpret mutual intelligibility as similar-
ity and hence assume it to be symmetric. However, it is well-known that mutual
intelligibility is not necessarily symmetric: e.g., Swedes have more difculties un-
derstanding Danish as opposed to Danes attempting to understand Swedish [20].

In the original paper [11] Greenberg only describes the linguistic diversity indices,
but does not formalise them. The current formalisation is ours.



Therefore, one can define sim (¢, m) = max(mig(m), mi,, (¢)) where miz(m) is
the measure of intelligibility of the language m for speakers of language ¢. Sim-
ilarly to sim(¢,m) we require mig(m) to range between 0 and 1, such that
mig(m) = 0 if m is unintelligible for the speakers of £ and mie(m) = 1 if m
is intelligible for all speakers of £. In particular, if £ = m then miy(m) = 1.

3 Risk of using a programming language

There are many risks impacting software development, and many methods to
estimate them [23]. In this paper we do not aim to cover all possible facets of
risk, but rather focus on a particular scenario. For a (open source) software
project using multiple programming languages, we study the readiness of the
developer community to take over code implemented in a certain language, and
evaluate the risk of not finding contributors that can “speak” that language.

Based on the discussion of linguistic diversity above, we require that a mea-
sure of this risk be domain-specific, i.e., aware of relations between programming
languages. To simplify our model, we assume perfect fluency of developers in all
the features of the languages they speak, even as the languages evolve. In ad-
dition, we assume constant knowledge in time (i.e., once a developer speaks a
certain programming language, she never “forgets” how to speak it). For the
purpose of empirically illustrating the risk measure (Section 5), we need to ap-
proximate at each point in time the developers with knowledge of a certain
programming language. To this end, we furthermore assume instant fluency: a
developer is said to “speak” a certain programming language at time 7 if she
has performed at least one change to a source code file in that language, prior
to 7. Relaxing these assumptions is considered as future work.

3.1 Risk measure

Let S be a multi-lingual software system, and let D be its developer community
at time 7. Let L be the set of programming languages in use in S at time 7, i.e.,
those for which there exist source code files at time 7 that need to be maintained.
Similarly to the formalisation of the Greenberg indices from Section 2, let £ be
the power set of L, excluding the empty set. Let X, be the set of developers at
time 7 that speak ¢ exclusively, i.e., they speak ¢ but do not speak any other
language besides . For a subset s € L, let X be the set of developers at time
7 that speak the combination of languages in s exclusively (i.e., they speak all
languages in s, but no other languages besides those). By definition,

> X =Dl (4)
seLl

For a programming language ¢ € L, we define the risk of S at time 7 of not
finding developers that can speak £ as

risky =1 — g D -Iilgx mie(k), (5)
S
seL



where ps = Iéj‘ll is the probability at time 7 that a developer speaks the com-

bination of languages in s exclusively, and miy(k) is an asymmetric mutual in-
telligibility measure as above. To illustrate the need for an asymmetric measure
recall, for example, that C was originally a subset of C++ (the version of C de-
fined by C89 is commonly referred to as the “C subset of C++” [30]), hence we
perceive C to be more similar to C++ than C++ is to C. Therefore, assuming
fluency of developers in all language features, and comparable complexity of the
different components, we expect a C++ developer to be able to take over C code
with less difficulty than the other way around.

As opposed to Greenberg [11] who is interested in an “average” case (i.e., as
discussed in Section 2, if polyglot, an individual is considered equally probable
to speak any of the languages she commands) when computing the linguistic
diversity index F' (3), we opt for the max(-) function in (5) to denote that if
polyglot, it is the language most intelligible to the language in question that will
influence how difficult it is for a developer to take over that code.

To obtain a better understanding of how (5) can provide insights in the risk
of not finding developers that can speak ¢, we distinguish between developers
Dy that speak ¢, and developers D_, = D\ D, that do not speak ¢. Similarly, let
Ly be a subset of L such that Vs € Ly,£ € s, and let L_, = L\ L,. Then, we can
rewrite (5) as risk, = 1 _Zseﬁg Ds - Maxges mig(k) — Zseﬁﬁ Ps - Maxges Mig(k)
which, given that miy(k) = 1 if k = ¢, and maxges mig(k) = 1 for all s € Ly,
further simplifies to:

D.
riske = | |Dr| - ; ps - max mig(k) (6)
sE€EL

Closer inspection of (6) reveals that the risk of not finding developers that can

speak ¢ is high if very few developers speak ¢ (i.e., \|D5|z| ~ 1) and other lan-

guages are very distinct from ¢ rendering ¢ barely intelligible for “speakers” of
those languages (i.e., Zseﬁﬁz ps - maxges mig(k) ~ 0 because the languages in
the collection are very different from ¢, maxges mig(k) ~ 0). By a complemen-
tary argument, two typical low-risk scenarios are when almost everybody can
speak ¢ (i.e., “‘Dl;fl ~ 0, hence ps ~ 0 for s € L_;), or when almost nobody can

speak ¢ (i.e., ‘?Bl‘z‘ ~ 1) but popular languages make ¢ easily understandable

(i.e., maxges mig(k) ~ 1 for s € L,). To distinguish between these two scenar-

ios in the empirical evaluation (Section 5), we also consider the percentage of
[ D]
[D] -

developers that do not speak /,

4 Similarity and mutual intelligibility between
programming languages

Mutual intelligibility, while being distinct from traditional notion of similarity,
is still close to it. Therefore, in this section we mostly focus on measures of
similarity of natural languages [7,11] and their counterparts in programming



linguistics [8] (the study of programming languages), and introduce our mutual
intelligibility measure based on analysing StackOverflow?.

4.1 Approaches to similarity between programming languages

In linguistics, two complementary approaches to compute similarity between
languages are commonly pursued. First, a similarity measure can be obtained
“using an arbitrary but fixed basic vocabulary, e.g., the most recent version
of the glottochronology list”, by computing “the proportion of resemblances
between each pair of languages to the total list” [11] (a similar approach has
been recently pursued to study asymmetric mutual intelligibility [20]). Second,
a similarity measure can be obtained using the distance between the branches
languages fall into in a classification tree [7]. Using this approach, the more
features two languages have in common, the more similar they are.

In programming linguistics, the approaches above are to a large extent unfea-
sible. First, application of approaches based on a common vocabulary would re-
quire establishing an agreed list of universal concepts present in all programming
languages, akin to the Swadesh list for the natural languages [33]. The “word
list” approach is being criticized in linguistics [13]; moreover, it introduces the
need for identifying so-called cognates, or etymologically related words. The pro-
cess of identifying cognates is complicated, since cognates do not necessarily look
similar and words that look similar are not necessarily cognates [12]. Choosing
the word list approach for similarity of programming languages assumes presence
of universal concepts common to all (or at least most) programming languages.
Even if compilation of such a list is possible at any given moment, it would
rapidly become obsolete, since programming languages emerge much faster than
natural languages. Moreover, the word list approach can be expected to trigger
similar discussions about possible cognates, e.g., whether notions of a function
in Lisp and C should be considered cognates or not.

One could also base a similarity measure on the shared concepts that un-
derlie the design of both languages (e.g., data and types, variables and storage)
and the paradigms to which they adhere (e.g., imperative or object-oriented)
(cf. [7]). “We can master a new programming language most effectively if we
understand the underlying concepts that it shares with other programming lan-
guages” [38, p4]. Again, the more attributes two languages would share in com-
mon, the more similar they would be considered. However, selecting the right
attributes is challenging, to say the least. Most reliably, one could make use of
taxonomies of programming languages [27]. However, as languages evolve, such
taxonomies become inherently out of date and their categories change [15].

As an alternative to word-list and classification-tree approaches, one may
consider recent studies [4, 18] that targeted the joint usage of programming lan-
guages. Karus and Gall [18] studied 22 open-source systems and observed two
groups of languages for which the source code files frequently co-change, namely
XML, XML Schema, WSDL (Web Service Definition Language) and Java on the
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one hand, and JavaScript and XSL (e.g., XSLT, XPath) on the other hand. In a
larger-scale study of 9,997 projects, Delorey et al. [4] observed that JavaScript
and PHP, Java and JavaScript, C and C++, and C and Perl are commonly used
both by the same authors as well as in the same projects.

As opposed to the actual usage, reflected in implementation of software sys-
tems, Doyle and Stretch [5] studied services offered by British software compa-
nies. The authors considered two programming languages to be similar if multi-
ple companies offered these languages as part of their services. While Doyle and
Stretch [5] employ the term “related by usage” to describe this relation, we pre-
fer to call it “related by knowledge” and to reserve the term “related by usage”
to such approaches as [4,18]. Indeed, companies offering multiple programming
languages as part of their services do not necessarily use these languages in the
same project. Instead, these companies have employees, potentially different,
knowledgeable about each of these languages.

Both the “related-by-usage” and “related-by-knowledge” approaches can be
seen as pertaining to pragmatics of programming languages which, together with
semantics, are considered the most decisive for quantifying the similarity between
programming languages [38, p5]. Therefore, we also expect that as opposed to
both the word-list and classification-tree approaches, pragmatic similarity more
accurately reflects developer expertise and ease of switching from one program-
ming language to another. In Section 4.3 we also propose a pragmatics-pertaining
mutual intelligibility measure, refining the “related-by-knowledge” insights of
Doyle and Stretch [5]. Specifically, we base the mutual intelligibility measure on
shared knowledge of the programming languages, as reflected in StackOverflow
tags representing programming languages.

4.2 StackOverflow

StackOverflow (SO) is a free programming questions and answers (Q&A) site
known to foster knowledge sharing among the developers [34,36]. When posting a
question, SO users associate at least one and at most five different tags to it, and,
in turn, become associated with these tags. When answering a question, SO users
inherit all the tags associated with this question. Therefore, while each question
can have at most five tags, a user can inherit an arbitrarily large collection of tags
from all the questions she asked and answered. Tags can be related to program-
ming languages (e.g., c#, java, php), operating systems (e.g., windows, linux),
specific frameworks or technologies (e.g., hibernate, grails), specific versions
of either of the above (e.g., c#-4.0, windows-7, hibernate-4.x), cross-cutting
concerns (e.g., logging, algorithm), or other topics. SO tags can be collabo-
ratively edited: while anyone can suggest an edit to question tags, only higher
ranked users can review and edit tags, ensuring quality and reliability of the
tags. Here we explore the public SO data from September 2011 (2,010,348 ques-
tions and 756,694 users).® The data is organised such that one can distinguish
between question tags and user tags; one can also distinguish between user tags
collected from asking questions, and user tags inherited by answering questions.

3http ://wwu.clearbits.net/torrents/1836-sept-2011
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Question tags. Frequent pairs of tags (e.g., javascript—jquery, asp.net—c#)
indicate that these languages are commonly used together. However, this ap-
proach has several drawbacks. First, the number and skills of the users answer-
ing these questions is not considered (potentially leading to false positives). For
example, there may be many questions tagged 71 and 75, suggesting that these
languages are related, but only few people answering them. The relation between
71 and 7o might therefore not be representative of the entire (large) developer
community (e.g., although few gurus with knowledge of both 71 and 7o exist,
average developers may not possess the skills to easily switch between them).

User tags - answering questions. Since users inherit tags from questions they
answer, frequent pairs of tags indicate that developers who possess knowledge
of one language commonly also possess knowledge of the other. A frequent pair
of tags (71, 72) can emerge from multiple situations:

— many users inheriting 71 and 79 by answering questions tagged (71, 72): either
there are few questions tagged (71, 72), but many users answering them (i.e.,
although 7 and 7 do not seem to be commonly associated in practice —
e.g., they used to be but are by now obsolete, there is still a large pool of
developers mastering both), or there are many questions tagged (71, 72), and
many users answering them (i.e., 71 and 75 are both commonly associated
in practice, and supported by a large user base);

— many users inheriting 71 from questions tagged 71, and 75 from different ques-
tions tagged 7o (hence the pair 71—72). In addition to an argument similar to
the previous one, this also indicates languages that although rarely related
in practice, are commonly mastered by developers. Hence, although seem-
ingly unrelated, it seems easy for developers to switch from one language to
another since they frequently master both.

User tags - asking questions. Users also inherit tags from all the questions they
ask. A frequently occurring pair (71, 72) indicates that developers are frequently
faced with joint usage of 7 and 7, irrespective of the expertise available. In
turn, this can suggest an emerging trend in relating 7 and 7o by usage. Note
that as opposed to the variation across questions (many questions [of the same
person]), frequent pairs (71, 72) are now supported by large user pools (many
questions of many persons). However, this does not indicate developer expertise.

Questions vs. users. In conclusion, both the questions-based and the users-
based approaches are subject to potential false positives resulting from com-
peting rather than interacting languages. However, we opt for user tags rather
than of question tags, since the former can suggest relations between languages
representative of the skills of the developer community (i.e., there are many
users that share knowledge of both—fewer false positives), as well as relations
between independent languages (i.e., languages which are seemingly unrelated,
but knowledge of both is frequently shared by users—fewer false negatives).



4.3 StackOverflow-based mutual intelligibility measure

To quantify shared knowledge of programming languages by developers partic-
ipating in SO discussions, we perform association rule mining [1] on SO tags
representing programming languages. We say that a language k (with tag 73) is
mutually intelligible or “related by knowledge” to a language ¢ (with 7) if many
of the SO users having inherited 75 are also associated with 7. As mutual intel-
ligibility measure of language k with respect to language ¢ we choose confidence,
one of the measures typically used to quantify the strength of association rules.

nBoth

mig(k) = conf (1, = 1) = WLeft’

(7)
where nLeft is the number of users associated with 75, and nBoth is the number
of users associated with both 7, and 7.

To ensure quality of the association rules, we perform a number of pre- and
postprocessing steps. Preprocessing consists of filtering out potentially unreli-
able posts (either questions or answers with negative or zero score, as reflected
by the number of votes), and infrequent pairs of tags (encountered for a single
user). This limits the number of eligible SO contributors to slightly over 400,000
(out of 756,694 initially). Postprocessing is based on lift, another popular qual-
ity measure for association rules. If lift > 1, the tags appear more frequently
together in the data than expected under the assumption of conditional inde-
pendence [2]. Moreover, we require it to be unlikely that lift > 1 is observed only
by chance and perform Fisher’s exact test to determine statistical significance.
Hence, we say that k is unintelligible to the speakers of ¢ (we redefine when
mie(k) = 0) if lift < 1, or lift > 1 is not statistically significant at 5% signifi-
cance level. Approximately 7% of the pairs were removed by this filtering step
(e.g., Python = Visual FoxPro has lift 0.83; Curry = C# has lift 1.78, p = 0.31).
Finally, to reduce the amount of data processing required, we limit our scope
to a subset of 160 programming languages, hence 160 corresponding SO tags.
Our subset includes the most popular programming languages mentioned by
TIOBE*, Wikipedia®, and the Transparent Language Popularity Index®, as well
as exotic languages such as M4 and RelaxNG, in use in Emacs. The complete
list of languages included in our selection is part of the online appendix.”

4.4 Empirical results

Table 1 displays values of the mutual intelligibility measure for a subset of the
programming languages considered (also studied in [4, 5, 18]). An entry (row,
column) represents the similarity of the language in column with respect to the
one in row. For complete results we refer to the online appendix”. By definition
each language is perfectly mutually intelligible with itself (100% on the main

4http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
5ht‘tp ://en.wikipedia.org/wiki/List_of_programming_languages
6http://lang—index.sourceforge.net
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Asm C CH+4 Cobol CSS Groovy HTML Java JavaScript Perl PHP Shell XML
Asm  [100% 55% 54% 1% 15% 1% 23%  39% 28% 12% 28% 1% 18%

C 8% 100% 48% 0% 12% 1% 17% 31% 21% 8% 21% 0% 13%
C++ 5% 32% 100% 0% 10% 1% 15% 26% 18% 6% 18% 0% 11%
COBOL | 12% 35% 40% 100% 24% 3% 29% 48% 38% 17% 37% 1% 28%
CSS 2% 10% 13% 0% 100% 1% 61% 21% 54% 5% 39% 0% 16%
Groovy 3% 15% 18% 1% 17% 100% 26% 63% 32% ™% 23% 0% 26%
HTML 2% 11% 14% 0% 46% 1% 100% 25% 56% 5% 40% 0% 18%
Java 2% 12% 15% 0% 10% 2% 15% 100% 19% 1% 16% 0% 12%
JavaScript| 2% 9% 11% 0% 25% 1% 35% 20% 100% 4% 31% 0% 13%
Perl 5% 2% 2% 1% 18% 2% 26% 31% 30% 100% 31% 1% 19%
PHP 2% 9% 11% 0% 19% 1% 26% 17% 33% 4% 100% 0% 12%
Shell 12% 34% 38% 1% 19% 3% 32% 43% 33% 24% 35% 100% 24%
XML 3% 14% 19% 0% 20% 2% 29%  34% 35% ™% 31% 0% 100%

Table 1. SO-based mutual intelligibility measure ([column] with respect to [row]).

diagonal). Next we observe that Assembly programmers are usually well-versed
in other languages, including HTML (23%), Java (39%) and JavaScript (28%).
Since there are only 44 posts (questions+answers) tagged assembly and java,
these languages are unlikely to be related by usage, but are related by knowledge
(more than 1000 developers with knowledge of both). Hence, if replacement
developers are required for Java, one might consider the Assembly developers
as candidates. We further observe that all the languages considered exhibit low
intelligibility with such languages as COBOL, Groovy and Shell. This means that
when COBOL, Groovy or Shell programmers leave, finding their replacement
among programmers versed in other languages in Table 1 might be problematic.
For COBOL one could argue that the low values can be explained by under-
representation of legacy technologies on SO. This is, however, highly unlikely for
Groovy, an object-oriented programming language first released in 2007. Low
mutual intelligibility values of other languages with COBOL, Groovy and Shell
contrast sharply with more easily replaceable developers in such languages as
C, C++, HTML or Java. As expected, the table also shows a high degree of
asymmetry. For instance, 63% of Groovy programmers know Java but only 1% of
Java programmers know Groovy (not surprising since Groovy has been developed
for Java, but constitutes only a minor fraction of the overall Java development).

Although we are measuring different things (similarity by usage in case of
Karus and Gall [18] and Delorey et al. [4] versus mutual intelligibility or sim-
ilarity by knowledge in our case), we expect that similarity by usage implies
similarity by knowledge, since languages used together by the same person are
likely to be known together by that person. Our results partly support the find-
ings of Karus and Gall [18] (strong relation between XML and Java—34%, and
limited evidence for C/C++ and XML—13% and 11%, respectively). Our re-
sults also support the findings of Delorey et al. [4], who observed strong relations
between JavaScript and PHP (= 31%, < 33%), Java and JavaScript (= 19%,
< 20%), C and C++ (= 48%, < 32%), and C and Perl (= 8%, < 25%).

5 Illustration of the approach

To illustrate our approach in a real-world context, we performed a case study
on Emacs [32], a popular text editor in development since the mid-1970s.
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Fig. 1. The risk measure risk; (black solid line), the share of the community that does
not speak ¢ (dashed red line), and the difference between the two (dotted blue line).

We identified 446 different (name, email) pairs in the author field for each
change recorded in the Git log, corresponding to 27 years of Emacs develop-
ment (1985-2012). Since there were multiple email addresses associated with the
same names, and multiple names associated with the same email addresses, we
performed identity merging [19,37] (369 unique identities remained). To track
the evolution of our risk measure throughout the evolution of Emacs, we ex-
tracted the programming languages used. We analysed the filename extensions
of all the source files mentioned in the Git log. After filtering out files with-
out extensions (mostly related to documentation), configuration files, make files,
documentation files, and auxiliary files (e.g., used by the version control system),
we uncovered the following 26 different programming languages: Assembly, Awk,
Bash, Bison, C, C++, Cocoa, C shell, Emacs Lisp, Grammar, HTML, Java, Lex,
Lisp, M4, Objective-C, Pascal, Perl, Prolog, Python, RelaxNG, Unix shell, SRe-
code, Termcap, Windows Batch, and XML. Next, we estimated the development
community from which replacement developers can be sought, at one-month in-
tervals. To filter out inactive contributors, at each point in time (e.g., February
2002), we considered that the community (per programming language) consisted
of those developers who performed at least one change to a source code file (im-
plemented in that language) in the past six months (e.g., between September
2001 and February 2002). Finally, we computed risk, at one month intervals.

We discuss four representative examples (Figure 1). Detailed plots for all 26
languages are available in the online appendix®. We start with Unix shell (top
left). The risk measure and the percentage of non-speakers are very close, i.e.,
evolution of the risk measure can be explained predominantly by the evolution
of the percentage of non-speakers. The increasing trend observed from 1991 to
2000, followed by the stabilisation from 2000 onwards reflects the diminishing
proportion of Unix shell developers. Moreover, very low values of the dotted blue
line indicate that Unix shell is not commonly known by developers programming

8http ://www.win.tue.nl/~bvasiles/emacs/risk.html
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in popular languages (e.g., Emacs Lisp and C). Emacs Lisp (top right) exhibits
similarly close values of the risk measure and the percentage of non-speakers,
but both values are low (below 0.2 starting from 1998). The lion’s share of
the development community is, hence, familiar with Emacs Lisp. In contrast,
Python (bottom left), although spoken by a similarly small fraction of the Emacs
community as Unix shell (dashed red line), exhibits much lower risk (black line).
The high values for the difference between the two time series (dotted blue
line), relatively stable in time, indicate that Python is commonly known by
developers programming in popular languages. Indeed, mipyihon (EmacsLisp) ~
0.46, mi python (Lisp) =~ 0.44, and mi pyshon (C) =~ 0.23. C (bottom right) is spoken
by approximately half of the Emacs community and is also commonly known
by developers programming in Lisp (0.39) and Emacs Lisp (0.38), resulting in
very low risk. Emacs Lisp exhibits a similar pattern, with the difference that
its low risk is mostly due to the large share of Emacs Lisp speakers within the
community rather than high similarity with the other languages.

6 Conclusions

Inspired by linguistic diversity measures, we proposed a method to quantify
the risk of not finding developers who can maintain code implemented in a
certain programming language, and empirically illustrated it using a case study.
Our method takes into account similarities between programming languages,
for which we have proposed a novel measure based on shared knowledge of the
developers participating in StackOverflow. By tracking the evolution of such
a risk measure as projects evolve (e.g., in a dashboard-like application), risky
languages can be discovered on time, and preventive action can be taken to
ensure the maintainability of components implemented in those languages.

We believe the results obtained so far to be a promising start. Our new dimen-
sion to risk assessment, bordering software maintenance and the social sciences,
does offer additional insights into the evolution of a software system, and does
open up many avenues for future research. For example, to offer a more complete
understanding of evolution, our risk model should be refined to incorporate the
number of artifacts in a certain programming language (the risk seems higher
if a large proportion of a system is implemented in a risky language), their role
(examples may be less important than the core implementation), their stabil-
ity as reflected in a version control system (files not changed for a long time
seem less risky than recently changed ones, cf. [25]) or their algorithmic or lin-
guistic complexity (files implementing more complex behaviour or using more
exotic language features seem to be more risky). We also plan to include a more
refined language-tag mapping such that tags corresponding to versions and di-
alects (e.g., c#-2.0 and swi-prolog) can be accounted for. A further refinement
would include distinction between tags representing different technologies (e.g.,
ejb, hibernate and swing). Apart from being all implemented in Java, such
technologies share little in common and likely require different skills to main-
tain.



We also would like to introduce a project-level risk measure risk p, being the
maximum of risk, for all languages ¢ in the project P, indicating the highest
risk of not having developers who can take over code implemented in a certain
language. Similarly, for a given project P we can identify and rank developers
that—should they decide to leave P—would contribute most to increase of riskp.
This ranking can be seen as an alternative interpretation of the “bus factor” [10]
and a way to quantify the developers’ contributions [3].

Beyond the boundaries of linguistic diversity is the general concept of diver-
sity, and its measurement in several biological, physical, social, and management
sciences [24]. Some of these techniques have recently been applied in context of
software engineering as well [21, 31, 35]. A detailed comparison of these tech-
niques with the risk measure proposed in the current paper is considered as
future work.
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