
24 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Due to the open nature of Free/Libre/Open Source software projects, researchers have gained access to a
rich set of development-related information. Although this information is publicly available on the Internet,
obtaining and analyzing it in a convenient way is not an easy task and many considerations have to be
taken into account. In this paper we present the most important data sources that can be found in libre
software projects and that are studied by the research community: source code, source code management
systems, mailing lists and bug tracking systems. We will give advice for the problems that can be found
when retrieving and preparing the data sources for a posterior analysis, as well as provide information
about the tools that support these tasks.

Keywords:	 bug tracking; mailing list; open source software; software metrics; software repository
mining; source code management

Introduction

The fact that communication and organization
are heavily tied in libre software1 projects to
the use of telematic means and that these in-
teractions are, in general, stored and publicly
offered over the Internet makes the number of
data sources where development information
can be extracted from grow beyond source code.

In addition, the ability of having memory (as
data from activities in the past can be obtained)
offers the possibility of performing longitudi-
nal analysis as well. Research groups from all
around the world have already taken benefit
from the availability of such a rich amount of
data sources in the last years. Nonetheless, the
access, retrieval and fact extraction is by no
means a simple task and many considerations

Tools for the Study of the
Usual Data Sources found in

Libre Software Projects
Gregorio Robles, Universidad Rey Juan Carlos, Spain

Jesús M. González-Barahona, Universidad Rey Juan Carlos, Spain

Daniel Izquierdo-Cortazar, Universidad Rey Juan Carlos, Spain

Israel Herraiz, Universidad Rey Juan Carlos, Spain

IGI PUBLISHING

This paper appears in the publication, International Journal of Open Source Software & Processes, Volume 1, Issue 1
edited by Stefan Koch © 2008, IGI Global

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-global.com

ITJ 4505

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 25

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

have to be considered to successfully mine the
data sources.

This article is probably the first attempt to
have a detailed description of the most com-
mon data sources that can generally be found
for libre software projects on the Internet and
the data that can be found in them. In addition,
we present some available tools that might help
researchers obtaining and partially analyzing
the described data sources. These data sources
comprise source code, source code manage-
ment (in the following, SCM), mailing lists
archives, and bug tracking system (in the
following, BTS).

Mining and analyzing these data sources
offer an ample amount of possibilities that
surpass or complement other data-acquiring
methodologies such as surveys, interviews or
experiments. The amount of data that can be
obtained, in a detailed way and in many cases
for the whole lifetime of a software project,
gives a precise description of the history of a
project (Bauer and Pizka, 2003). In this sense,
we have access to the activities (the what),
the points in time (the when), the actors (the
who) and sometimes even the reason (the
why) (Hahsler and Koch, 2005). Compared to
surveys, mining these data sources allows to
access data for thousands of developers and a
wide range of software projects. Most of these
efforts can be considered as non-intrusive, as
researchers can analyze the projects without
interacting with developers. But even in a small
environment, e.g., when evaluating the impact
of software tools in a small team (Atkins et
al., 2002), the use of data from one or more
of these sources provides additional insight.
Furthermore, mining software repositories
has many advantages compared to conducting
experiments as real-world software projects are
taken into consideration (Mockus and Votta,
2000, Graves and Mockus, 1998).

The structure of this article is as follows:
the next section handles the identification of
the data sources as well as its retrieval process.
Next, various analysis on source code are intro-
duced (hierarchy, file discrimination, analysis
of traditional source code files, analysis of the

rest of files (such as documentation, multimedia,
etc.), and authorship). The fourth section pres-
ents how SCM systems can be mined, putting
special attention on the CVSAnalY tool and
some details to be considered when performing
analyses on CVS. The fifth section presents the
most common format in which mailing lists are
stored (MBOX), while the sixth one is devoted
to present the data to be found in a BTS. Finally,
the reader can find a short summary of the article
in the last section.

Identification of data
sources and retrieval

There are some steps before the analysis of
data from libre software projects can be started
that should be considered: identification and
retrieval. It should be noted that there may be
several ways of accessing the data, depending
on the projects. This is because of the use of the
several development-supporting tools that proj-
ects use and of having different usage conven-
tions (for instance, the use of tags, comments,
among others, may differ from one project to
another). The complexity and feasibility of both
activities depend on the data source and on the
project. Figure 1 gives a diagram that shows
the steps that have to be accomplished for any
source considered in our study.

 In general terms, the identification of the
data source depends mostly on its significance
for the software development of a project.
Hence, identifying the source code, the SCM
system, the mailing lists or the BTS is in no
way problematic as it lies in the interest of the
projects that feedback is provided by users in
an easy and fast way. In these cases, the biggest
drawback is the lack of historical data. Some-
times we only have a partial set of the data, and
in the worst cases nothing at all. This situation
is common for software releases, where finding
historical versions of the software is sometimes
not possible. Other situations where this might
happen is when a development tool has not been
used in the early stages of development. This
is the case of many projects that start using a

26 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

SCM system once the project has gained certain
momentum. Having only partial data can also
be the result of a migration from one tool to
another, losing in the way some information
if not all. When researching libre software
projects, these considerations have to be taken
into account.

But there exist other data sources for libre
software projects that are not so obvious and
hence their identification is not that straightfor-
ward. For instance, organizational information
that is embedded into some format and that
is beyond the use of standard tools as SCM
systems, mailing lists and BTS. In general,
such type of information is project-dependent
and can be only obtained for one project or
a small number of them. This is the case for
packaging systems such as the .deb format
used in Debian and Debian-based distributions
or the .rpm Red Hat package system in use in
Red Hat and other distributions. But beyond
this, we can find project-related information
in other places such as the Debian Popularity
Contest (Robles et al., 2006b) or the Debian
Developer database (Robles et al., 2005).
Other data sources may also be considered; for
instance, in KDE there is a file that is used to
list all the ones who have write access to their
SCM repository. Another example is given
in a study by Tuomi (Tuomi, 2004) in which
the credits file, a text file listing all important
contributors to the project, of the Linux kernel
are studied in detail. Identification of the data
source requires in such cases specific knowledge
on the project and is difficult if not impossible
to be generalized.

Once the data source has been identified,
it has to be retrieved to a local machine in
order to be analyzed (see Figure 1). Although
this process may not seem to be very difficult
at first, previous experiences have shown that

some considerations and good practices should
be followed in this step as reported by Howison
et al. in the retrieval of information from the
web pages hosted at SourceForge (Howison
and Crowston, 2004). For instance, the analysis
of the credits file, which can be found together
with the sources in many projects, has to deal
with the complexity that there is no standardized
way of naming the authors, so projects follow
their own conventions.

In the next sections we will enter into detail
in the process of data extraction and data storage
once the data have been properly retrieved from
the information source to a local machine.

Source Code

We should begin with the concept of release. It
is important due to the fact that it points out the
main milestone happened during the life of a
project. It usually has a common nomenclature
which is akin to “MM.mm.bb”. Where “MM”
means the number of the major release, “mm”
means the number of minor releases and “bb”
connotes some bug fixes and small improve-
ments.

As software development projects, source
code is the central point of all interactions,
being a primary way of communication and
playing a major signaling and coordination
role. According to (Lanzara and Morner, 2003),
source code “is transient knowledge: it reflects
what has been programmed and developed up
to that point, resuming past development and
knowledge and pointing to future experiments
and future knowledge.”.

The study of the source code, as the main
product of the software development process,
is a matter that has been done for over thirty
years now. But not only traditional source code

Identification Retrieval AnalysisData
Extraction

Data
Storage

Figure 1. Whole process: from identification of the data sources to analysis of the data

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 27

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(i.e., programmed in a programming language)
can be taken into account, but also all the other
elements that make the software, such as docu-
mentation, translation, user interface and other
files (Robles et al., 2006a).

The analysis usually starts with a source
code base that is stored in a directory (or al-
ternatively in a compressed directory, usually
in tar.gz or tar.bz2 format common in the libre
software world). After decompressing the
tarball, if needed, the hierarchical structure of
the source code tree is identified and stored.

Then, files can be grouped into several cat-
egories depending on type (as will be described
below) which allows for a more specific analy-
sis. This means, for instance that source code
files in a programming language can be analyzed
differently than images or documentation files.
On the other hand, the discrimination for files
with source code can be finer, identifying the
programming language and offering the pos-
sibility of using alternative metrics depending
on it. As a consequence, object oriented metrics
could be applied to files containing Java code,
but would not be required for files that are
written in assembler language.

 The whole process can be observed in
Figure 2: after (possibly) decompressing, the
directory and file hierarchy is obtained, then files
are discriminated by their type and finally ana-
lyzed, if possible taking into consideration the
file type that has been identified in the previous
step. In the following subsections the different
steps are described more in detail.

Hierarchical Structure

The structure of directories and files of a soft-
ware program (and how it changes over time)
has already been the focus of some research

studies (Capiluppi, 2004, Capiluppi et al.,
2004). The idea is that the technical architecture
and probably therefore the organization of the
development team is mapped by the tree hierar-
chy of directories. So, from a directory hierar-
chy, we could infer the organizational structure
of a libre software development project.

File Discrimination

File discrimination is a technique that is used
to specifically analyze files on behalf of their
content (Robles et al., 2006a). The most com-
mon way of discriminating files is by using
heuristics, which may vary in their accuracy as
well as in the granularity of their results.

A first set of heuristics may determine
the type of a file by considering its extension.
File extensions are non-mandatory, but usually
conventions exist so that the identification of the
content of a file can be made easier and to enable
the automation of administrative tasks.

Hence, a first step for file discrimination
consists of having a list of extensions that links
to the content of the file. In this context, the .pl
extension is indicative for a file that contains
programming instructions while a .png can be
considered as an image file. Of course, this can
be done at several granularity levels, meaning
that a .c file is a file that with high probability
contains programming language, being that
the programming language C code. Table 1
shows an excerpt of the list of file extensions
that can be used.

The file types that can be considered are
documentation, images, internationalization
(i18n) and localization (l10n), user interface
(ui), multimedia and code files. For the latter
type, a more detailed analysis and discrimination
between source code that is part of the software

Uncom-
pression Hierarchy File Dis-

crimination
(customized)

Analysis

Figure 2. Process of source code analysis

28 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

application (code) from the one that helps in the
building process (generally Makefiles, config-
ure.in, among others) and from documentation
files that are tightly bound to the development
and building process (such as README, TODO
or HACKING) can be made.

 A second step in the process of file dis-
crimination includes inspection of the content
of the files both to check if the identification
made by means of matching file extensions is
correct and to identify files that have no exten-
sion or whose extension is not included in the
previous list.

In this case, heuristics are generally
content-specific and may go more in depth
depending on the detail of discrimination we
are looking for. One of the most common ways
to improve file discrimination by looking at the
file content is to analyze the first line. There
exists some convention in source code files
that denotes that the programming language
that they contain. For instance, in the case of a
file written in the Python, Bourne again shell
or Perl programming language (examples can

be found in Table 2), the first line could contain
respectively the following information2.

In the case of programming languages,
further information can be gained from the
structure of the code, by the identification of
specific keywords or other elements such as
specific comments. For text files (especially
the ones that are based on mark-up languages),
tags and other specific elements may help in the
identification process. Finally, other algorithms
can be taken into account, as the information
returned by the UNIX file command on the
file type (which also identifies some of the
binary formats, especially useful in the case
of images).

Some of the previous discrimination tech-
niques are already in use in some tools, most
notably in SLOCCount (see (Wheeler, 2001,
Robles et al., 2006b)). As SLOCCount counts
the number of lines of code it is only concerned
with identifying source code files and identify-
ing the programming language in which they are
written, not considering all other file types that
we have taken into consideration in this work
(documentation, translations, and other).

Analysis of Source Code Files

The analysis of source code files is one of
the most known tasks. There exist an ample
number of measures that can be and have been
extracted directly from the source code, among
other its length (in lines of code or source
lines of code), complexity measures (as the
popular ones proposed by Halstead (Halstead,
1977) and McCabe (McCabe, 1976)) or even
composite metrics such as the Maintainability
Index (Oman and Hagemeister, 1992).

File type Extension/file name
matching

documentation *.html *.txt *.ps *.tex
*.sgml

images *.png *.jpg *.jpeg
*.bmp *.gif

i18n *.po *.pot *.mo
*.charset

ui *.desktop *.ui *.xpm
*.theme

multimedia *.mp3 *.ogg *.wav.
*.au *.mid

code *.c *.h *.cc *.pl *.java
*.s *.ada

build configure.* makefile.*
*.make

devel-doc readme* changelog*
todo* hacking*

Table 1. (Incomplete) set of matches performed
to identify the different file types

#! /usr/bin/python

#! /usr/bin/sh

#! /usr/bin/perl

Table 2. Examples of first line indicating that
the file is written in Python, Shell or Perl re-
spectively

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 29

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The availability of a certain range of tools
for this purpose makes the conception of a tool
that integrates all of them a primary task. The
goals of the integration is to make it possible
to extract all the metrics and facts from source
code files by using several tools in a simple and
most uniform way. The tools used to measure
the code should be, if possible, used as black
boxes, so that the integration tool does not
need to know or adapt its inner functioning. In
addition, the integration tool should handle the
input to and the output from the measurement
tools to ease its use.

That is precisely what can be done with
GlueTheos3, a tool designed and implemented
by the authors of this article: a system with an
architecture that allows the data retrieval and
analysis of public software development data
repositories. The structure of the GlueTheos
tool is presented in Figure 3, and consists of
a module for downloading (if required, with a
periodical pattern) the sources to be analyzed,
to examine the content of the sources on a file
basis, to run the tools depending on the file type,
to identify the results and store them properly

in a relational database system and finally to
provide results.

 The current version can access CVS,
Subversion and git. File discrimination allows
to run the tools specifically on the files where
this makes sense. Hence, if we had a tool that
returns object oriented measures from Java
files it would make no sense to run it on a shell
script. This step then optimizes the analysis to
be performed.

The next step is the heart of GlueTheos
and consists of running the different tools
on the source code and retrieving the data
that these tools return. GlueTheos has been
designed in a way in which it does not require
to adapt the tools it integrates, hence facing
the complexity of the various ways of calling
them and the various ways of obtaining their
results. Both calling and returning have been
solved following an object-oriented approach,
so that for any tool only the differences have
to be implemented.

The calling procedure requires information
such as the way a tool has to be called (mainly
the path to the executable), the input that the

Figure 3. Architecture of the GlueTheos tool

source Code Retrieval

file Discrimination

storage in a RDBMs

(statistical & other) analysis of the Data

Tool 1 Tool 2 Tool N...

30 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

tool requires (usually a file or a directory) and
the type of output that the tool returns (again,
usually a file or a directory).

The returning methods depend on the type
of output that the analysis tools provide. If it
is a file, the number of returning elements has
to be given and the special character that is
used to separate them (usually a tabulator, a
white space or a comma). In general, the path
that gives the filename of the file that has been
analyzed is also returned, so its position has to
be specified.

After retrieving and storing the data from
external tools, GlueTheos has to consider only
the data in the database to obtain statistical and
other results from the data set. This includes
some procedures to enhance the database struc-
ture in order to normalize the fields or to obtain
intermediate tables with statistical information
that is of common use.

Analysis of Other Files

Besides source code written in a program-
ming language, we identify other artifacts that
compose the sources of libre software projects.
(Robles et al., 2006a) shows the many possibili-
ties that arise from the study of those files, but
other references to this issue may be found in
related literature. Some authors have focused on
the analysis of the change log files (Capiluppi
et al., 2003) as they usually follow a common
pattern in libre software projects, although
sometimes this pattern is slightly different from
the standardized way used in GNU projects4.

Translation files may be used to keep track
of the amount of translation work that has been

accomplished to the moment and hence have a
quantitative manner of knowing the support of
that software in a given language.

Regarding licenses, in addition of a refer-
ence to the licensing terms that can be found
at the top of the code files, usually projects
have a text file which includes the full text of
the license. The filename may give enough
evidence for the type of license that a project
uses, but other ways can also be considered.
One that we have been trying with is the use of
a locality-sensitive hash like nilsimsa (Chang
and Mockus, 2008). This type of hashes return
codes with small changes for inputs that differ
only slightly. As intellectual property issues
have become a recent area of interest among
industry, some approaches (and tools, such as
FOSSology) have been presented that target
these problems (Gobeille, 2008).

Finally, the amount of documentation for
a software system could be a good topic for
empirical research. In this sense, the doceval5
tool offers a way of assessing and partially
evaluating the documentation that can be found
in the sources of libre software projects (Robles
et al., 2006c).

Authorship Analysis

Usually, source code files contain copyright and
license information in their first lines (Spinellis,
2003). So, for instance, the notice in the
apps/units.c file of the GIMP project shown in
Table 3 clearly states that the copyright holders
are Spencer Kimball and Peter Mattis and that
the license in use is the GNU General Public
License.

/* The GIMP – an image manipulation program

 * Copyright (C) 1995 Spencer Kimball and Peter Mattis

 *

 * This program is free software; you can redistribute it and/or modify

 [...]

Table 3. Excerpt of a copyright statement found in the GIMP project

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 31

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

 CODD6 is a tool that searches for author-
ship information in source code by tracking
copyright notices and other information in the
headings of files (Ghosh and Prakash, 2000,
Ghosh et al., 2002). It assigns the length (in
bytes) of each file to the corresponding authors.
The process that CODD follows to obtain these
results are shown in Figure 4.

 File extraction is composed of the init
subroutine which takes the source code package
(or packages) that are given through the com-
mand line by the user, decompresses them if
necessary, and tries to identify recursively the
files that the package contains.

During the file selection all source code
files, documentation, interfaces and not-re-
solved implementations are taken together
with their size in bytes, their MD5 sum and
their relative route in the package and stored
in a codd7. Files are selected by means of their
extension, so for instance the .c file extension
is categorized into source code files (usually

they correspond to C files). CODD stores the
.h files that have a .c in the same package as
interfaces (the algorithm that is used here de-
pends partially on the programming language
that is being analyzed). Calls to an interface in
source code files (for instance .c files for C) that
do not have their corresponding interface in the
same package (a .h for C) will be classified in
the non-resolved implementations category, that
in a future step will be handled for dependency
resolution.

In a third step two databases are created in
order to find shared source code and dependen-
cies. In the first one, named codefile_signatures,
all the MD5 sums of the files are stored. The
second one contains all the interfaces that were
found in the previous step. MD5 is a type of
hash that allows to know if two files are equal;
if they are they will have the same MD5 hash
value. MD5 hashes are very interesting when
the source code file is exactly the same, but a
single modification (i.e., when it is committed

File
extraction

File
selection

Dependency
database

Shared
source

Dependency
resolution

Ownergrep

Shared
resolution

xml2x

xml2sql

codd
cluster

web
interface

codd2xml

Figure 4. Process of the CODD tool

32 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

into the SCM of the new project the RCT-type
id changes) makes it impossible to recognize
it as a shared file.

In order to find shared source code, CODD
runs another time through all codds and looks
if the source code files appear more than once
in the database (really it looks if the name
and MD5 sum appear more than once). If this
occurs, the file is located in at least two dif-
ferent packages. A similar process is used to
resolve dependencies. CODD will search for
not-resolved implementations in the codds
and compare their MD5 sums with the ones
that are stored in the interfaces database. A list
with all the packages where this interface is
implemented will be inserted as well.

The owner grep block is the one that is
responsible for looking for authorship contri-
butions. It runs again through all source code
and documentation files and scans authorship
attribution by means of certain heuristics.
Mainly the heuristics look for several patterns:
email addresses [a], copyright notices [b] and
software control versioning ids [c]. Information
about the authors is stored in the credits section
of the codds. The regular expressions that have
been used are following:

[a]	 Email grep: [\d\w_\=\.\%]+?\@[\d\w\._\-
]+?\.\w+?)(?=[\s:>\n\r\)]|$

[b]	 Copyright grep: .*copyright (?:\(c\))?[\d\,\-
\s\:]+(?:by\s+)?([?\d]*)

[c]	 Id grep: (?:Id|Header).*?\d\d\:\d\d\:\d\d
(\S+?) \S+?

Next, the resolution of shared source code
is done. In the shared source code section of
the codds we still have files and a list of pack-
ages that contain these files. As these files can
only be assigned to a single package (in order
to avoid double counting the contribution of an
author), CODD looks for its author (running
again the ownergrep algorithm) in the file and
assigns it to the package in which the author is
the main contributor.

The last blocks of Figure 4 show that the
codds can be then transformed to an interme-

diate and independent format (as for instance
XML and SQL).

CODD is a very powerful tool, but it has
some weaknesses. The most important one is
that it lacks a way of merging the various ways
in which an author may appear. So, authors may
appear several times with different names or
e-mail addresses. For instance, we have found
that some developers have up to 15 e-mail ad-
dresses. In the case of companies, the same may
happen; so, IBM or the MIT appear in several
ways (up to ten times!) with slightly different
wordings (Robles et al., 2007).

Cleaning of the data should also be en-
hanced. The heuristics that are used in CODD
have proved to be very powerful, but cannot
avoid that developers use different conventions
to assign copyright. Most of these problems
could be solved by a set of more powerful
heuristics.

As CODD raises some limitations re-
garding authorship identification, the authors
decided 2004 to create a new tool from scratch
based on the heuristics given by CODD. This
tool has been called pyTernity8. The architecture
of pyTernity is identical to the one described for
CODD as it can be seen from Figure 5, although
it lacks of all the procedures for identifying
dependencies among files.

 The most innovative elements are the ones
that consider data cleaning and the identifica-
tion of multiple entries. For the former, entries
in database are removed from elements that
make them different; this goes from additional
white-spaces to the avoidance of dots. Some
heuristics have been set up for this, although
they have been complemented with a database of
frequent changes. Cleaning includes splitting up
an entry when it is due to two or more authors.
So, the entry “Spencer Kimball and Peter Mat-
tis” will result in two, one for Spencer Kimball
and another one for Peter Mattis. If this is the
case, both names appear as authors of the file
and get attributed half of its length (in bytes or
lines of code).

The latter part comprises the identification
of multiple entries. Developers may appear in

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 33

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

several ways, making results very unsatisfac-
tory. The first efforts in this sense went into
the construction of a large database where the
various entries identified for a given developer
were merged into a unique one. This has proved
to enhance results in a prominent way. Other,
more complex, routines may be used for ex-
tracting names from e-mails, with procedures
from the machine learning world as for instance
applying named entity recognition (Minkov et
al., 2005).

Once cleaning has been performed and
multiple entries have been identified, pyTernity
merges the entries in the database so that authors
appear only once in a file. This procedure im-
plies to add all the contributions by an author,
so it adds the lengths of each entry (in bytes or
lines of code).

SCM system meta-data

Generally speaking, most libre software proj-
ects use a SCM system to manage file versions
during the development process. They allow
to track changes and past states of a software
project. Thus, obtaining the current and any
past state of the code is made possible by the
use of a SCM system. This allows to make
source code analyses as we have presented
them in the previous section in a longitudinal
manner and to extract facts on the evolution of
a software project.

But beyond this, SCM systems store a set
of meta-data of the changes. These meta-data
can be tracked and analyzed. This information

is usually related to the interactions that occur
among developers and the SCM systems. In
general the information is only related to actions
that comprehend write access while reading
(downloading the sources) or obtaining other
information (diffs, among others) cannot be
tracked in that way. For instance, along with
a change, valuable information is recorded,
like the date of change, the full path where the
change occurred, user who committed or the
comment written by the committer9.

Here, we present a tool that analyzes the
interactions that occur between developers
and the most used SCM systems used in libre
software projects at the current time, CVS,
Subversion, git and Bazaar. This tool, which
has been labeled CVSAnalY, is based on the
analysis of the SCM system log entries and
implements all the theoretical details that will be
presented in this section (Robles et al., 2004).
Another tool, called SoftChange, has been used
for similar purposes by German et al. (Germán
and Hindle, 2005).

In CVSAnalY any interaction -also called
commit- a committer does with the central SCM
system repository is logged with following data
associated (some aforementioned): committer
name, date, file, revision number, lines added,
lines removed and an explanatory comment
introduced by the committer. There is some file-
specific information that can also be extracted,
as for instance if the file has been removed10.
On the other hand, the human-inserted comment
can also be parsed in order to see if the commit
corresponds to an external contribution or even
to an automated script.

Figure 5. Process of the pyTernity tool

File
extraction

File
selection Ownergrep insertion

Database

Merging cleaning
Multiple
Entries

34 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Basically CVSAnalY consists of three main
steps, preprocessing, insertion into database and
post-processing, but they can be subdivided into
several more as it has been done in Figure 6. In
the following subsections the inner functioning
of CVSAnalY will be presented, focusing on
details of its use with CVS. Its use with other
SCM systems should be similar.

Preprocessing:
Retrieval and Parsing

Preprocessing includes downloading the sources
from the repository of the project in study. Once
this is done, the logs are retrieved and parsed
to transform the information contained in log
format into a more structured format (SQL for
databases or XML for data exchange).

Besides the information for every commit,
other data obtained from the parsing requires
some attention. Although committers seldom
change their username, sometimes this hap-
pens, so the various usernames have to be
merged into a unique one. For instance, in the
KDE project committers usually get an account
prior to a kde.org e-mail address. If a developer
is afterwards assigned an e-mail address the
username of e-mail and SCM system have to
be identical for organizational and practical
reasons. If the username in the e-mail address
is different from the CVS username, CVSAnalY
syncs with the former one and the actions done
with both usernames are considered as done by
a unique developer.

The following is a CVS log excerpt for
the AUTHORS file of the KDevelop project11.
It gives the last three revisions (from revision
1.47 to 1.49) done during the last months of
the year 2003 until mid-2004. Log messages
from other SCM systems, such as Subversion,
git or Bazaar look similar.

[...]
RCS f i l e : /mi r ro r s /kde / /kdeve lop /
AUTHORS,v
Working file: /mirrors/kde//kdevelop/AU-
THORS
head: 1.49
branch:
locks: strict
access list:
keyword substitution: kv
total revisions: 103; selected revisions: 103
description:

revision 1.49
date: 2004/06/21 18:57:13; author: rgruber;
state: Exp; lines: +4 -0
Added self

revision 1.48
date: 2004/02/24 14:42:59; author: dagerbo;
state: Exp; lines: +5 -1
Added self :)

revision 1.47
date: 2004/02/15 22:40:33; author: aclu; state:
Exp; lines: +3 -3
Some more credits update.
[...]

While being parsed each file is also matched
for its type. Usually this is done by looking at
its extension, although other common filenames
(for instance README or TODO) are also
looked for. The goal of this separation is to
identify different contributor groups that work
on the software, so besides source code files
the following file types are also considered:
documentation (including web pages), images,
translation (generally internationalization and
localization), user interface and sound files.

Figure 6. Process of the CVSAnalY tool

rsync checkout Log Parsing Storage Enhancement Analyses

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 35

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Files that do not match any extension or par-
ticular filename are accounted as unknown.
This discrimination follows the criteria that
have been presented in section 3.2, although it
lacks the possibility of looking at the content
of the files as we only consider filenames (be-
cause this is the only information that appears
in the CVS logs).

CVS also has some peculiarities when
introducing contents for the first time (this
action is called initial check-in). The initial
version (with version number 1.1.1.1) is not
considered in our computation as it is the same
as the second one (which has version number
1.1). The number of aggregated and removed
lines in CVS are computed from this initial
version. This means that the first commit (the
initial check-in) logs as if 0 lines were added.
This does not correspond to reality. In order to
obtain the actual number of LOCs in the first
version we count the LOCs by means of the
UNIX wc tool12 of the latest version, subtracting
the added lines and adding the removed lines
of all the other commits.

Comments attached to commits are usually
forwarded to a mailing list so that developers
keep track of the latest changes in CVS. Some
projects have established some conventions so
that certain commits do not produce a message
to the mailing list. This happens when those
commits are supposed to not require any no-
tification to the rest of the development team.
A good example of the pertinent use of silent
commits comes from the existence of bots that
do several tasks automatically.

In any case, such conventions are not lim-
ited to non-human bots, as human committers
usually may also use them. In a large community
-as it is the case for the ones we are research-
ing- we can argue that silent commits can be
considered as not contributory (i.e., changes to
the head of the files, for instance a change in the
license or the year in the copyright notice, or
moving many files from one location to another).
Therefore, we have set a flag for such commits
in order to compute them separately or leave
them out completely in our analysis.

For instance, the developers of the KDE

project mark such commits with the comment
CVS_SILENT as it can be seen from following
log excerpt extracted from the kdevelop_script-
ing.desktop file of the KDevelop CVS module.
In this case it is due to a change to a desktop file,
a file type that is related to the user interface.
Being this change not considered interesting
for other developers to know about, the author
of this commit decided to make this commit
silently.

[...]
RCS file: /mirrors/kde//kdevelop/kdevelop_
scripting.desktop,v
Working file: /mirrors/kde//kdevelop/kde-
velop_scripting.desktop
head: 1.24
branch:
locks: strict
access list:
keyword substitution: kv
total revisions: 30; selected revisions: 30
description:

revision 1.24
date: 2005/03/28 03:29:25; author: scripty;
state: Exp; lines: +2 -2
CVS_SILENT made messages (.desktop file)

[...]

Write access to the SCM system is not given
to anyone. Usually this privilege is granted
only to those contributors who have reached a
compromise with the project and the project’s
goals. But external contributions -commonly
called patches, that may contain bug fixes as well
as implementation of new functionality- from
people outside the ones who have write access
(committers) are always welcome.

It is a widely accepted practice to mark
an external contribution with an authorship
attribution when committing it. Thus, we have
constructed certain heuristics to find and mark
commits due to such contributions. The heuris-
tics we have set up are based on the appearance
of two circumstances: patch (or patches in its
plural form) together with a preposition (from,

36 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

by, of, and other) or an e-mail address or an
indication that the code had been attached to
a bug fix in the BTS. The regular expressions
that have been used are following:

[a] patch(es)?\s?.* from [f] patch(es)?\s?.* by
[b] patch(es)?\s.*@ [g] @.* patch(es)?
[c] ?s.* patch(es)? [h] s? .* patch(es)?
[d] patch(es)? of [i] <.* [Aa][Tt] .*>
[e] attached to #

As an example, the following slightly modi-
fied excerpt taken from the kdevelop.m4.in file
from the KDevelop module in the KDE CVS
repository shows a patch applied by a commit-
ter with username “dymo” that was submitted
originally by Willem Boschman:

[...]

revision 1.39
date: 2004/06/11 17:07:57; author: dymo; state:
Exp; lines: +3 -3
Applied patch from Willem Boschman -
fix builddir != srcdir configuration problem.

[...]

All these efforts have in common that they
perform text-based analysis of the comments
attached by committers to the changes they
perform. The range of possibilities in this sense
is very ample. For instance, Mockus et al., and
later on in an enhanced manner Amor et al.,
have tried to identify the reasons for changes
(classifying changes as adaptative, perfective or
corrective) in the software using text-analysis
techniques (Mockus and Votta, 2000, Amor et
al., 2006).

Data Treatment and Storage

Once the logs have been parsed and transformed
into a more structured format, some summariz-
ing and database optimization information is
computed and data is stored into a database.

Usually the output of the previous pars-
ing consists of a single database table with an

entry per commit. This means that information
is stored in a raw form, the table containing
possibly millions of entries depending on the
size and age of a project. Information is hence
in a raw format and in an inconvenient way if
we consider getting statistical information for
developers and projects from it.

A first step in this direction is to make use
of normalization techniques for the data. In this
sense, committers are assigned a unique numeri-
cal identification and if further granularity is
needed, procedures have been implemented to
do the same at the directory and file level. For
the sake of optimization this has been introduced
during the parsing phase so additional queries
do not have to be performed. The next step is to
gather statistical information on both commit-
ters and modules. These additional tables will
give detail on the interactions by contributors or
to modules, which is one of the most frequent
information that is asked.

Additional information that makes lon-
gitudinal analyses possible is the evolution of
contributions by developers and to modules.
Hence, the same statistical queries that have
been obtained for committers and modules
for the summarizing tables can be obtained in
a monthly or weekly basis since the date the
repository was set up.

On the other hand, unfortunately CVS
does not keep track of which files have been
committed at the same time. The absence of this
concept in CVS may bring some distortion into
our analysis. We have therefore implemented
the sliding window algorithm proposed by
German (Germán, 2004) and Zimmermann et
al. (Zimmermann et al., 2005) that identifies
atomic commits (also known as modification
requests or transactions) by grouping commits
from the CVS logs that have been done (almost)
simultaneously. This algorithm considers that
commits performed by the same committer in
a given time interval (usually in the range of
seconds to minutes) can be considered as an
atomic commit. If the time window is fixed, the
amount of time that is considered from the first
commit to the last one is a constant value. For
a sliding time window, the time interval is not

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 37

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

constant; the time window is restarted for every
new commit that belongs to the same transaction
until no new commit occurs in the (new) time
slot (Zimmermann et al., 2005).

The post-process is composed of several
scripts that interact with the database, statisti-
cally analyze its information, compute sev-
eral inequality and concentration indexes and
generate graphs for the evolution over time
for a couple of interesting parameters (com-
mits, committers, LOCs...). Results are shown
through a publicly accessible web interface that
allows easy inspection of the whole repository
(general results), a single module or by com-
mitters13. Therefore results are available for
remote analysis and interpretation by project
participants and other stakeholders.

Mailing lists archives
(and forums)

Mailing lists and forums are the key elements
for information dissemination and project or-
ganization in libre software projects. Without
almost any exception, libre software projects
provide one or more mailing lists. Depending
on the project, many mailing lists may exist
for several target audiences. So, for instance,
SourceForge recommends to open three mailing
lists: a technical one for developers, another one
to give support to users and and a third one that
is used for announcing new releases.

Mailing lists are programs that forward e-
mail messages they receive to a list of subscribed
e-mail addresses. More sophisticated mailing
list managers have plenty of functionality which
allows for easy subscription, unsubscription,
storage of the messages that have been sent
(known as the archives), and avoidance of
spam, among others.

Forums are web-based programs that allow
visitors to interact in a similar manner as in an
e-mail thread with the difference that in this
case all the process goes through HTML forms
and that results are visible on the web.

Both mailing lists and forums are based
on similar concepts and their differences lie

in their implementation and the need for dif-
ferent clients to participate in them. Mailing
lists require the use of an e-mail client, while
forums can be accessed through web browsers.
As their concept is the same, there exist some
software programs that transform mailing lists
messages to a forum-like interface and vice-
versa. Because of that, in this article we will
only focus on mailing lists, specifically on one
of the most used mailing lists managers called
GNU Mailman14 and the RFC 822 (also known
as MBOX) format in which it generally stores
and publishes the archives.

The RFC 822 Standard Format

As mentioned above, generally all mailing list
managers offer the possibility of storing all
posts (the archives) and making them publicly
available through a web interfaces. This offers
the possibility for newcomers to go through the
history and to gain knowledge on technical as
well as organizational details of a project.

The archives are also offered in text files
following the MBOX format. MBOX is a for-
mat used traditionally in UNIX environments
for the local storage of e-mail messages. It is a
plain text file that contains an arbitrary number
of messages. Each message is composed of a
special line followed by an e-mail message in
the RFC-822 standard format. The special line
that allows to differentiate messages consists
of the keyword “From” followed by a blank
space, the poster’s e-mail address, another blank
space and finally the date the message was sent.
The RFC-822 format can be divided into two
parts: (a) headers, that contain information for
the delivery of the message and (b) the content,
which is the information to be delivered to the
receiver; the standard only allows lines of text,
so filtering has to be implemented if an image
or other information is attached.

Mailing lists in MBOX format can be
analyzed by means of the MailingListStats, or
mlstats for short, tool15. Given an URL of the
archives of the mailing lists, mlstats outputs the
information extracted from the headers and the

38 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

content of the message in database format for
further processing and analysis.

Below is an excerpt of a post sent to a
mailing list that has been stored following the
RFC-822 standard. Is is an automatic message
sent April 30 2005 to the GNOME CVS mailing
list. This list keeps track of all the commits that
are done to the CVS system of the GNOME
project. This assures that subscribers are aware
of the latest changes in the CVS. The content of
the message, the description of the modification
that had been performed, has been omitted in
the excerpt.

From gnomecvs@container.gnome.org Sat Apr
30 20:16:38 2005

Return-Path: <gnomecvs@container.gnome.
org>

X-Original-To: cvs-commits-list@mail.gnome.
org

Delivered-To: cvs-commits-list@mail.gnome.
org

To: cvs-commits-list@mail.gnome.org
X-CVS-Module: marlin
Message-Id: <20050501001636.0C5E-

A165E4A@container.gnome.org>
Date: Sat, 30 Apr 2005 20:16:36 -0400

(EDT)
From: gnomecvs@container.gnome.org

(Gnome CVS User)
X-Virus-Scanned: by amavisd-new at gnome.

org
Cc:
Subject: GNOME CVS: marlin iain
X-BeenThere: cvs-commits-list@gnome.org
X-Mailman-Version: 2.1.5
Precedence: list
Reply-To: gnome-hackers@gnome.org
List-Id: CVS Logs <cvs-commits-list.gnome.

org>
List-Unsubscribe: <http://mail.gnome.org/

mailman/listinfo/cvs-commits-list>,
 <mailto:cvs-commits-list-request@gnome.

org?subject=unsubscribe>
List-Archive: </archives>
List-Post: <mailto:cvs-commits-list@gnome.

org>

List-Help: <mailto:cvs-commits-list-request@
gnome.org?subject=help>

List-Subscribe: <http://mail.gnome.org/mail-
man/listinfo/cvs-commits-list>,

 <mailto:cvs-commits-list-request@gnome.
org?subject=subscribe>

X-List-Received-Date: Sun, 01 May 2005
00:16:38 -0000

[Here comes the body of the post which has
been omitted in this excerpt]

From the message excerpt above, we can
see some of the headers that are described in
the standard. The most important ones are
following: From (e-mail address, sometimes
also real name, of the sender), Sender (address
of the responsible entity for the last transmis-
sion), Reply-To (address the author wants to
be replied), To (address(es) of the receiver(s)),
Cc (e-mail address(es) of the receiver(s) that
should receive a copy), Bcc (addressee(s) with
carbon copy), Subject (usually contains a brief
description of the topic), Received (contains
address of the intermediate machine that has
transferred the message), Date (when the mes-
sage was sent given by the sender machine),
Message-ID (unique identifier of this message),
In-reply-to (Identifier of the parent message
to which the current one is a response), and
References (identifications (message-IDs) of
all the other messages that are part of the con-
versation thread).

In addition to the data that can be found in
the headers, some other information could be
obtained from analyzing the content of the mes-
sages. In this regard, Weißgerber et al. analyze
the type of patches first sent to mailing lists and
later on integrated into the source code tree of
the project (Weißgerber et al., 2008).

Bug-Tracking systems

BTS are used in libre software projects to man-
age the incoming error and feature enhancement
reports from users and co-developers. The use
of BTS is relatively extended and the most

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 39

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

known tool in this area is BugZilla16, a BTS
developed by the Mozilla project that has been
adopted by other large projects as well. Hence
BugZilla is the system we study in this article,
although conceptually all other systems should
work similarly.

BugZilla allows to manage all bug reports
and feature requests by means of a publicly
available web interface. Besides the reports, it
also offers the possibility of adding comments so
that developers may ask for further information
about the error or other end-users may comment
it. Beyond BugZilla, other tools exist with
similar features, as for instance GNATS (the
one used in the FreeBSD project). SourceForge
and other web platforms that support software
development have implemented their own BTS
for the projects they host.

Data Description

BugZilla stores in its database specific informa-
tion for each bug report. The fields that can be
usually found are following17:

•	 Bugid: Unique identifier for any bug re-
port.

•	 Description: Textual description of the
error report.

•	 Opened: Date the report was sent.
•	 Status: Status of the report. It can take

one of the following status: new, assigned
(to a developer to fix it), reopened (when
it has been wrongly labeled as resolved),
needinfo (developers require more infor-
mation), verified, closed, resolved and
unconfirmed.

•	 Resolution: Action to be performed on the
bug. It can take following status: obsolete
(will not be fixed as it is a bug to a previous,
already solved issue), invalid (not a valid
bug), incomplete (the bug has not been
completely fixed), notgnome (the bug is not
of GNOME, but of a component of another
project, as for instance X window system
or the Linux kernel), notabug (the issue is
not really a bug), wontfix (the developers
consider not to correct this error for any

reason) and fixed (the error has been cor-
rected).

•	 Assigned: Name and/or e-mail address
of the developer in charge of fixing this
bug.

•	 Priority: Urgency of the error. It can
take following values: immediate, urgent,
high, normal and low. Usually this field is
modified by the bugmaster as users do not
have sufficient knowledge on the software
to know the correct value.

•	 Severity: How this error affects the use
and development of the software. Possible
values are (from high severity to lower one):
blocker, critical, major, normal, minor,
trivial and enhancement.

•	 Reporter: Name and e-mail address of the
bug reporter.

•	 Product: Software that contains the bug.
Usually this is given at the tarball level.

•	 Version: Version number of the product.
If no version was introduced, unspecified
is given. Also, for enhancements the op-
tion unversioned enhancement may be
chosen.

•	 Component: Minor component of the
product.

•	 Platform: Operating system or architecture
where the error appeared.

Usually all fields (besides the automatic
ones like bugid, the opening date or its status)
are filled out the first time by the reporter. Larger
projects usually have some professional or
volunteer staff that review the entries in order
to adjust the information (Villa, 2003, Villa,
2005). This is especially important for fields
like priority or severity as end-users hardly
have no knowledge or experience on how to
evaluate these fields.

Data Acquisition and
Further Processing

For the analysis of the data stored in a BTS, we
have created a preliminary tool that is specifi-
cally devoted to extract data from BugZilla. The
architecture of the BugZilla Analyzing Tool is

40 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

described in Figure 7. Although the retrieval
of the data could theoretically be simplified by
obtaining the database of the BugZilla system
from the project administrators, we thought
that retrieving the data directly from the web
interface would be more in accordance with
the non-intrusive policy that all other tools
described in this article follow.

We had to deal with several problems while
retrieving the BugZilla data. After crawling for
all web pages (one per bug) and storing them
locally, we had to transform the HTML data
into an intermediate log-type format, as not all
fields were given for all bugs due probably to
a transition from a previous system. Probably
also because of this, there may have been some
information loss and some ids could not be
tracked. Other problems that we found, were
the existence of wrong date entries for some
bugs and comments. As the bug report ids are
sequential, we could fix these entries when we
found out that the date was wrong. We applied
the same solution to comments with erroneous
dates, as comments are also posted sequentially
and cannot be introduced before the bug report
has been submitted.

In recent versions of BugZilla, it is possible
to obtain the data in XML format which simpli-
fies in a great manner the data extraction18. When
writing this article, the use of the XML interface
was not as common as the author would wish,
so retrieving the data from parsing web pages
was the unique non-intrusive manner at that
time. In any case, the BugZilla analyzing tool
has been designed in such a way that only by
removing some parts (specifically the specific
HTML-parser which parses into the independent
format) and by modifying the generic parser we
could reuse the rest of the modules without major
changes using the XML query format. This is
also valid for other BTS, as GNATS.

One of the issues of BTS is that in general
the most relevant information in a bug report is
included in natural language (usually in English)
in the Description field . Bettenburg et al. have
proposed a tool that extracts structural informa-
tion such as source code (i.e., patches), listings,
etc. from it (Bettenburg et al., 2008).

Summary

Libre software projects offer a vast amount of
information about their development process
and the resulting product. Although this infor-
mation is publicly available over the Internet,
researchers should take into consideration the
many hidden problems that may occur when
obtaining and properly analyzing these data.
In this article we have given some insight into
the most data sources in research, its problems,
how to circumvent them and, if possible, have
provided and introduced tools that may help
when researchers mine them.

Table 4 summarizes the data sources de-
scribed in this article and the tools that can help
researchers in their analysis. Regarding source
code, there exist an ample amount of tools that
have been used for years in corporate software
engineering environments. The ones presented
here have a specific target on libre software, as
they address issues such as licensing of the files
(FOSSology), the identification of the authors
– or copyright holders – (CODD and pyTernity)
or the presence of absence of documentation
(doceval).

SCM systems are widely used in libre
software projects and provide much information
about the software development. The analysis of
the logs of these systems, by means of tools like
CVSAnalY, gives insight on the dynamics of the
projects. The combination of source code and

Figure 7. Architecture of the BugZilla analyzer

retrieval
Specific
Parser

Indep.
Format

Generic
Parser AnalysesDatabase

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 41

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

information from the SCM offers a wide range
of analysis, especially concerning patterns over
time. In this sense, GlueTheos and SoftChange,
retrieve the sources for various points in time
and extract some metrics. The final result allows
to analyse how software projects have evolved
over time in respect to measurements related to
source code (growth, complexity, etc.), human
resources (number of developers, inequality
of contributions, etc.) and activity (number of
commits, number of patches, etc.).

Finally, mailing lists and forums are usu-
ally the main communication channels used
in libre software projects. In this article, we
have discussed a tool, mlstats, that analyzes the
information that can be found in the header of
the mail messages.

 Despite the possibilities that the vast
amount of publicly available information from
libre software projects offer, there are a num-
ber of problems, threats and challenges that
researchers have to consider when using these
data for their activities.

The first major problem comes from incom-
plete data sets. The cause for this is due to the
fact that projects may have switched develop-
ment-supporting systems and have not migrated
old contents into the new system.

A threat to the use of SCM data comes from
the necessity of having an account to perform
changes. The original developers are in these
scenarios not the ones who commit the code
into the repository (committers). The validity

of some research may be affected by the poli-
cies of projects, as for example the inequality
of contributions may be artificially skewed
towards those who have permission to do the
changes in the SCM.

There is a big challenge in merging in-
formation from various sources. For instance,
correlating bugs in the BTS to commits in SCM
and to code in the source code is a tricky task that
requires complex methods. In addition, these
methods may have to be changed from project
to project as the dynamics may be different
among them (i.e., in some projects, committers
indicate the bug report number in the commit
message, while in others patches are not handled
via a BTS but through a mailing list)

Finally, as mining libre software projects
has become popular among scientists, many
projects have suffered from an overflow of
data gathering petitions, both automatically by
means of tools or directly from humans in the
sense of invitations to participate in surveys.
In the specific case of tools, sometimes retriev-
ing data has caused the slow down, or denial
of service, of servers where the infrastructure
of the project is installed, resulting in the tool
being banned.

Some of the aforementioned issues are be-
ing addressed by the FLOSSMetrics19 and the
FLOSSMole (Conklin et al., 2005) projects,
that have as objective to construct, publish and
analyse a large scale database with information
and metrics about libre software development

Data Source Tool Purpose

Source Code FOSSology Licensing

Source Code CODD/pyTernity Authorship (copyright hlder) analysis

Source Code doceval Assessment and partial evaluation of documentation

SCM CVSAnalY SCM log messages analysis (evolutionary analysis)

Source Code & SCM GlueTheos Evolutionary analysis

Source Code & SCM SoftChange Evolutionary analysis

Mailing lists & forums MailingListStat Analysis of MBOX headers

Table 4. Summary of data sources, tools and purpose

42 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

coming from several thousands of software
projects. If such initiatives succeed, researchers
wanting to study the libre software phenomenon
will have an ample amount of data ready to be
analyzed, avoiding many of the tasks (identifica-
tions, acquisition, extraction and storage) and
the threats discussed in this article.

Acknowledgment

We thank the anonymous reviewers for their
helpful comments and suggestions. This work
has been funded in part by the European Com-
mission, under the FLOSSMETRICS (FP6-IST-
5-033547), QUALOSS (FP6-IST-5-033547)
and QUALIPSO (FP6-IST-034763) projects,
and by the Spanish CICyT, project SobreSalto
(TIN2007-66172) and by SEDEPECA.

References
Amor, J. J., Robles, G., and González-Barahona,
J. M. (2006). Discriminating development activities
in versioning systems: A case study. In Proceedings
PROMISE 2006: 2nd. International Workshop on
Predictor Models.

Atkins, D. L., Ball, T., Graves, T. L., and Mockus,
A. (2002). Using version control data to evaluate the
impact of software tools: A case study of the version
editor. IEEE Transactions on Software Engineering,
28(7):625–637.

Bauer, A. and Pizka, M. (2003). The contribution
of free software to software evolution. In Proceed-
ings of the International Workshop on Principles
of Software Evolution (IWPSE), Helsinki, Finland.
IEEE Computer Society.

Bettenburg, N., Premraj, R., Zimmermann, T., and
Kim, S. (2008). Extracting structural information
from bug reports. In MSR ’08: Proceedings of the
2005 Working Conference on Mining software
repositories.

Capiluppi, A. (2004). Improving comprehension and
cooperation through code structure. In Proceedings
of the 4th Workshop on Open Source Software Engi-
neering, 26th International Conference on Software
Engineering, Edinburg, Scotland, UK.

Capiluppi, A., Lago, P., and Morisio, M. (2003).
Evidences in the evolution of OS projects through
changelog analyses. In Proceedings of the 3rd
International Workshop on Open Source Software
Engineering, Orlando, Florida, USA.

Capiluppi, A., Morisio, M., and Ramil, J. F. (2004).
Structural evolution of an Open Source system:
a case study. In Proceedings of the 12th Interna-
tional Workshop on Program Comprehension, pages
172–183, Bari, Italy.

Chang, H.-F. and Mockus, A. (2008). Evaluation of
source code copy detection methods on FreeBSD. In
MSR ’08: Proceedings of the 5th Working Conference
on Mining software repositories.

Conklin, M., Howison, J., and Crowston, K. (2005).
Collaboration using OSSmole: A repository of
FLOSS data and analyses. In Proceedings of the Inter-
national Workshop on Mining Software Repositories,
pages 126–130, St. Louis, Missouri, USA.

Germán, D. M. (2004). Mining CVS repositories,
the softChange experience. In Proceedings of the
International Workshop on Mining Software Reposi-
tories, Edinburgh, UK.

Germán, D. M. and Hindle, A. (2005). Visualizing
the evolution of software using softChange. Journal
of Software Engineering Knowledge Engineering.
Accepted for publication, under revisions.

Ghosh, R. A. and Prakash, V. V. (2000). The orbiten
free software survey. First Monday, 5(7).

Ghosh, R. A., Robles, G., and Glott, R. (2002).
Software source code survey (free/libre and open
source software: Survey and study). Technical report,
International Institute of Infonomics. University of
Maastricht, The Netherlands.

Gobeille, R. (2008). The fossology project. In MSR
’08: Proceedings of the 5th Working Conference on
Mining software repositories.

Graves, T. L. and Mockus, A. (1998). Inferring change
effort from configuration management databases. In
5th IEEE International Software Metrics Symposium,
pages 267–, Bethesda, Maryland, USA.

Hahsler, M. and Koch, S. (2005). Discussion of a
large-scale open source data collection methodol-
ogy. In Proceedings of the Hawaii International
Conference on System Sciences (HICSS-38), Big
Island, Hawaii, USA.

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 43

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Halstead, M. H. (1977). Elements of Software Sci-
ence. Elsevier, New York, USA.

Howison, J. and Crowston, K. (2004). The perils and
pitfalls of mining SourceForge. In Proceedings of the
International Workshop on Mining Software Reposi-
tories, pages 7–11, Edinburg, Scotland, UK.

Lanzara, G. F. and Morner, M. (2003). The knowl-
edge ecology of open-source software projects. In
Proceedings of the 19th EGOS (European Group of
Organizational Studies) Colloquim.

McCabe, T. J. (1976). A complexity measure.
IEEE Transactions on Software Engineering,
2(4):308–320.

Minkov, E., Wang, R., and Cohen, W. (2005). Extract-
ing personal names from emails: Applying named
entity recognition to informal text. In Proceedings of
the Human Language Technology Conference. Con-
ference on Empirical Methods in Natural Language
Processing, Vancouver, B.C., Canada.

Mockus, A. and Votta, L. G. (2000). Identifying
reasons for software changes using historic data-
bases. In Proc Intl Conf Softw Maintenance, pages
120–130.

Oman, P. and Hagemeister, J. (1992). Metrics for
assessing a software system’s maintainability. In
International Conference on Software Maintenance,
pages 337–344, Los Alamitos, CA. IEEE Computer
Society Press.

Robles, G., Dueñas, S., and González-Barahona,
J. M. (2007). Corporate involvement of libre soft-
ware: Study of presence in debian code over time.
In OSS, pages 121–132.

Robles, G., González-Barahona, J. M., and Guervós,
J. J. M. (2006a). Beyond source code: The impor-
tance of other artifacts in software development
(a case study). Journal of Systems and Software,
79(9):1233–1248.

Robles, G., Gonzalez-Barahona, J. M., Michlmayr,
M., and Amor, J. J. (2006b). Mining large software
compilations over time: Another perspective of
software evolution. In Third International Work-
shop on Mining Software Repositories, pages 3–9,
Shanghai, China.

Robles, G., González-Barahona, J. M., and Michl-
mayr, M. (2005). Evolution of volunteer participation
in libre software projects: evidence from Debian.

In 1st International Conference on Open Source
Systems, pages 100–107, Genoa, Italy.

Robles, G., Koch, S., and González-Barahona, J. M.
(2004). Remote analysis and measurement of libre
software systems by means of the CVSAnalY tool.
In Proc 2nd Workshop on Remote Analysis and
Measurement of Software Systems, pages 51–56,
Edinburg, UK.

Robles, G., Prieto-Martínez, J. L., and González-
Barahona, J. M. (2006c). Assessing and evaluating
documentation in libre software projects. In Proceed-
ings of the Workshop on Evaluation Frameworks for
Open Source Software (EFOSS 2006).

Spinellis, D. (2003). Code Reading: The Open Source
Perspective. Addison Wesley Professional.

Tuomi, I. (2004). Evolution of the Linux Credits file:
Methodological challenges and reference data for
Open Source research. First Monday, 9(6). http://
www.firstmonday.dk/issues/issue9_6/ghosh/

Villa, L. (2003). How gnome learned to stop worry-
ing and love the bug. In Otawa Linux Symposium,
Otawa.

Villa, L. (2005). Why everyone needs a bugmaster.
In linux.conf.au, Canberra.

Weißgerber, P., Neu, D., and Diehl, S. (2008).
Small patches get in! In MSR ’08: Proceedings of
the 2005 Working Conference on Mining software
repositories.

Wheeler, D. A. (2001). More than a gigabuck: Es-
timating GNU/Linux’s size. http://www.dwheeler.
com/sloc/redhat71-v1/redhat71sloc.html.

Zimmermann, T., Weißgerber, P., Diehl, S., and
Zeller, A. (2005). Mining version histories to guide
software changes. IEEE Transactions on Software
Engineering, 31(6):429–445.

Endnotes

1	 In this article the term “libre software” is used
to refer to any software licensed under terms
that are compliant with the definition of “free
software” by the Free Software Foundation,
and the definition of “open source software”
by the Open Source Initiative, thus avoiding
the controversy between those two terms.

44 International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

2	 The location of the binaries may depend from
system to system, although the standard location
for them is the /usr/bin directory.

3	 GlueTheos is named after its purpose to glue
different tools together in an easy way. Hence,
this program is the god, theos in Greek, of
gluing some already existing tools together.
It can be retrieved from http://tools.libresoft.
es/gluetheos.

4	 In the GNU coding standards, some conventions
for change log files are given, see http://www.
gnu.org/prep/standards/html_node/Change-
Logs.html

5	 doceval can be obtained from https://forja.
rediris.es/projects/csl-doceval/.

6	 The most current version of CODD may be
found at http://libresoft.es/Tools/CODD.

7	 CODD uses as intermediate storage a file for
each source package which are called the codd
files.

8	 The most current version of pyTernity may be
found at http://tools.libresoft.es/pyternity.

9	 A committer is a person who has write access
to the repository and does a commit -an interac-
tion- with it at a given time.

10	 In a SCM system there is actually no file deletion.
In the case of CVS, files that are not required

anymore are stored in the Attic and may be
called back anytime in future.

11	 KDevelop is an IDE (Integrated Development
Environment) for KDE. More information can
be obtained from http://kdevelop.org/.

12	 wc is a standard UNIX tool to count lines of
files, among others.

13	 See http://libresoft.es/Results

14	 The MailMan’s project web site can be found at
following URL: http://www.gnu.org/software/
mailman/.

15	 http://forge.morfeo-project.org/frs/? group_
id=33

16	 http://www.bugzilla.org/

17	 The ones shown next are the ones that can
be found for the GNOME BugZilla system.
BugZilla can be adapted and modified, so the
fields may (and will) change from project to
project.

18	 For instance, bug #55,000 from the KDE BTS,
which can be accessed through the web interface
at http://bugs.kde.org/show_bug.cgi? id=55000
may also be obtained in XML at following URL:
http://bugs.kde.org/xml.cgi? id=55000.

19	 http://flossmetrics.org

Gregorio Robles is associate professor at the Universidad Rey Juan Carlos in Móstoles, Spain. He earned
a degree on electrical engineering from the Universidad Politécnica de Madrid (studying his last year
and submitting his master thesis at the Technical University of Berlin) and obtained his PhD in 2006. His
research work is centered in the study of libre software development from an engineering point of view and
especially with regard to quantitative and empirical issues. Other, non-technical related matters have also
been of his interest like volunteer-driven software development and social network analysis in the libre
software phenomenon. He has developed or collaborated in the design of programmes to analyse libre
software and the tools used to produce them. He was also involved in the FLOSS study on libre software
financed by the European Commission IST programme and in other European-funded projects such as
FLOSSMetrics or QualOSS.

Jesús M. González-Barahona teaches and researches in Universidad Rey Juan Carlos, Móstoles (Spain).
He started to be involved in the promotion of libre software in 1991. Since then, he has carried on several
activities in this area, including the organization of seminars and courses, and the participation in working
groups on libre software, both at the Spanish and European levels. Currently he collaborates with several

International Journal of Open Source Software & Processes, 1(1), 24-45, January-March 2009 45

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

libre software projects (including Debian) and associations, writes in several media about topics related
to libre software, and consults for companies and public administrations on issues related to their strategy
on these topics. His research interests include understanding libre software development, where he has
published several papers, and is participating in some international research projects. He is also one of
the promoters of the idea of an European master program on libre software, and has specific interest in
the education in that area.

Daniel Izquierdo-Cortazar is a PhD student at the Universidad Rey Juan Carlos in Móstoles, Spain. He
earned a degree in computer science from the same university and obtained his master’s degree in computer
networks and computer science systems in 2006. His research work is centered in the assesment of libre
software communities from an engineering point of view and especially with regard to quantitative and
empirical issues. Right now he holds a grant from the Universidad Rey Juan Carlos to dedicate part of
his time to his PhD thesis. He is also involved in European-funded projects such as QualOSS or FLOSS-
World. He has also had the opportunity of attending to Wirtschaftsuniversität Wien (3 months in 2007) as
a research visitor.

Israel Herraiz is a PhD student at the Universidad Rey Juan Carlos in Móstoles, Spain. Israel Herraiz holds
a bachelor’s degree in chemical engineering and master’s degree in chemical and mechanical engineering
from University of Cadiz (Spain). Right now he holds a grant from the Government of Madrid, to dedicate
his full time to his PhD thesis, whose main topic is “Software Evolution of Large Libre Software Projects”.
In particular, he is using time series analysis and other statistical methods to characterize the evolution of
software projects. He has participated in several research projects funded by the Framework Programme
of the European Commision such as QualOSS or CALIBRE. He has also collaborated on other projects
funded by companies such as Vodafone and Telefonica. He has participated in the writing of manuals about
managing and starting libre software projects.

