
Remote analysis and measurement of libre software systems by means of the
CVSAnalY tool

Gregorio Robles
Universidad Rey Juan Carlos

grex@gsyc.escet.urjc.es

Stefan Koch
Wirtschaftsuniversität Wien
stefan.koch@wu-wien.ac.at

Jesús M. González-Barahona
Universidad Rey Juan Carlos

jgb@gsyc.escet.urjc.es

Abstract

Libre (free, open source) software is one of the paradig-
matic cases where heavy use of telematic tools and user-
driven software development are key points. This paper
proposes a methodology for measuring and analyzing re-
motely big libre software projects using publicly-available
data from their version control repositories. By means of a
tool called CVSAnalY that has been implemented following
this methodology, measurements and analyses can be made
in an automatic and non-intrusive way, providing real-time
and historical data about the project and its contributors.

Keywords: Mining source code repositories, empirical
software engineering, libre software engineering

1 Introduction

The way software is produced has changed radically in
the last two decades. Among other circumstances, the arise
of the Internet has brought a change in software production
paradigms and an increase in the number of end users. That
way, it is not uncommon that software development is done
with a distributed team and that fast user feedback is possi-
ble, both things by means of telematic tools. Also, versions
of the software are released often in order to gain momen-
tum from user’s feedback.

One of the software production fields where all the afore-
mentioned characteristics are given is the libre (free/open
source) software world. In that area there exists a big syn-
ergy between developers and users to the point that some-
times it is often not possible to distinguish these groups. In
fact, many (if not all) developers are really power-users that
have the required programming capabilities to find a solu-
tion to their software needs [15]. Hence, the study of libre
software can be seen as a paradigmatic case of a produc-
tion environment where users have a big implication, even
leading the development.

Due to the distributed nature of this development
paradigm, cooperation and communication needs to be

achieved using telematic tools. Data from these sources al-
lows for an almost-automatic remote analysis and measure-
ment of both software product and underlying processes. In
fact, remote analysis is necessary, as a central authority or
location like office is absent, preventing on-site evaluations.
In addition, all interested parties including users and devel-
opers are distributed, and therefore need to perform and also
access all measurements and analyses remotely.

Libre software projects go from very small ones with one
developer commited to his program to large-scale global
projects where thousands of developers interact [10]. Es-
pecially most of the bigger projects follow a way of organi-
zation that has been called the "bazaar"-style development
[15] whose aim is to be as near to the end user as possible,
giving users even a co-developer status. In [14] it is shown
that such big libre software projects are composed mostly
of 10 to 15 core developers who lead the software process,
a group of around one order of magnitude larger that par-
ticipate in minor development tasks (bug fixes, etc.) and a
final group around another order of magnitude that helps by
other means (bug reports, etc.).

Several research groups have focused their attention to
the libre software phenomenon in the last years, so that sev-
eral views of this paradigm can be found. For instance, [7]
offers a software evolution analysis of the Linux kernel -
without doubt the most known libre software project- fol-
lowing the classical software evolution point of view [13].
Others have paid attention to economic parameters [12] and
have investigated how well classical software cost predic-
tion models as among others [2] can be applied.

This paper presents an empirical analysis of libre
software projects that can be made automatically, non-
intrusively and remotely from public-available data. The
source of the data that is measured and afterwards analyzed
is taken from the source versioning systems that most libre
software projects use, the CVS (Concurrent Versions Sys-
tem). The CVS contains the current state of the source code
as well as all the previous versions of the code. It serves as
a basis for developer interaction and group work.

Further possible publicly available data sources would

include mailing lists and bug tracking systems. All have
already been used for quantitative research on free/open
source software projects. Koch and Schneider have used the
mailing lists of the GNOME project [12] to further charac-
terise developers and overall project growth showing that
a significant number of postings is made by the relatively
small sub-group of programmers, and Mockus et al. have
used the bug tracking archives [14]. Especially the last point
is problematic for the automated methodology applied here,
as there is no single bug tracking system used by nearly all
libre software projects (like CVS for version-control), but
several competing implementations like Bugzilla or GNU
GNATS.

The structure of the paper is as follows: in the next sec-
tion the methodology and inner functioning of the tool that
has been built to measure and analyze CVS repositories will
be presented. In the following three sections, results offered
by this tool for a real-world large libre software project will
be given; first general results of the whole repository, then
measures given by modules and finally measures realted to
developers are exposed. The last section gives in short the
conclusions that we have found after using this tool and pos-
sible future research lines.

2 CVSAnalY: analyzing CVS repositories

The methodology of CVSAnalY is based on the analysis
of the CVS log entries, although other methodologies have
been also proposed in order to automatise the analysis of
libre software products, as it can be seen in [17] and [5].
In CVSAnalY any interaction -also called commit- a com-
miter1 does with the central versioning system repository
is logged with following data associated: commiter name,
date, file, revision number, lines added, lines removed and
an explanatory comment introduced by the commiter. There
is some file-specific information that can also be extracted
as for instance if the file has been removed2. On the other
hand, the human-inserted comment can also be parsed in
order to see if the commit corresponds to an external con-
tribution or even to an automated script.

Basically CVSAnalY consists of three steps: preprocess-
ing, database insertion and postprocessing.

The preprocessing includes downloading the sources
from the CVS repository of the project in study. Afterwards,
aggregated modules 3 have to be removed to avoid counting

1A commiter is a person who has write access to the repository and
does a commit -an interaction- with it at a given time.

2In a versioning system there is actually no file removement. Files that
are not required anymore are stored in the Attic and could be called back
anytime in future.

3Aggregated modules are modules that are shared between other mod-
ules. Such modules generally include system-wide administration and
scripts. This information is kept in the CVSROOT/modules file.

commits several times. Once this is done, the logs are re-
trieved and parsed to transform the information contained in
log format into a more structured format (SQL for databases
or XML for data exchange).

Besides the information for every commit there is other
data that is obtained from the parsing that requires some at-
tention. Although username changes occur seldom, some
entries for commiters have been merged due to a change.
For instance, in the KDE project commiters usually get a
CVS account prior to an organization email address. If they
afterwards are assigned an email address the username of
email and CVS have to be identical for purposes of a clearer
organization. If the username in the email address is differ-
ent from the CVS username, the latter is synced with the
former one and for our accounting both usernames have to
be merged.

While being parsed each file is also matched for its type.
Usually this is done by looking at its extension, although
other common filenames (for instance README or TODO)
are also looked for. The goal of this separation is to iden-
tify different contributor groups that work on the software,
so besides source code files the following filetypes are also
considered: documentation (including web pages), images,
translation (generally internationalization and localization),
user interface and sound files. Files that don’t match any
extension or particular filename are accounted as unknown.

CVS also has some peculiarities when introducing con-
tents for the first time (this action is called check-in). The
initial version (with version number 1.1.1.1) is not consid-
ered in our computation as it is the same as the second one
(which has version number 1.1). The number of aggregated
and removed lines in CVS are computed from this initial
version. This means that the first commit (the initial check-
in) logs as if 0 lines were added. This does not correspond
to reality. In order to obtain the actual number of LOCs in
the first version we count the LOCs by means of the UNIX
wc tool of the latest version, subtracting the added lines and
adding the removed lines.

The comment attached to the commit is usually for-
warded to a mailing list so that developers keep track of
the latest changes in CVS. Some projects have also conven-
tions so that certain commits do not produce a message to
the mailing list as it is supposed that the action they have
performed does not require any notification. A good exam-
ple of the pertinent use of “silent” commits comes from the
existence of bots that do several tasks automatically. In any
case, such conventions are not limited to non-human bots,
as human commiters may also use them. In a large commu-
nity -as it is the case for the ones we are researching- we
can argue that “silent” commits can be considered as not
contributory. Therefore, we have set a flag for such com-
mits in order to compute them separately or leave them out
completely.

2

Write access to the versioning system is not given to
anyone. Usually this privilege is only given to contributors
who reach a compromise with the project and the project’s
goals. External contributions -commonly called patches,
that may contain bug fixes as well as implementation of new
functionality- from people outside the ones who have write
access (commiters) are always welcome. It is a widely ac-
cepted practice to mark an external contribution when com-
miting it with an authorship attribution, so we have con-
structed certain heuristics to find and mark commits due to
such contributions.

Once the logs are parsed and transformed into a more
structured format, some summarizing and database opti-
mization information is computed and data is stored into
a database.

The postprocess is composed of several scripts that in-
teract with the database, analyse statistically its informa-
tion, compute several inequality and concentration indices
and generate graphs for the evolution in time for a couple
of interesting parameters (commits, commiters, LOCs...).
Results are shown through a publicly accessible web inter-
face that permits an easy inspection of the whole repository
(general results), a single module or by commiters. There-
fore these results themselves are again available for remote
analysis and interpretation by project participants and other
stakeholders.

3 General results

General results are those that pertain to the whole CVS
repository. The number of modules, commiters and com-
mits can give us an idea of the size of the repository we
are analyzing. It may also give some information about the
inner structure and organization of the whole project. For
instance, in the data presented in Table 1 it can be observed
that the mean number of commiters per module is near 1.3,
which obeys to the fact that many single-commiter modules
exist.

Table 1. General results for the GNOME
project

Number of modules 756
Number of commiters 992
Number of commits 1,883,271
Number of files 240,621
Lines added 121,711,566
Lines removed 74,290,346
First commit 1997-11-23
Last commit considered 2003-12-06
Number of days 2,204

There are some aspects that could be also be infered from
the data about aggregated, removed, changed and final lines.
For instance, the number of aggregated lines is almost three
times the number of final lines which means that the source
code in the repository is code that has been reviewed con-
scientiously, being possibly a measure of maturity of the
software.

Table 2. Inactivity rate for CVS modules in the
GNOME project
Inactive modules in the last year 327 43%
Inactive modules in the last two years 233 31%
Inactive modules in the last four years 86 11%

The availability of all the history of the repository allows
to make a fast analysis of the liveliness of modules and de-
velopers. Table 2 shows how many modules of the GNOME
project are not developed anymore.

Table 3. Inactivity rate for CVS commiters in
the GNOME project
Inactive commiters in the last year 488 49%
Inactive commiters in the last two years 348 35%
Inactive commiters in the last four years 108 11%

Analogous to the inactivity rate for modules, an inactiv-
ity rate for commiters can be obtained. In Table 3, we can
see how there exists a high number of inactive commiters,
giving an additional hint at personnel turnover.

4 Results for modules

Table 4. General statistics for the ’Evolution’
Commiters 190
Commits 88,157
Files 5,238
Lines Changed 16,411,471
Lines Added 9,360,719
Lines Removed 7,050,752
First Commit 1998-01-12
Last commit considered 2003-12-05

Several statistics concerning each module of the software
system can also be computed. As an example, results from
analysing the Evolution module are given. Of special in-
terest seem longitudinal results, for example depicting the
evolution in size, participants, or distribution of effort.

3

Figure 1. Commiters in time for ’Evolution’.

Figure 2. Commits in time for ’Evolution’.

The Gini coefficient given above is used to portray the
inequality in the distribution of commits contributed by
commiters. In the analogy with economics, commits are
usually money and commiters the persons who owns that
money; the Gini coefficient would indicate how unequal
wealth (in monetary terms) is distributed among the con-
sidered persons. The straight curve would show perfect
equality, while the Lorenz curve below shows the actual dis-
tribution (all normalized to 1). The Gini coefficient gives
the area in between [6] and is a simple measure of how
unequal the contributions to the project are. Other mea-
sures that may give an idea of such characteristics of a
project have also been studied, such as the Atkinson index
[1] (which is also an inequality dimension as the Gini coeffi-
cient) or the Herfindahl-Hirschman index [11], a commonly
accepted measure of market concentration that can be used
analogously to quantify the concentration of the develop-

Figure 3. Gini coefficient in ’Evolution’.

Figure 4. “Generations" in Evolution.

ment work in a development team.
An additional graph shows different generations of com-

miters during the lifetime of the inspected module. The
whole lifetime has been splitted into ten equally long in-
tervals of time. In each time slot, the core group (those de-
velopers who lead the development) has been identified as
the 20% most contributing commiters during each interval.
To every core group in every interval a color is assigned and
the evolution in time of that core group is analyzed. Further
explanations of this notion can be found in [9]. Generally,
this allows to identify several ’generations’ of developers
that lead a project.

5 Results for commiters

Of course, as the data is available, statistics on single
developers can also be computed. These would include the

4

different and total numbers of modules they are active, the
most common filetypes, and of course measures for their
participation like commits or changed LOCs. Table 5 shows
briefly what kind of data we are able to get from a commiter.
Notice that commiters have to have write permission into
CVS, so that the analysis of commits in CVS may differ
from the one of usual changelogs [3].

Table 5. Statistics for commiter ’acs’
Module Commits LOC First Last

mrproject 181 5402 02.03.22 02.07.31
libmrproject 39 496 02.03.24 02.07.09

6 Conclusions and further work

As this paper and the presented implementation show,
insights into both the current state and the evolution of libre
software systems can indeed be gained on a remote basis,
even without personal involvement in a project. The infor-
mation that can be gathered from publicly-available version
control systems allows us to have a global perspective of
the project and the human resources commited to it not only
in present times but also in any point in time since the be-
ginning of the project (or at least the establishment of the
source code repository).

This information can also of course be used to try to pre-
dict a project’s future evolution for control, management
and releasing policies [4]. Although some interesting facts
on the human resources of these type of projects have been
shown as for instance the assumption of ’generations’ of
leading groups that guide the project temporarily, an enor-
mous research effort should be invested in the near future to
gain insight into the dynamics of developer integration into
libre software projects. In this sense, there are some propos-
als that try to use ideas from other knowledge areas as for
instance the study and characterization of complex systems
[8] and the application of classical (social) network analysis
in order to understand them.

In addition, it has to be regarded that software is in any
case an important valuable good and that all measurements
are key points for the calculation of economic parameters. It
has be to noted that if cost estimation is already a problem-
atic task in classical (proprietary) software environments
where human and technical resources (and their disposal)
are known, in the libre software world this is by far more
complex [12]. Any attempt with the aim of solving this
lack of knowledge is welcome and having accurate data and
information on the process is a good start.

Finally, it should be remembered that the source code
repository is not the only public information source avail-
able for libre software projects. There exist others that may

provide with complementary data. One suite that looks for
the integration of software measurement and analysis sys-
tems has been proposed by the authors of this paper [16].

References

[1] A. Atkinson. On the measurement of inequality. Journal of
Economic Theory, (2):244–263, 1970.

[2] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[3] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the
evolution of os projects through changelog analyses. 2003.

[4] J. R. Ehrenkranzt. Release management within open source
projects. 2003.

[5] D. Germán and A. Mockus. Automating the measurement
of open source projects. Portland, Oregon, 2003.

[6] C. Gini. On the Measure of Concentration with Espacial
Reference to Income and Wealth. Cowles Commission,
1936.

[7] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. 2000.

[8] J. M. González-Barahona, L. López-Fernández, and G. Rob-
les. Community structure of modules in the apache project.
2004.

[9] J. M. González-Barahona and G. Robles. Unmounting the
”code gods” assumption. Technical report, 2003.

[10] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of
Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/
healyschussman.pdf.

[11] O. Herfindahl. Copper Costs and Prices: 1870 - 1957. Bal-
timore: The John Hopkins Press, 1959.

[12] S. Koch and G. Schneider. Results from software engi-
neering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, (22),
2000.
http://wwwai.wu-wien.ac.at/~koch/forschung/
sw-eng/wp22.pdf.

[13] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics and
laws of software evolution - the nineties view. 1997.

[14] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[15] E. S. Raymond. The cathedral and the bazar. First Monday,
1997.
http://www.firstmonday.dk/issues/issue3_3/
raymond/.

[16] G. Robles, J. M. Gonzalez-Barahona, and R. A. Ghosh.
Gluetheos: Automating the retrieval and analysis of data
from publicly available software repositories. 2004.

[17] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. Portland, Oregon, 2003.

5

