
Executable source code and non-executable source code:
analysis and relationships

Gregorio Robles, Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos

Grupo de Sistemas y Comunicaciones
Tulipan s/n, 28933 Mostoles (Madrid), Spain

{grex,jgb}@gsyc.escet.urjc.es

Abstract

The concept of source code, understood as the source
components used to obtain a binary, ready to execute ver-
sion of a program, comprises currently more than source
code written in a programming language. Specially when
we move apart from systems-programming and enter the
realm of end-user applications, we find source files with
documentation, interface specifications, internationaliza-
tion and localization modules, multimedia files, etc. All of
them are source code in the sense that the developer works
directly with them, and the application is built automati-
cally using them as input.

This paper discusses the relationship between ’classical’
source code (usually written in a programming language)
and these other files by analyzing a publicly-available soft-
ware versioning repository. Aspects that have been studied
include the nature of the software repository, the different
mixtures of source code found in several software projects
stored in it, the specialization of developers to the different
tasks, etc.

1. Introduction

Software development has evolved from command-line
applications to huge end-user applications full of graphics
and multimedia elements. Tracking this evolution, soft-
ware development is no longer performed only by soft-
ware developers. In many cases it has become an activ-
ity which requires the coordinated work of several different
groups, with different backgrounds and committed to var-
ious tasks: internationalization and localization (i18n and
l12n), graphic design, user interface design, writing of tech-
nical and end-user documentation, creation of multimedia
elements, etc.

Despite these changes, ’classical’ source code analysis is

still focused on the output of the work performed by soft-
ware developers: source code written in a programming lan-
guage. The rest of the elements mentioned above are usu-
ally not considered, even though they are in many cases a
fundamental part of the application. We consider that all
those elements are also an integral part of the development
process, and in this paper we propose the starting point of a
path towards their comprehensive study by looking at the in-
terdependencies existing between all of them. In this sense,
our intention is to extend, for the purposes of the analysis of
the software production process, the concept of source code
to all those other elements different from pure programming
code.

To accomplish this goal, we discriminate several kinds of
files, corresponding different kinds of ’source code’. From
the analysis of such files and their evolution over time it
may be inferred the importance that a given software project
allocates to different activities like documentation, transla-
tion, user interface design or multimedia development. We
propose a methodology for such an study, and a software
that retrieves the relevant information from a CVS reposi-
tory and implements such a methodology.

There is plenty of literature devoted to the analysis of
source code, both in the proprietary and in the libre soft-
ware1 realms, but only some of them relate directly to this
paper. Among them, it is worth mentioning some studies
that have attempted to gain some knowledge who works on
a self-organized project. [2] analyzes change-log files in a
almost-automatic way. However, the analysis is limited and
somewhat inaccurate in its scope, and is difficult to extend
with a deeper study of the different kinds of source files.
Some other publicly-available repositories[8] are more suit-
able for our purposes, of which the versioning systems used
for software development can be highlighted. Those repos-
itories allow for the monitoring of the whole development

1Throughout this article we use the term ‘libre software’ to refer both
to free and open source software.



process, including file types and their developers.
Another argument in favor of those data sources is that

evolutionary studies are easy to perform, since all the past
states of the code are available. [3] presents such an evolu-
tionary study for the Linux kernel. Its primary aim is cen-
tered on performing a “pure” source code and dependency
analysis, and it could be classified into the field of “clas-
sical” software evolution theory[5]. Our goal differs from
that approach in two main aspects. On one hand, we are
more interested in end-user applications rather than system
programs such as a kernel, since they have a larger amount
of source elements different from “pure” source code. On
the other, we want to research also the human interactions
and their evolution. In this direction exists some literature
performing analysis on self-organizing development groups
using social network analysis techniques[6], and proposing
ways of identifying its underlying community structure[4].

In the following section we present the methodology, fol-
lowed by a case of study in which it is applied: the KDE
project, a libre software desktop environment with hundreds
of applications and a large development community. Af-
ter that, some results on the modules and on the developers
of the KDE CVS repository are provided. Finally, some
conclusions and further work will be discussed. This pa-
per includes also an appendix containing some additional
information about the methodology.

2. Methodology

The methodology described in this paper is based on the
analysis of CVS2 log entries. Having access to a versioning
system such as CVS makes it possible not only to have the
latest version of the source code, but also the possibility of
fetching data about any point in time since the repository
was set up (which enables evolutionary studies).

We have automated this methodology with the CVS-
AnalY tool [7] which extracts, for every interaction (com-
mit) performed by a commiter3 in the CVS repository the
following data: commiter name, date, file, revision number,
lines added, lines removed, and an explanatory comment
introduced by the commiter. It is important to notice that
commiters population include not just software developers,
in the sense of programming code generators. In many cases
they are devoted to other tasks such as translation or graph-
ical design. Since it is possible to know from the CVS logs
which commiters have done what actions, it is also possible
to correlate access to certain kind of files with commiters,
and classify them according to the task they are probably
fulfilling.

2The Concurrent Versions System (CVS) is the most popular version-
ing system used in the libre software world.

3A commiter is a person who has write access to the repository and
does a commit on it at a given time.

In addition, there is some file-specific information in the
CVS logs that can be skimmed, such as whether a given file
has been removed4. An analysis of the file name makes it
possible to sort files by type, so that programming-language
files can be taken apart from translation files and so on.
The criteria used for this classification is based on simple
heuristics that pay attention primarily to the file extension
and some common patterns in the file content. In the next
subsection file type identification will be discussed further.

When committing to CVS, the developer can insert a
comment about it. These comments can also be parsed,
trying to infer whether the corresponding commit is for an
external contribution (code not directly written by the com-
miter), or even to an automated script. Comments are in
many cases forwarded to a mailing list, so that developers
can keep track of the latest changes. But things can be more
complex: some projects have agreed on conventions so that
certain commits do not produce a message to the mailing list
in certain cases, which are supposed not to require notifica-
tion. A good example of the pertinent use of “silent” com-
mits comes from the existence of bots that do several tasks
automatically. In any case, such conventions are not limited
to non-human bots, as human commiters may also use them.
For our methodology the important fact is that in large com-
munities (like the ones we are researching) we can consider
that “silent” commits are not contributions, and therefore
we compute them separately or leave them out completely
(depending on the analysis).

Once the CVS logs have been parsed, and a database has
been fed with the resulting data, a post-process stage takes
place. Several scripts query the database for performing sta-
tistical analysis, calculating several inequality and concen-
tration indices, and generating graphs for the evolution in
time of a couple of interesting parameters (commits, com-
miters, LOCs...). Results are shown through a publicly ac-
cessible web interface that permits an easy inspection of the
whole repository (general results), a single module or by
commiters. Therefore these results themselves are again
available for remote analysis and interpretation by project
participants and other interesting parties.

3. Case of study: KDE

KDE is a libre software project aimed to build a libre
software graphical desktop environment for UNIX-like op-
erating systems. The desktop and its applications (such as
their own office suite, KOffice) are built by making use of
their application development framework. A large commu-
nity has flourished in the last years around KDE: the number
of commiters is close to one thousand.

4In CVS there is actually no file removal: files that are not required
anymore are stored in the Attic and could be called back anytime in the
future. But it can be tracked when one file is only in the Attic.



CVS repositories are usually organized in modules. In
the KDE case, a module may contain several applications
of a suite. For instance, there is a KOffice module which
groups all office suite applications (word processor, spread-
sheet, presentation program, etc.). Some other modules
serve for the project’s own administrative means, and it is
important to notice that there also exists a module used to
store all the translation files.

Table 1. General statistics for the KDE project
Number of modules 79
Number of commiters 915
Number of commits 2,935,436
Number of files 175,657
Lines added 106,036,517
Lines removed 73,534,466
First commit 1997-04-09
Last commit considered 2004-03-22
Number of days 2,539

Figure 1 presents a weighted distribution of the file types
stored in the KDE CVS repository. The weight used is the
number of commits done to files corresponding to each file
type. This figures provide an idea of the activity around any
given file type that we are investigating.

A first impression on this figure offers some interest-
ing information. KDE is clearly a software development
project (programming code is the largest portion), but the
effort invested into such development does not reach by
far 50%. The amount of translations is a good indicator
of the wide spread of the KDE project around the globe,
but documentation and images are also heavily represented.
It is also shown how the amount of sound (multimedia)
files is minimal, an evidence that KDE is not a multime-
dia project, while the user interface fraction (around 15%)
is large enough to properly argument that it is actually a
desktop-targeted environment. Finally, the fraction corre-
sponding to unknown file types lies under 3%.

Figure 2 presents the distribution of commits per mod-
ule for the selected file types (both axes are in logarithmic
scale). We expected to find a power law distribution as it
is common in other distributions, like those found in sev-
eral aspects of computer networks[1]. However, the graphs
point out a Poisson distribution with the interesting case
of the line corresponding to the i18n files, which has two
clearly defined regions, similar to the Poisson distribution
found for instance in the number of synonyms that a word
has in the English language.

Figure 1. Commits by file type for the KDE
repository.

4. Modules

Our methodology offers the possibility of studying each
module and commiter on its own. This makes it possible to
classify modules and commiters depending on their compo-
sition (in the first case) and on the tasks it is devoted to (in
the latter one). Therefore, most active file types provides
an idea of the nature of modules and commiters. We expect
that further research may also allow to know their special-
ization.

As an example of the analysis that can be done on mod-
ules, we will pay attention on the KOffice module. Figure 3
shows the distribution of the different file types in a pie for
KOffice, from which we may infer that it is primarily a de-
velopment project (red), although the user interface (purple)
portion is not negligible. All other elements considered in
this study (images, documentation, translations and multi-
media) are very rare. The fact that commits done to transla-
tion files are so scarce is due to the existence of an external
module in the KDE project which centralizes all the trans-
lations. Later on these translations are automatically joined
with the sources. Commits performed on unidentified file
types (’unknown’) correspond also to a minimal portion of
the pie.

The shares of different file types depend of course on the
module being studied. For instance, the module containing
all the translations has a predominant green portion in its
pie. Usually, modules containing applications or a set of ap-
plications have a pie that looks similar to the one shown for
KOffice (mostly red), while modules devoted to web pages
and documentation have a clear blue (documentation) and
orange (images) appearance. It is interesting to notice some
minor modules such as kdeedu (a KDE subproject that con-



Figure 2. Log-log representation of file types
among KDE modules.

tains applications suited for education) which has an impor-
tant portion of multimedia elements (that appear yellow and
are labeled as sound in the pie).

Figure 3. Commits by file types for KOffice.

Besides pies, a different data visualization is obtained
with heat maps. They can provide an idea of the special-
ization of commiters working on a given module. The idea
is to show visually the correlation that exists between file
types, given as a fraction. If this fraction is close to 1 it will
correspond in the heat map with a hot zone, represented as
a bright color (yellow or orange), while values close to zero
will correspond to cold zones, represented by dark colors
(like blue or gray). Black has been reserved as background
color and also appears when no files of a given file type ex-
ist, or in the diagonal (that really should be yellow, since all

its values are 1) in order to make heat map reading easier.
Examining figure 4 may illustrate how those heat maps

work. The first row shows the correlation of documenta-
tion with all other file types considered in this study. As
noted before, the intersection of documentation with itself
has been left black. The second column shows the fraction
of the commits to documentation that commiters have done
to documentation and that have contributed both to docu-
mentation and images in the KOffice module. As it can be
observed, this zone is very cold (blue is given when values
lie between 0 and 0.2). The next column provides informa-
tion about the number of commits done by those commit-
ting files to documentation and translations. As translation
files are not included in the KOffice module, the zone is
very cold, and it is colored in gray. On the other hand, the
common contribution of commiters to documentation that
have also contributed to the user interface and to develop-
ment (fourth and sixth columns of the first row) is very high
(more than 0.8) in the case of documentation. As there are
no multimedia files in that time period, the whole multime-
dia column as well as its row have been left black. It is also
interesting the case of the ’unknown’ type, as it may be use-
ful to infer information about where to locate those types of
files that are not well sorted by our heuristics. In the case
of documentation we can see that this value is rather low
(cold).

It can also be noted that the relationship shown in heat
maps has not to be symmetric, because although, for in-
stance, the number of commits that commiters have done to
documentation and translation is the same, the total number
of commits to documentation and to translation is different.

Since we have at our disposal data from the project his-
tory, we may also study the evolution of the specialization.
Therefore, we have taken 10 equally large time slots from
the first commit of a module to its present state, and pro-
duced a heat map for each time slot. In the case of KOffice,
the first commit was done on 1998-04-18, while the last one
considered in this study dates from 2004-03-22. Hence, the
interval corresponding to each time slot lasts for about 216
days (a bit more than 7 months) of activity.

Figure 4 corresponds to the time period from 2000-08-30
to 2001-04-04, while figure 5 corresponds to the time period
three years later (exactly from 2003-08-18 to 2004-03-22).
A closer look at both maps shows how there is a slight spe-
cialization (hotter/darker zones are more rare in the newer
one) as well as a project expansion (there are more file types
in the latter than in the former one).

5. Commiters

Write access to the versioning system is not given to ev-
erybody. This privilege is usually given only to contrib-
utors who reach a certain degree of commitment with the



Figure 4. File type correlation heat map for
the 5th time slot.

project and the goals of the project. External contributions
(commonly called patches, that may contain bug fixes as
well as implementation of new functionality) from people
without write access to the CVS repository are always wel-
come. It is a widely accepted practice to mark an external
contribution when committing it with an authorship attribu-
tion. Therefore we have inferred certain heuristics to find
and mark commits related to such contributions, although
in this study we haven’t filtered those contributions out.

In the following scatter plots any point corresponds to a
commiter. The color of the point is given by the file type
with which the commiter is being more active. Color assig-
nation follows the rules used in the pies shown in the previ-
ous sections and are summarized in table 2. In one axis of
the scatter plots are shown the contributions to a given file
type, while in the other axis are provided contributions to
some other file type. The distribution of commiters in the
XY space gives an idea of the specialization of commiters
as well as the possible relationships that may exist between
different file types.

In order to make the data offered by the scatter plots eas-

Figure 5. File type correlation heat map for
the 10th (last) time slot.

ier to work with we have taken the natural logarithm of
the commits done by commiters to the whole repository.
This means that only active commiters will be shown (those
who have at least one commit in any of the two categories
considered) and that the axis contains those commiters who
have committed only one commit to a file type and one or
more commits to the other one. This confronts us with the
problem of commiters who haven’t done commits to one of
the file types considered but with a considerable amount to
the other. In order to also show them, we have considered
commiters that have twenty or more commits5 in one file
type to have at least one commit to the other (if no commit
had been done, this was added automatically). This should
not be a dramatic distortion of the data and would give us
valuable information specially about specialization of com-
miters.

The first scatter plot we are considering is shown in fig-
ure , and presents development commits in the X axis and
documentation in the Y axis. There are several interesting
facts that can be learned from this figure. First, that the

5ln(20) is almost 3.



Table 2. Colors and shapes used to identify
file type where most active in the scatter plots

Color Shape File type
Red Open rectangle Development
Blue Plus (+) Documentation
Green Open circle Translations
Orange Filled rectangle Images
Yellow Filled circle Multimedia
Purple X User interface
Gray Point Unknown

development ’population’ (red points) is by far larger than
any other one. Second, that there is a natural split between
documenters (blue) and developers (red), given by our way
of coloring commiters by its highest contributing file type.
It is also interesting the location of commiters whose pri-
mary task is none of these two: translators (green) are gen-
erally grouped with documenters, while those who work
on the user interface (purple) appear in the red develop-
ment dust. Third, among the most contributing commiters
(log(commits) ¿ 10, also more than 20,000 commits) to the
development file type we can find nine persons, but only five
of them have development as their first activity. Two more
are mainly translators (green points) and the other two are
primarily documenters (blue points).

Figure maintains the development commits in the X axis
and sets in the Y axis the ones related to translations. It can
be seen once more how there are several patterns followed
by points of the same color. It is interesting the fact that the
Y axis contains only green points, which means that many
commiters only perform translation-related tasks. From this
fact it can be inferred some degree of specialization in a
project: almost half of the translators in the KDE project
do not do any development activity. The situation of the
blue points (documentation) in this scatter plot is also of
great interest: there is a first group that lies between trans-
lators (green points) and developers (red points). The inter-
pretation for this is not straightforward. One possibility is
that there is a trend to get integrated into the project start-
ing with translation work (which is pretty simple, since it
only requires to have some knowledge of English and some
other language), then contributing with some supporting
task as documentation (which includes web pages) and fi-
nally landing on code development (which requires to have
some knowledge on the platform and the technologies used,
as well as some not so easy to acquire skills). Another
curious fact about this scatter plot is that there are almost
no large contributions from commiters which are not green,
blue or red.

As it was already mentioned, one of the weaknesses

Figure 6. Documentation vs development
scatter plot.

of our identification heuristics is that it is hard to split
documentation and images clearly as some images corre-
spond to documentation. This is the case for instance for
web pages or technical documentation in XML. Figure may
throw some light into this problem. The first aspect worth
mentioning is that documenters rarely do big contributions
in documentation without also inserting images. All major
documentation contributors have also an appreciable num-
ber of image commits. The second one is that many devel-
opers contribute both documentation and images (in fact,
more images than documentation as the points are shifted
towards the Y axis). As it was observed in a previous scat-
ter plot, translators are also more tied to documenters than
to images.

The last scatter plot in figure highlights the commiters
working on user interface tasks and development. The fact
that can be inferred here is the number of persons ded-
icated to design and implement the user interface: it is
rather small. There is also a noteworthy trend showing that
while developers feature a larger contribution to develop-
ment files, their contribution to user interface file types is
also large. This may be interpreted in the sense that besides
the very specialized group that works on user interface, all
others start first by developing in the classical sense and as
time passes and they acquire experience they also work on



Figure 7. Translation vs documentation scat-
ter plot.

user interface.
It is also possible to obtain a scatter plot of commiters

for a module, and see if it corresponds to the general trend.
Among the interesting facts that can be observed it can be
highlighted how there are differences between a local color
choice (in the sense that only commits by a commiter to the
module are taken into account) and a global color choice
(where all commits made by a commiter to the repository
are considered). The number of “color changes” and the
file types that are most affected may allow us to infer some
conclusions.

6. Conclusions and further work

The examination of source code allows for the discrimi-
nation of several types of files that reveal several “kinds” of
source code. A deep study of them and of their evolution
may help us to infer the importance that a program (or a
project) attributes to certain tasks beyond generating source
code (writing code in a programming language). These
activities include documentation, translation, user interface
design, generation of multimedia elements, etc. This paper
also proposes a methodology and a software implementing
it in the case that the sources are stored in a CVS repository,
and that common conventions in the libre software world
are used.

Figure 8. Images vs documentation scatter
plot.

One of the main goals of this paper, which should be fur-
ther researched, is the possibility of using objective criteria
to characterize projects based on its activity in the afore-
mentioned areas, and of studying the evolution of such ac-
tivities over time. If data is available we can proceed to
make the same study for a given part of the project (modules
or subprojects) and even for the persons that are working on
them (in the case of a CVS system, they are called com-
miters). Our first attempt has been to explore characteriza-
tions by assigning colors to the different tasks considered,
and to visually recognize what types of module/commiter
we have. Pending work includes studying correlations be-
tween modules and commiters.

Future research should also focus on the evolution of
modules and commiters over time, although some aspects
have already been pointed out in this paper, specially in the
case of commiters. The scatter plots have shown that there
are several trends in the behavior of commiters, although
they have not been proved in a deterministic way. Hence,
we argue that many commiters evolve from translators to
documenters, and finally to code developers. This same be-
havior arises with user interfaces, that require some previ-
ous activity in the development area.



Figure 9. User interface vs development scat-
ter plot.

References

[1] R. Albert, A. L. Barabsi, H. Jeong, and G. Bianconi. Power-
law distribution of the world wide web.Science, 287, 2000.

[2] A. Capiluppi, P. Lago, and M. Morisio. Evidences in the evo-
lution of os projects through changelog analyses. 2003.

[3] M. W. Godfrey and Q. Tu. Evolution in open source software:
A case study. 2000.

[4] J. M. Gonzlez-Barahona, L. Lpez-Fernndez, and G. Robles.
Community structure of modules in the apache project. 2004.

[5] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics and
laws of software evolution - the nineties view. 1997.

[6] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles. Apply-
ing social network analysis to the information in cvs reposito-
ries. InProceedings of the International Workshop on Mining
Software Repositories, 26th International Conference on Soft-
ware Engineering, Edinburg, Scotland, UK, 2004.

[7] G. Robles, S. Koch, and J. M. Gonzalez-Barahona. Remote
analysis and measurement of libre software systems by means
of the cvsanaly tool. InProceedings of the 2nd ICSE Work-
shop on Remote Analysis and Measurement of Software Sys-
tems (RAMSS), 26th International Conference on Software
Engineering, Edinburg, Scotland, UK, 2004.

[8] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. InProceedings of the 3rd Workshop on

Open Source Software Engineering, 25th International Con-
ference on Software Engineering, pages 111–115, Portland,
Oregon, 2003.



7. Appendix: File extensions

In this appendix we will focus on the methodological
part that is related to the identification of the file type as
it is the most important for the goals of this paper. As it was
mentioned before, the CVS logs are retrieved and parsed.
We have included a procedure into CVSAnalY that enables
the identification a file type by the inspection of its file name
and specially by its extension. Hence, we’ve built a list
of most common extensions and file names and later have
gruoped them in several sets.

Table 3 is a small excerpt of the grouping that has been
created. As it can be noted,

Table 3. Summary of file extension groups
.c, .cpp, .java, .h, .py... Development file extensions
readme*, changelog*... Development documentation
configure*, makefile*... Building, compiling, conf...
.html, .txt, .pdf, .xml... Documentation, web pages
.png, .jpg, .gif... Images and graphics
.po, .pot, .mo... i18n and l12n
.desktop, .ui, .xpm... User interface
.mp3, .ogg, .wav... Multimedia

There are some drawbacks in our classification method.
The first and obvious one is that this is a heuristical proce-
dure and hence cannot be proven to be exact in any case.
Second we could mention that the heuristics could be en-
hanced in a simple way by looking at the content of the file
for a given set of patterns that certify that the classification
is correct or not. This is also a reasonable sugerence as we
are working with source code that is in fact available.

Besides, there are a set of file extensions that are hardly
to classify in an accurate way. This is the case for instance
for HTML and text files. Usually these types of files contain
information targeted to humans, although it is difficult to
assess if the target group are developers (in the wide sense
including also those who don’t contribute code), users or
just new-comers. We’ve decided to group all these pages in
a set called “Documentation and web pages” (shortly docu-
mentation).

Files that we find that usually are tied to the develop-
ment process have been grouped in a different set called
“Development documentation”, which includes files such
as README, TODO, ChangeLog, HOWTO, etc. etc. On
the other hand, in the study shown in this paper all develop-
ment categories (development file extensions, development
documentation and building, compiling, configuration, etc.)
have been grouped into a unique set called generically “de-
velopment”.

Another case of uncertainty is the one related to images.
Web pages usually make use of them, so they could have

been classified into the documentation category. We have
seen in the case study in sections 3, 4 and 5 that there is a
big correlation in projects and developers among these two
file types. But there are images related to other means as
application design, etc. Generally, our decision has been
to put images and graphcis in the “Images” set, with the
exception of very clear cases as the images with the “.xpm”
extension that can be classified into the user interface set
without trouble.

File type identification and grouping has been tested with
several huge CVS repositories and the precentage of files
that cannot be classified (and that has been labeled as ’un-
known’) lies under 5%. Further investigation of the reposi-
tory allows to identify project-own file extensions and con-
ventions which in some cases have lowered the unknown
fraction under the 3% barrier. In any case, a detailed study
is pending about the amount of false positives (those files
that are wrongly assigned to a given set) that this method
arises, although the manual audit we have done points out
that this should be not a severe deficiency of the methodol-
ogy.


