
GlueTheos: Automating the Retrieval and Analysis of Data from Publicly
Available Software Repositories

Gregorio Robles
Universidad Rey Juan Carlos

grex@gsyc.escet.urjc.es

Jesus M. González-Barahona
Universidad Rey Juan Carlos

jgb@gsyc.escet.urjc.es

Rishab A. Ghosh
MERIT - Univ. Maastricht
rishab@merit.unimaas.nl

Abstract

For efficient, large scale data mining of publicly avail-
able information about libre (free, open source) software
projects, automating the retrieval and analysis processes is
a must. A system implementing such automation must have
into account the many kinds of repositories with interesting
information (each with its own structure and access meth-
ods), and the many kinds of analysis which can be applied to
the retrieved data. In addition, such a system should be ca-
pable of interfacing and reusing as much existing software
for both retrieving and analyzing data as possible.

As a proof of concept of how that system could be, we
started sometime ago to implement the GlueTheos system,
featuring a modular,flexible architecture which has been
already used in several of our studies of libre software
projects. In this paper we show its structure, how it can
be used, and how it can be extended.

Keywords: Mining source code repositories, propos-
als for exchange formats, meta-models, and infrastructure
tools, integration of mined data with other project data

1 Introduction

Libre software projects1 range from very small ones
(with just one developer commited to his own toy) to large-
scale global projects whith thousands of collaborating de-
velopers [9]. Specially, most of the larger projects follow a
way of organization that has been called the ‘bazaar’-style
development [14], open to everybody willing to participate.
Thus, all elements taking part in the software development

1In an attempt to avoid any confusion regarding the meaning of free
in free software, throughout this article, the term libre software is used
instead. It was chosen because of its meaning pointing towards liberation,
and not of merely being costless. The term Open Source is refused for its
ignorance about the philosophical foundations of what free software meant
in the first place. “Libre software” is a term which is more and more usual
in some communities, among them many European and Latin American
countries.

process are as much open as possible, in the sense that the
generated information is publicly available so that it is eas-
ier for ’newcomers’ to become integrated in the project.
Fortunately, this strategy offers to researchers the chance
to access large amounts of data about the development pro-
cess, the participants and, of course, the output product: the
software.

Previous studies have taken advantage of this situation,
and several research groups have focused their attention
on the libre software phenomenon in the last years. For
instance, [6] offers a software evolution analysis of the
Linux kernel versions -without doubt the most known li-
bre software project- following the classical software evo-
lution point of view [11]. Others have paid attention to
economic parameters [10] and have investigated how well
classical software cost prediction models (as among others
COCOMO [1]) can be applied. In [13] it is shown how libre
software projects are composed usually of 10 to 15 core de-
velopers who lead the software process, a group of around
one order of magnitude larger that participate in minor de-
velopment tasks (bug fixes, etc.) and a final group around
another order of magnitude that helps by other means (bug
reports, etc.). In any case, the availability of data has proven
to be very positive for research in the libre software environ-
ment.

But the amount of data and information available for in-
spection is that big that these analysis are often regarded as
being too superficial. An example where this is common
case are source code repositories. In such systems, not only
the last state of the code is available for download but also
all previous states. The amount of information that is ready
for being extracted and analyzed is enormous and two fac-
tors become key points: automation and data mining.

When analyzing the data available in publicly accessi-
ble repositories, the automation of the data retrieval and the
quantitative analysis is of great importance[15][3]. In the
case of libre (free, open source) software projects, repos-
itories are managed with very similar software (if not the

same)2, and similar access protocols, so automation allows
for the access to most of the available projects. Some
methodologies have already being described which make
strong use of some kind of automated tools to perform this
tasks [3, 4, 7, 17, 10, 15] but they usually make use of ad-
hoc tools, without proposing a general architecture flexible
enough to make several kinds of distinct analysis on differ-
ent kinds of software repositories.

That is precisely what we have addressed with
GlueTheos: to design a system with an architecture which
allows in a way as general and flexible as possible the data
retrieval and analysis of public software development data
repositories. Currently it can access CVS repositories and
archives of source packages (both in deb and rpm formats),
but others (such as bug tracking systems and mailing lists)
are being included soon in the system. It is designed in a
highly modularized way, so that adding new retrieval meth-
ods (from CVS or other data repositories) and analysis pro-
cedures is simple.

2 The GlueTheos system

The structure of the GlueTheos system is simple.
Around a core of coordination scripts, there are input mod-
ules which download raw data (currently source code) from
the repositories where it resides, modules which analyze
such code from several points of view (counting lines of
code or identifying authorship information), modules which
store the information obtained in the previous phase (as a
set of XML files or in an SQL database, for instance) and
modules which produce the final reports (tables with data,
graphs, etc.)

In the rest of this section, all those modules will be dis-
cussed in more detail:

• Core scripts. These scripts are the usual interface for
users. With the help of a configuration file, they decide
which repository is to be used, and which download-
ing, analyzing, storage and reporting modules will be
run for it, according to the characteristics of the repos-
itory, the kind of intermediate storage desired and the
final reports wanted. The configuration file can also be
used to determine, for instance, that periodic snapshots
from a CVS are to be retrieved, to study the evolution
of a project. Or to perform only some stages of the
whole process (like, for instance, downloading, ana-
lyzing and storing results, skipping the reporting phase
which could be done later).

• Downloading modules. For each kind of repository,
a downloading module is available. Currently, there

2The 12 biggest projects in size in Debian 3.0 use a software reposi-
tory, all of them CVS besides Linux which uses BitKeeper, a proprietary
solution

are three: one for accessing CVS repositories, another
for storages of RPM source packages (and in particu-
lar, those found in Red Hat Linux distributions), and
yet another for Debian repositories (with source pack-
ages in the deb format). Those modules are capable of
downloading the source code, unpackaging it if neces-
sary (for instance, in the case of source packages), and
having it ready for the next stage (which usually is the
analysis of the code).

Figure 1. The Gluetheos modules

• Analyzing modules. For this stage, mostly external
tools are used, like SLOCCount [17, 16], CODD [2],
tools for metrics estimation (which include algorithms
to calculate Halstead’s[8] and McCabe’s[12] complex-
ity measures), raw count of file sizes (using for in-
stance the wc utility), and others. Therefore, these
modules are mainly drivers for those tools. Usually,
they run the specific external program they drive, and
produce results in a given data directory, in the output
format used by that program.

• Storage modules. For making it simple the genera-
tion of reports, the information has to be in an easy
to query storage. In addition, exchange formats have
to be defined when information is to be moved or dis-
seminated for study by other groups or at other loca-
tions. Currently, for most analyzing modules we have
two storage modules, one generating XML files and
other using SQL commands to feed a database. The
first one is mainly intended for data interchange, while
the other is better used for querying in the final stage.
Now, we are moving to an architecture where there are
only SQL modules for each analyzing module, and an

2

SQL to XML translator (also dependent on the analyz-
ing module used, but much more simple).

• Reporting modules. These modules are the produc-
ers of the outputs of the system. They usually query
the database, and massage the obtained information to
produce tables, statistical analysis or graphs. For do-
ing their work, in many cases those modules use also
external tools, such as Ploticus or Gnuplot for gener-
ating graphs, or R for statistical analysis. There are
also reporting modules which generate information in
a format suitable for being browsed via web, with the
help of some PHP code (LAMP = Linux + Apache +
MySQL + PHP).

Currently, GlueTheos is written in Python, using Python
standard libraries to access SQL databases, to generate
XML files or to interface with other tools.

3 Some examples of use

The GlueTheos system has been used in the two follow-
ing cases (which may serve as examples illustrating its ca-
pabilities):

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

5
10
20
35
55
85

130
200
305
465
705

1070
1625
2465
3735

Figure 2. Histogram with the SLOC distribu-
tion for packages in Debian 2.0

• The study of the packages in the Debian
GNU/Linux[7] and Red Hat Linux[17], distri-
butions (Figure 1 and Figure 2). For this study,
GlueTheos downloaded several Debian and Red Hat
distributions, and analyzed the resulting source code
by using SLOCCount to count its lines in several
ways, like SLOC (source lines of code) per package
or SLOC per programming language.

• The construction of the website http://libresoft.
dat.escet.urjc.es. This site includes information
and results about several libre software projects, from

several points of view gained with the aforementioned
analysis and measurement tools GlueTheos makes use
of. Most of the information available publicly there
has been built with the help of GlueTheos. One of the
goals of this website is to offer the libre (free, open
source) community the possibility to obtain feedback
from our research.

C

C++

Shell

Perl
other

Figure 3. . Pie graph with the SLOC count for
main languages in Red Hat 8.0 distribution

GlueTheos also provides an excellent opportunity for
economists to measure the demonetized, previously invis-
ible productivity of open source software projects, and also
to analyze the organization and production methods of soft-
ware at a level of detail probably unmatched by any other
field of economic activity. This is because almost ev-
ery single act of production, direct or indirect, is docu-
mented and recorded somewhere in the open source devel-
opment process, much of which is captured and quantified
by GlueTheos, which already pays attention to economic
measures (such as the Gini[5] coefficient of concentration).

Although this sort of measurement may not, initially, be
in monetary terms, it does represent human time and effort
spent on productive activity, and can be "remonetized" at
least for the purposes of measurement. One use for this may
be to improve models for cost estimation of software devel-
opment, by correlating time spent as reported by individual
developers in surveys, with their productivity as determined
through the examination of source code and related meta-
data (such as CVS).

4 Conclusions and further work

The GlueTheos system is an attempt to build a set of
tools capable of automating most of the tasks related to the

3

analysis of publicly available information about libre soft-
ware projects. Currently, it can access CVS repositories
and archives of some GNU/Linux distributions. By using
external tools it can make several different analysis on the
fetched data, and produce several kinds of reports (from ta-
bles with organized data to graphs or information suitable
for being offered in a website. GlueTheos pretends to fill
the gap that exists for in-depth, fully-automated analysis.

Our group is working currently in stabilizing the sys-
tem, making it more versatile (including more downloading,
analyzing and reporting modules), and exploring data for-
mats for the exchange of information about libre software
projects. We are planning also to put a big effort in the re-
porting modules, so that information from different sources
can be integrated and correlated giving a wider picture than
the one that a unique tool may offer. Special attention is be-
ing given in showing the huge amount of data in a way that
it is comprehensible avoiding the problem of information
overload that is common in these scenarios.

Future plans also include to set up an interactive website
where libre software developers can request their projects to
be analyzed. Developers would have only to fill out a form
where the location of the publicly available data sources
should be specified and the system will automatically re-
trieve and analyze them, putting up a web-sites with the re-
sults and finally notifying the developers that they can see
results there.

All the GlueTheos system, and the external tools it uses,
are libre (free, open source) software.

References

[1] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[2] Codd website.
http://codd.berlios.de/.

[3] D. Germán and A. Mockus. Automating the measurement of
open source projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, Portland, Oregon, 2003.

[4] R. A. Ghosh. Clustering and dependencies in free/open
source software development: Methodology and prelimi-
nary analysis. In Open Source Workshop, Toulouse, France,
June 2002.

[5] C. Gini. On the Measure of Concentration with Espacial
Reference to Income and Wealth. Cowles Commission,
1936.

[6] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. Oct. 2000.

[7] J. M. González-Barahona, M. A. Ortuño Pérez, P. de las
Heras Quirós, J. Centeno González, and V. Matellán Oliv-
era. Counting potatoes: The size of Debian 2.2. Upgrade
Magazine, II(6):60–66, Dec. 2001.
http://people.debian.org/~jgb/debian-counting/
counting-potatoes/.

[8] M. H. Halstead. Elements of Software Science. Elsevier,
New York, USA, 1977.

[9] K. Healy and A. Schussman. The ecology of open-source
software development. Technical report, University of
Arizona, USA, Jan. 2003.
http://opensource.mit.edu/papers/
healyschussman.pdf.

[10] S. Koch and G. Schneider. Results from software engi-
neering research into open source development projects
using public data. Diskussionspapiere zum Tätigkeitsfeld
Informationsverarbeitung und Informationswirtschaft, (22),
2000.
http://wwwai.wu-wien.ac.at/~koch/forschung/
sw-eng/wp22.pdf.

[11] M. Lehman, J. Ramil, P. Wernick, and D. Perry. Metrics and
laws of software evolution - the nineties view. 1997.

[12] T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 1976.

[13] A. Mockus, R. Fielding, and J. Herbsleb. A case study of
open source software development: The Apache server. In
Proceedings of the 22nd International Conference on Soft-
ware Engineering (ICSE 2000), pages 263–272, Limerick,
Ireland, 2000.

[14] E. S. Raymond. The cathedral and the bazar. First Monday,
1997.
http://www.firstmonday.dk/issues/issue3_3/
raymond/.

[15] G. Robles-Martinez, J. M. Gonzalez-Barahona, J. Centeno-
Gonzalez, V. Matellan-Olivera, and L. Rodero-Merino.
Studying the evolution of libre software projects using pub-
licly available data. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, 25th International Con-
ference on Software Engineering, pages 111–115, Portland,
Oregon, 2003.

[16] Sloccount.
http://www.dwheeler.com/sloccount/.

[17] D. A. Wheeler. More than a gigabuck: Estimating
gnu/linux’s size, June 2001.
http://www.dwheeler.com/sloc/redhat71-v1/
redhat71sloc.html.

4

