
 1

Re-working by the Linux Kernel developers

February 10, 2003

Matt Ratto
Ph.D. Candidate

Department of Communication
University of California, San Diego

mratto@ucsd.edu

Preface
Technology design is generally a matter of re-working existing systems rather than the
designing of entirely novel artifacts. In this paper I explore part of a computer operating
system called Linux that is designed to be re-worked by its users, a process I call
'designing for redesign'. I examine the practices of reworking within this development
effort using some concepts gleaned from activity theory, a meta-theoretical model that
particularly focuses on the simultaneously material and conceptual aspects of artifacts.
This work is two-fold; first to examine design as part of a larger activity of re-working,
and second, to begin to put together a model of socio-technical activity that incorporates
the complex epistemological and ontological conditions that characterize current human
conditions. Understanding the sociality and materiality of "knowing" and "doing" in
technologized society means unpacking what we mean when we talk of 'access' and
understanding 'use' as often an activity of re-working.

Linux
Linux is a software program that can facilitate the operation of computer hardware. This
type of program, called an operating system, provides a layer of abstraction between the
computer hardware and the application software that the computer user actually uses to
accomplish tasks. Without an OS, each piece of application software would have to
directly address the internal workings of the computer, an almost herculean task given the
mutiplicity of differences inherent in even the most similar of computer systems. More
specifically, Linux is the kernel of an operating system made up of a number of different
software programs that together accomplish the functions of an OS. While the kernel of
an OS is only part of the overall code necessary to support a computer, it is, by far, the
most complex and necessary part. While an OS might function with many of its pieces
missing, it cannot function without a kernel.

It is important to note that while the label ‘Linux’ more appropriately refers to the kernel
software that resulted from the development effort started by Linus Torvalds, it has come
to include the many different collections of software that together with the Linux kernel
come to form a complete OS. These collections, assembled and distributed by a number
of different profit and non-profit organizations are collectively called ‘Linux
distributions.' In this paper I focus on the Linux kernel development effort itself. And
while there are many ways in which the kernel developers work can be understood as

 2

driven by some of the same issues that engage other developers within the overall Linux
programming effort1, there are also dissimilarities.

Activity Theory
Exploring change as similarly material and conceptual is one of the strengths of an
activity-theoretical perspective. Further, such a perspective reminds us of the importance
of material and cultural history on the emergence of novel material and conceptual
artifacts. While activity-theoretical positions are far from monolithic (Cole, 1996 pg.139),
there are some general similarities. First, activity theoretical positions share an interest in
the simultaneously productive and communicative nature of social behavior.(Rossi-
Landi, 1983) Second, activity theory shares with other practice-based theories an
emphasis on the dialetical character of human experience, seeing structure and agency as
similarly determined and determining.(Lave & Chaiklin, 1993) Third, activity theory
understand cognition as 'distributed', incorporating both individual human subjects, the
built environment, and other people.2 Such perspectives offer rich ground for examining
the work of Linux developers by focusing on the productive and communicative nature
of their practices and the artifacts that mediate their work.

Designing for re-design
Many researchers have noted the way Linux and other open code development efforts
seem to hold out the possibility for a radical rethinking of the relationship between
technology makers and technology users.

However, the open code developers I studied did not appear to struggle with the same
usability issues that plague developers of more mainstream technologies. Rather than
develop software for a wide and diverse audience of users, many open source developers
create projects directed towards users like themselves - technically sophisticated and
computer-saavy individuals from similar backgrounds. This blending of user and
developer often resulted in software that, while technically sophisticated, remained
difficult to use and problematic to learn for non-computer professionals.

Rather than designing for 'users', many Linux developers seem to be creating software
programs and libraries inherently directed towards 're-designers' - other programmers
with the skills and knowledge to re-work the programs for their own use. While
designing for re-designers does create communities that blend making and using, the
skills and knowledge required to participate in this community puts membership out of
reach for many computer users.

1 For example, the kernel developers, like other Linux development communities, are constantly balancing
issues such as attracting new users to Linux through both technical and social engineering, managing for-
profit and non-profit development, and negotiating the complexity of the social arrangements between the
different development efforts.
2 This last position is commonly referred to as 'distributed cognition', (see for example [Hutchins,1995]. For
more on the relationship between activity theory and other theoretical models see [Cole, 1996] and
(Engeström, Miettinen, & Punamäki, 1999).

 3

In an early email to a group of similarly inclined developers, Linus Torvalds set out the
initial agenda for the creation of Linux.

Do you pine for the nice days of minix-1.1, when men were
men and wrote their own device drivers? Are you without a
nice project and just dying to cut your teeth on a OS you
can try to modify for your needs? Are you finding it
frustrating when everything works on minix? No more all-
nighters to get a nifty program working? Then this post
might be just for you :-)3

Note the nostalia for an earlier day in computing history when all users 'wrote their own
device drivers' (and obviously were men). Projects, modification, all-nighters - these
types of activities and the knowledges required to partake in them, can be understood as
characterizing early Linux work. Although it can be rightly argued that since the early
days of development, Linux has become a more 'user-centric' system, the number of
times the quote reproduced above is called forth by Linux developers (and social
researchers) indicates the continuing importance of this characterization.

In this paper I address how the Linux kernel development effort encourages some users to
become designers , to move from a passive to an active role in the construction of their
own technological experience. In one sense, such a move entails these users taking on a
different relationship to technology, a relationship that can be understood as re-working
practice that encourages a critical, creative relationship to the technology involved, as
well as the incorporation of different modes of work around that technology. Briefly put,
workers become re-workers by incorporating technical and well as social knowledges.

Re-working
An important initial step is to better define what we mean when we talk about "re-
working". One of the difficulties in thinking through questions of reworking (and design)
is the lack of a specific shared vocabulary for talking about similarities and differences in
these activities. "Design" as a concept is too large to serve to guide our work without
some necessary codification. Equally, other terms that describe practices of reworking are
also vague. For example, customizing a car can refer to complex work such as new
engines and other mechanical systems, or it can refer to merely cosmetic changes brought
upon by say, installing new seat covers. Both types of work are customization - the
making of something general into something specific and unique. However, the extent
and intent of the work may be understood as different. This difference is important to
understand, in part because of the political ramifications of these changes. For example,
while changing seat covers is open to every car owner who has the available time and
money, installing a new engine, upgraded suspension, or a fancy transmission require
knowledge resources that are not necessarily equally available. Terms such as tailoring,
tinkering, and redesigning, although somewhat different in scope, have the same vagarity
as to the content of the changes wrought.

3 posted to info-mini@udel.edu; from:Linus Benedict Torvalds; subject: Free minix-like kernel sources for
386-AT

 4

Terms of reworking
I intially decided to follow the prescriptions of ethnomethodology and look for the
'member's categories' which referred to the work of reworking. I did a series of keyword
searches on the Linux Kernel developers list4 looking for four words I found were often
used by Linux developers to refer to practices of reworking. The table below shows the
results of those searches:

Redesign* 4065
Tinker* 300
Custom* 1351
Tailor* 50

Of the terms, those related to customizing and tailoring were the most straight-forward to
define. In most cases, their use indicated that the work was being done (or had been done)
in order to satisfy some kind of individual requirement or need. Here are a few examples:

Re: [Off topic] Re: New Linux distribution - PSL
(name removed)
Thu, 11 Jun 1998 08:11:57 +0000
.... Hmmm, wonder if a common baseline would result in slow
deaths of some distributions? There are bound to be less
difference, after all.
Or perhaps distributions would _then_ be just what
distributions should be all about:
The customizing of a baseline to specific needs.

Re: Linux stifles innovation...
(name removed)
Date: Fri Feb 16 2001 - 07:44:28 EST
...I have heard about businesses that write open source
software on order. I.e. customer
pay for customizing an open source package the company
knows well, then they release the extensions too.

In other posts, developers wrote about creating 'custom' kernels, writing software for
'custom' boards, or creating 'custom' applications. Others wrote about the process of
'tailoring' a kernel to meet specific needs or that others needed to 'tailor' the code created
by the author in order to make it work 'for you.' While the definition of these terms seems
obvious,, at least in so far as their majority use on the list, what is less clear is what such
practices entail. The terms are used interchangeably to relate the 'individual' quality of the
result (or what needs to happen in order to achieve that result), but the involvement of
tools, standards, and/or other people is not defined. Posts about tinkering and redesigning
provided more of a handle on which to grasp the different practices. Although these posts

4 list archived from 1995- at http://www.uwsg.iu.edu/hypermail/linux/kernel/index.html
5 These number are approximate.

 5

also use the terms somewhat interchangeably, I decided to use the alternate practices of
'tinkering' and 'redesigning' to focus this paper.

Looking at design scholarship
To bound a chart of reworking practices I chose two concepts which seem to circle the
work being done on the list (and often design and technology studies in general); the
bricoleur and the engineer. These terms as articulated in The Savage Mind (Levi-Strauss,
1966) have served as a starting point for scholars interested in theories of mind,
cognition, and culture as well as those interested more particularly in the practices of art
and technology. Needless to say, the terms have been used both reflexively and
unreflexively. I say this at the beginning to validate my inclusion of these terms in this
thought experiment, but more importantly to acknowledge the problematic aspect of the
use of such broad dichotomies. That being said, I want to expand on these concepts,
address their problematic aspects, and try and see how they might, albeit after some
transformation, fit into the field of reworking I'm exploring.

Moving from identities to practices
In The Savage Mind, Levi-Strauss attempts to define differences of thought in different
cultures as savage or domesticated. He tries to reformulate the questions set forth by
Durkheim and Maus in Primitive Classification (Durkheim & Mauss, 1967) and his
teacher Levi-Bruhl in Primitive Mentality (L? vy-Bruhl, 1978) and How Natives Think
(L? vy-Bruhl, 1985).

A bricoleur is one who makes use of 'bricoles' - odds and ends of previous work, left over
stuff, materials that are 'at hand', but unrelated to the current task. In his ethnography
Working Knowledge, (Harper, 1992) Harper uses the term to explain Willie, a 'jack-of all
trades' in upstate New York. Harper rightly acknowleges that Levi-Straus presents the
bricoleur "...first as a thinker: considering, reconsidering, always with a view to what is
available." (pg.74) This is obviously a far cry from previous anthropoligical
generalizations of so-called 'savage mentalities', such as those of Levy-Bruhl, Levi-
Strauss' teacher. In Primitive Mentality, Levy-Bruhl speaks of the natives of Greenland:

...[their] mental processes are not independent of the
material objects which induce them, and they come to an end
as soon as their aim has been attained. They are never
exercised on their own account, and that is why they do not
seem to us to rise to the level of what we properly term
"thought."(pg.22)

For most scholars of that time, thought was 'properly' understood to be thinking,
abstracted from the material conditions that brought it about. Levi-Strauss, however,
opened up this definition to include the thinking aspect of the bricoleur, which he saw as
a reflexive actor, albeit carrying out a different sort of reflection from that of his other
category, the engineer or scientist.

 6

However much Levi-Strauss helped to redefine what was considered to be 'thinking', it
remains that his categories, the bricoleur and the engineer, are still problematic. Goody
locates the problem in Levi-Strauss adoption of the dichotomy of mind into 'savage' and
'domesticated,' the 'minds' that are equated with the bricoleur and the engineer
respectively. While Goody recognizes that Levi-Strauss is attempting to create a specific
historical basis for this dichotomy by positioning the issue as historical, i.e. 'savage'
minds are indicative of the neolithic age, while domesticated ones are characteristic of
modernity,[Goody, 1977 #1618 pg.5) he also notes that this distinction carries with it the
same "we-they" implications of previous dichotomies. Although Levi-Strauss is trying to
overcome the limitations of his teachers, he ends up recreating, as Goody says:

... the ethnocentric binarism enshrined in our own
categories, of the crude division of the world into
primitive and advanced, European and Non-European, simple
and complex.(pg.8)

These dire warnings are useful reminders of the problems associated with the use of
simple dichotomies to characterize the world. And yet there is a difference here that does
require explanation. The problem with Levi-Strauss' dichotomy is the application of this
separation to specific groups of people. Levi-Strauss is attempting to explain societal
difference, and the changing modes of thought that seem to precede or accompany shifts
that are generalized as 'civilization.' Goody is trying to accomplish a similar task.
However, he goes about it somewhat differently.

Goody places the difference in terms of 'changes in communication' and attempts to
analyze "the relation between means of communication and modes of thought." He
examines the genre and forms that accompany written language - lists, formulae,
prescriptions, and recipes - and sees in them the types of thinking that are typically
understood as characterizing abstract thought. Drawing upon Scribner and Cole's
landmark work, The Psychology of Literacy,(Scribner & Cole, 1981) Goody explores
how the 'modes of thought' often associated with 'civilization' are generated not by
biological or genetic difference, but by the practices associated with certain forms. This
move away from characterizing groups of people to characterizing forms and practices
overcomes some of the problems outlined above. Thus, rather than characterize the
issues I want to address as the difference between a bricoleur and an engineer, I focus on
the associated practices of tinkering and redesigning. This difference goes a long way
towards reclaiming the separation between the two extremes defined by Levi-Straus.6

6 By locating the difference in practice rather than 'in the person', I want to highlight the shifting that goes
on in most real world situations. Although it has been quite the 'mode' recently to speak of shifting identity
in order to overcome the limitations in static identity-based analyses of society (using such terms as the
bricoleur, engineer, the teacher, the student, and the sex worker point to this type of work,) my feeling is
that identity is both too fixed and too fluid to really provide explanatory force. Identity is both too fixed to
explain the rapid shifting that exists when work is going on, and too fluid to point to a motivating intention.
Placing the activity and the practice at the center of the analysis allows us to overcome these limitations
while still making use of the descriptive categories.

 7

Tinkering
Tinkering and redesigning serve as the boundaries of practices in which we are interested.
What practices are thus characterizable as 'tinkering'? A quick overview of academic
literature reveals some uses of the term, many drawn from Francois Jacob use of the term
to refer to the incremental process of evolution.(Jacob, "Evolution and Tinkering",
Science, 196:1161, 1977] Knorr, for example, uses the term to refer to practices in which
scientists make incremental and ad-hoc changes in the material infrastructures they use to
accomplish scientific goals, "Scientists pursue doable research by tinkering with local
contingency." (Knorr, 1979) 'Doable' work as tinkering is emphasized in Fujimura's
article "The construction of doable problems in cancer research" (Fujimura, 1987) And
Norris says that "science is tinkery business"(Norris, 1993) Nutch lays out a list of
'modes' associated with tinkering. These include; 1) using objects designed for other
purposes, 2) creating research equipment from bits and pieces found around the research
site, 3) modifying available tools, instruments, and equipment for coping with specific
emergencies or project contingency, and 4) saving time and money by constructing a
needed piece of equipment rather than buying it through 'conventional channels'. (Nutch,
1996)

Two aspects of 'tinkering' stand out. First, that as a practice tinkering involves a specific
relationship between people and objects mediated by 'immediacy' and contingency.
Tinkering is the accomplishment of 'doable' work - doable in the moment, making use of
existing, rather than distant material resources. In other words, tinkering is first and
foremost a practice of using 'bricoles' (to return to Levi-Strauss for a moment) to
accomplish accessible tasks. Tinkering engages the artifact to be reworked 'directly.'7

Redesigning
This 'direct enagagement' with the artifact stands in stark contrast to the typical definition
of designing, understood as the practice associated with the engineer. In Engineering and
the Mind's Eye, Ferguson traces the development of modern engineering
practice.(Ferguson, 1992) He sees this development as a move from the 'direct design' of
the artisan (read: bricoleur or tinkerer) to the 'designing by drawings' of the modern
engineer. Ferguson is quick to point out that these are "differences of format rather than
differences of conception.(Ferguson, 1992, Pg.5) He goes on:

Usually, the 'big,' significant, governing decisions
regarding an artisan's or an engineer's design have been
made before the artisan picks up his tools or the engineer
turns to his drawing board. These big decisions have to be
made first so that there will be something to criticize and

7 It is necessary to caveat the term 'directly'. I use it, despite its troublesome nature, it order to indicate a
difference between tinkering work and designing work. As Leontev explores in Activity and Consciousness,
the postulate of directness is untenable. All activity is, in a sense, mediated. Thus, tinkering work, just like
designing work is mediated by a number of different aspects, which include, but are not limited to, mental
models, norms, language, and many other standards and tools. A similar caveat should be applied to the
concept of 'immediacy.'

 8

analyze. Thus, far from starting with elements and putting
them together systematically to produce a finished design,
both the artisan and the engineer start with visions of the
complete machine, structure, or device. (Ibid)

By characterizing both artisanal and engineering work as differences in format rather than
conception, Ferguson tries to move away from the problems that accompany Levi-
Strauss' bricoleur, engineer dichotomy. By placing the difference within the material
tools used to conceptualize design, rather than the conceptual tools used to materialize it,
Ferguson does not end up 'primitivizing' the artisan. Just as the engineer analyzes and
criticizes, so does the artisan. The difference in their work is linked to material difference
rather than mental ability. Just as Goody understands abstract thinking as related to the
forms of lists and procedures, Ferguson sees the work of designers as being in the forms
of the model, the blueprint, and the drawing.

Therefore, while tinkering work is characterizable as direct engagement with the artifact
to be reworked, redesigning (and design work more generally) can be understood as work
in which engagement with the artifact is deferred in favor of other physical artifacts that
'stand-in' for the primary artifact. As noted above, these include design drawings, models,
flowcharts, blueprints, and the like. While tinkerers may be making use of conceptual
artifacts such as mental models, designers articulate these models as physical artifacts in
and of themselves. Again, to return to Ferguson, these are "differences of format rather
than conception." The secondary artifacts used in the practice of designing, afford
different capabilities from purely conceptual models, from each other, as well as from the
immediate or primary artifact. For example, the blueprint of a building allows
transportation, circulation, and the 'testing' of changes via erasing and redrawing. A scale
model of the same building allows a '3-D' view and makes understanding the physical
layout more straightforward. Obviously, both of these secondary artifacts allow for uses
that are quite different than the building itself or from mental models of the building.

Primary, secondary, and tertiary artifacts
Above I use the terms 'primary' and 'secondary' to refer to the class of artifacts through
which work takes place. I draw these concepts from the heirarchy of artifacts explored by
Wartofsky(Wartofsky, 1979, pg.204) Briefly stated, Wartofsky defines three classes of
artifacts: primary artifacts are those used directly in production and are typically thought
of as physically existing8; secondary artifacts are understood as models or
representations of primary artifacts, and are seen as providing for the transmission and
preservation of modes of action and beliefs; tertiary artifacts are considered 'imaginative
artifacts', things that engage us in a kind of "free play", and allow a re-imagining of
current activity.

8 It should be noted that although Wartofsky's examples included "axes,clubs, needles, and bowls" (Ibid)
we might also include the material insubstantiation of things like words, either via sound vibrations or ink
on paper.

 9

X axis of chart
Without falling prey to a model of tinkering/redesigning based on mental ability, we can
begin to articulate an important difference as being based on the artifacts involved in the
work. This relationship is diagramed in figure 1:

T in k e rin g
(‘im m e d ia te ’ e n g a g e m e n t)

R e d e s ig n in g
(d e fe rre d e n g a g e m e n t)

X d im e n s io n

(figure 1: picture of straight line described as 'reworking artifact', bounded on two sides
by 'tinkering' and 'redesigning', left side is labeled 'immediate engagement', right side is
labeled 'deferred engagement'.)

This diagram allows for more specific descriptions of the practices of reworking than the
use of loosely defined terms such as customization and tailoring. Equally, tracing the
different activities of reworking on this spectrum allows us to describe differences
without recourse to identity dichotomies like bricoleur and engineer, dichotomies that
seem to dissolve when actual practices are examined.

Secondary artifacts expanded
Above I noted the way designers use models, blueprints, and other secondary artifacts to
'stand in' for the primary artifact upon which work is being (or will be) done. It is
important to include a further expansion of Wartofsky's notion of secondary artifact9.
This is, namely, that secondary artifacts model not just the functional characteristics of
the primary artifact, but other aspects as well. While a typical way to differentiate
characteristics of technical artifacts is by separating these aspects into two classes,
namely 'interface' and 'function', I see this binary as particularly problematic.10 To

9 For now I concentrate on the secondary level of Wartofsky's heirarchy. More work needs to be done to
incorporate the tertiary artifact level. A good starting place for this work might be found by considering the
notion of 'psuedo-concept' in Leontev, (Leontjev, 1978). Also, the idea of the 'imaginary' might be a rich
location for further work. Some initial work has been done here including (Gregory, 2000) and (Hyysalo &
Lehenkari, 2001).
10I explore this problem more specifically in 'Naturalizing Function' a paper delivered at 4S 2001. Briefly
summarized, my argument is that the binary of 'interface' and 'function' can be understood as a corollary to
the problematic dichotomy of 'social' and 'natural'. These binaries do similar work, locking off certain
aspects of the world from criticism by opening up others. In this case, 'interface' is seen as 'social' and thus
open to the kinds of understandings obtained via 'social analyses' while 'function' is understood as 'natural'
and thus 'true', 'rational', and all the other characteristics typically applied to the natural world. That in the
world of computer software such work has been institutionalized can be seen in the division of labor

 10

overcome the problems of this binary, I replace it with three categories; conduct,
function, and structure. These three categories loosely correspond to the different types of
secondary artifacts used to model different aspects of the primary artifact.

To more clearly define these aspects of secondary artifacts, let me leave Linux behind for
the relative simplicity of a different primary artifact, a styrofoam cup. The cup itself is
the primary artifact, while a number of different secondary artifacts (that might be both
conceptual and/or material) model the different aspects of the cup. For example, when
you (as you drink your latte) remark on how styrofoam is not biodegradable and will
probably end up in a land fill, the cup, or rather its representation be it verbal, mental, or
material, has become a secondary artifact corresponding to its conduct - its durability
and relationship to a physical world. Further, when you pick up the cup and note that the
hot coffee it contains does not burn your hands, you are modeling the function (through
action) of the cup - it contains fluid and does not transmit temperature. Finally, when you
examine the cup, realize that it has small mold points on the sides and bottom, and
hypothesize about the material conditions of its production in a factory, you are modeling
the structure of the cup - how it was made and what kinds of organization was necessary
in order to make it, distribute it, and use it. This example makes clear that secondary
artifactualness consists in more than just physical models of how things work. They also
include how things behave and what conditions are necessary for their production and
use.11

Source code as multiple artifacts
This being said, what kinds of artifacts are used by the Linux kernel developers to 'stand
in' for the linux kernel itself? One interesting aspect of computer programs is that their
source code can be understood as both the primary artifacts upon which work takes place,
as well as a model or plan of these primary artifacts. Thus. software makes obvious the
way all artifacts work as both primary and secondary artifacts. (Miettinen, 1998) While it
might be said that the Linux kernel only exists as a primary artifact after and only after it
has been compiled, i.e. turned into object code, this seems a somewhat specious
argument. Part of what makes software interesting as an object of study is that it makes
obvious the way all physical artifacts live between this duality.

For example, legal scholars in the U.S. have hotly debated whether or not software is
protectable as free speech, since it appears to have little difference from other formal
languages12. In addition, intellectual property law has had a very difficult time

between 'human-computer interaction' and 'interface engineering' versus 'computer science' and 'software
engineering.'

11 There is an obvious connection here to alienation and Marx. Often capital production requires the
transparency of these models by making them deliberately invisible or by replacing these actual secondary
aspects with other, less politically or environmentally dubious models. This can be understood as part of
the process of commodification.
12 This work dates back to the 1960's and includes (Patent Resources Group & Bender, 1969), (Homet &
United States. Congress. Office of Technology Assessment, 1983), (United States. Congress. Office of
Technology Assessment, 1987), (United States. Congress. Office of Technology Assessment, 1990), and

 11

characterizing software. In some cases, software seems to be expression and protectable
by copyright law. At other times, software appears to be a machine, capable of carrying
out actions upon a material world. In the US, machines can only be protected by patent or
trade secret law. Again, some have tried to say that software as source code is expression
and protectable by copyright and free speech law, while software as object code is only
protectable as patent or trade secret and not open to the protections guaranteed by the US
Bill of Rights (freedom of expression.) Many scholars have rejected these claims, noting
that the distance between source code and object code is very small. An excellent
example of the result of such deliberations was the outcome of a US court case against
Phil Zimmerman, the creator of the encryption program PGP. Zimmerman, prevented
from exporting PGP since all encryption software over a certain level of protection had
been characterized by the US Department of Defense(of Trade?) as a munition, printed
up the source code for PGP on a T-Shirt and attempted to board a plane for France. He
was detained and the T-Shirt also was determined to be a munition under US law.13

The only way to resolve this issue is to give up and characterize software as both, both a
machine and the expression of this machine, both the artifact on which work takes place
and a model for this artifact. Giving up binary characterizations does not force us to give
up difference. Instead, it requires us to do a very useful thing; to differentiate software by
its use in practice. Thus we can say that sometimes the Linux source code is the primary
artifact of work, sometimes it functions as a secondary artifact. The difference, as in all
cases, exists in how it is being used at the moment of practice.

The shifting quality of artifacts is clearly described in Engestrom's chapter titled 'When is
a tool' (Engestr? m, 1987). By rephrasing the question from 'what is a tool' to 'when is a
tool', Engestrom gently critiques Wartofsky's heirarchical artifact levels by pointing to
the constant shifting that goes on between them.

This seemingly simple move opens up vast possibilities for reconceptualizing the
relations between signifier and signified, or to put it in other words 'word' and 'world.'
The question thus becomes not what is the relationship between the word (or a sign or
tool) and the corresponding physical world, but rather under what conditions and with
what resources does the physical world become transformed into models (secondary
artifacts) and back?14

For example, when programmers on the kernel developers list say that they are 'tinkering'
with a section of the kernel code, we can understand that they are working directly on the

(United States. Congress. Office of Technology Assessment, 1992). More recent work includes (Samuelson
& University of California, 1997), (Lessig, 1999), and [Burk, 1999]. For a more STS perspective on these
issues see [Gillespe, 2001].
13 There is an important point to be made here about the strategic control behind allowing for, or conversely
preventing the transformation of things from primary to secondary artifacts. Looking for such strategies
may permit a more sophisticated notion of 'access' - a concept sorely in need of redefinition.
14 To rephrase Engestrom, it is not 'what is a word' but 'when?', and more importantly when is something
'not word.' Exploring these shifts is one way of moving beyond the 'linguistic turn' without returning to
reductive forms of realism, and provides a methodological guide for those answering the recent call to
'practice' as the unit of analysis.

 12

code itself, trying things out, adding syntax or changing algorithms in 'real-time'. Here
are a few examples from the list itself:

Kernel 2.3.6 and ppa again
(name removed)
Thu, 17 Jun 1999 23:06:31 -0400
...I was tinkering with zipslack this time and attempted to
mount my slightly COD zip drive as umsdos. Fine. Did an
ls.....oops....seg fault....ls stuck in D state.

[RFC][DATA] re "ongoing vm suckage"
(name removed)
Date: Fri Aug 03 2001 - 18:44:43 EST
... IMO, far too much tinkering of code is going on
currently without hard data (other than "it looks good"),
and this is exacerbating the problems.

Re: Linux 2.4.10-pre11
(name removed)
Date: Tue Sep 18 2001 - 14:14:19 EST
The real question is why can't we just open 2.5 and only
fix the VM to start with? Leave the kernel at 2.4.1pre10
and possibly use the -ac VM code (which has diverged from
mainline),and leave people (Alan, Ben, Marcello, et. al.)
who want to tinker with it in small increments and do the
drastic stuff in 2.5.

ISS test3 is out
(name removed)
Wed, 5 Mar 1997 16:08:21 -0500
There are only two small behavioral bug reports I have
received at this point, one of them looks like a bug that
was in our networking before I began tinkering ;-)

Note that in these examples 'tinkering' and 'tinker' is always described in past or future
tense: "I was tinkering, ...too much tinkering, ...who want to tinker, I began tinkering...".
An initial insight is made clear by this form. Tinkering, at least within the Linux kernel
developers list, is always based on practical, 'immediate', and material interests. Thus
tinkering is only expressable on the list as something that happens outside it - before or
after the expressive and denominational work that is being done on the list itself. The list
itself, as a forum, is outside the bounds of tinkering. Another insight is thus possible;
namely that the list itself forms one of the secondary artifacts by which designing and,
importantly, redesigning practices take place. Here are some examples where
'redesigning' is being used:

Re: crypto (was Re: Congrats Marcelo,)
(name removed)
Date: Wed Feb 27 2002 - 17:29:47 EST
The one major downside, right now, is that Henry and
Richard et al, keep talking about redesigning the klips
structure to fit in with the more recent kernels better
(ala netfilter, maybe). They've announced some design specs
and I suspect that they would rather see the newer version

 13

of klips in the kernel tree than the crufty version that we
are hobbled with in FreeSWAN right now.

Re: Journaling pointless with today's hard disks?
(name removed)
Date: Wed Nov 28 2001 - 13:46:24 EST
This is a last ditch deal-with-evil safety net system that
has a fairly good chance of saving the data without
extensively redesigning the whole system. Never said it was
perfect.

FAQ followup: changes in open fd/proc in 2.4.x?
(name removed)
Date: Fri Nov 17 2000 - 10:58:12 EST
Now we get to the reason for this post. Has anything
changed for 2.4.x? With release eminent, we don't really
want to go through the redesign and implementation if the
architecture is different for 2.4.x.

Note that in these examples redesigning is understood as a practice that involves terms
such as 'specs', 'systems', and 'architectures'. Further, redesign is characterized as an
ongoing practice, faciliated by conversation on the list. Thus, while tinkering is typically
an 'off-list' process of one-on-one interaction with the work in question, redesign involves
the mediation of secondary artifacts including the list itself.

Ideal developer steps
Based on my reading of the kernel list, I have compiled a series of typical developer
'steps'. These are:

1. Developer/user want to use a new network card on his Linux system
2. Developer needs to extend the Linux kernel to use this card.
3. Developer examines source code (primary artifact) for networking subsystem of
kernel.
4. Developer tries making some changes to the code, recompiles the kernel as object code
(primary artifact), and tests the new network card. He does this a number of times but it
never works.
5. Developer posts a message to the kernel list, describing his attempts as 'tinkering', and
posting a section of the original source code and his attempted changes. (conversion of
code to secondary artifact)
6. Other developers give advice in the form of source code segments (secondary artifacts)
as well as reasons for changes based on the overall structure of Linux (secondary
artifact).

While this scenario might seem rather obvious (particularly to the developers themselves)
two claims are defended here. First that source code serves as both primary artifact of
work as well as a secondary artifact, and second, that the conversion of source code from
primary to secondary artifact happens within the context of the list and other

 14

programmers. Before addressing this second aspect, let me call attention to the shifting of
source code as artifact.

Shifting perspectives
Many scholars interested in design have commented on the perspectival differences
between technology users and developers. (for example (Kling & Public Policy Research
Organization (University of California, 1977), (Norman, 1990), (Carter, 1991) and
(Johnson, 1998).) One example of such explorations can be seen in an article examining
the development and subsequent abandonment of a automated post office kiosk called
"postal buddy'. (Engestroem & Escalante, 1996) In this article, Engestrom and Escalante
explore some of the ramifications of the differing perspectives between users and
designers. One important finding was that while designers saw the technology in question
(in this case, an automated postal services machine called 'postal buddy') as the object of
their work, users saw the 'postal buddy' as a tool that mediated their real object of buying
stamps or sending a package. The different objects of their respective activities made it
difficult for designers to understand user perspectives which made the postal buddy
difficult for users to use. Since in this case I'm talking particularly about a group of
people who are both users and designers - in other words they share the perspectives and
objects of both - it might initially seem that such a point is moot. However, as I hope to
defend more particularly later in this paper, 'good' designs, (meaning useful, adoptable,
and adaptable designs,) appear to emerge when designers are able to rapidly shift
between the two object perspectives noted by Engestrom and Escalante. That shifting
objectual practices is at the heart of expert work is a concept that only recently is
beginning to be addressed.15 In this paper my focus in on examining the different artifacts
of reworking practices. This analysis is incomplete without a more detailed understanding
of the connections between the artifacts that I examine and the objects of the activities in
question. For now, let me focus on defining more particularly the chart of reworking in
relation to the shifting uses of primary and secondary artifacts.

Y axis
One aspect of the shifting mentioned above is that it takes place on the list, within a
community of other developers. My first response was to see the movement to the list as
a movement from and individualistic process of work to a group process. But tinkering,
like all human activity, is never fully and individual act. Symbolic interaction has pointed
to the concept of the 'significant other' in order to capture this (Mead & Morris, 1974) and
the notion of activity in activity theory itself is predicated upon historically (and thus
socially) generated communities, norms, and rules. While it should be noted that in the
latter tradition, the separation between 'practice' and 'activity' is based upon the extent to
which the work being described is more or less social, more or less inherently within a
community, maintaining this separation is often quite difficult. Becker (Becker, 1982)
points to the difficulty in seeing any human work as singular. In one example, Becker

15 A good example is the recent work of Knorr-Cetina on 'objectual practice' in (Knorr-Cetina, Savigny, &
Schatzki, 2001). Also see (Turnbull, 2000))

 15

demonstrates the sociality of Van Gogh's painting (a seemingly wholly individualistic
act) by articulating the work of others to provide the paint, the brushes, and the canvas. In
one sense, then, each brush stroke, each daub of color can be described as a social
activity. Such a perspective is in line with my previous problematization of the notion of
direct engagement. Just as work is never truly 'direct', it is also never only 'individual'.

That being said, how can we characterize the shift from tinkering sorts of work to the
design work we want to describe? One useful distinction can be seen is the organizational
'style' of both practices. Tinkering seems to be a more tightly organized and stable
practice, characterizable by a coherence of time and place. I don't mean to indicate that
tinkering is organized from 'above' or that its rules are more explicit or formal. Instead,
the organization of the practice of tinkering is often 'self-organized' and results in a
coherent set of relations between the people involved, driven to be sure, by the
simultaneous nature of the communications between then. In fact, tinkering work mostly
takes place within and by groups of closely connected workers. Harper's description of
Willie's shop is a good example of the 'connected-ness' of such practices. (Harper, 1992)
Although these relations may change from location to location and from context to
context, for the moment of the tinkering practice, they remain stable.

What the move to the list entails is thus a move away from the organizationally more
'tightly' connected tinkering work, and towards a more 'loosely' organized development
effort. However, the term 'loose' should not be taken to mean that the rules, positions, or
standards of the group are haphazardly decided or enforced. Instead, 'loose' indicates the
spatial as well as a temporal distance between rules and enforcement, decision and
adoption, tests and results. To use the metaphor of a rope, it is not that the knots are
loosely tied, but that they are distantly spaced along the rope. Such spacing results is a
sort of 'wiggle-room' that allows for different sets of problems - and different kinds of
solutions - to arise within the groups involved.

These two terms, 'tight' and 'loose' have long been used by engineers to characterize
technical systems. As Perrow points out, more recently the terms were adopted by some
organization scholars working within the field of education, to indicate differences in
social systems. (Perrow, 1999) However, Perrow uses the terms to refer to socio-
technical systems - aggregations of people, communities, and artifacts. These terms can
thus serve as the two points on our Y axis.

 16

‘Loose’

‘Tight’

Y dimension

(figure 2: picture of vertical line labeled 'reworking organization'. Bottom of line is
labeled 'tight', top of line is labeled 'loose'.)

The Y dimension describes another major difference between tinkering and designing
practices. While tinkering can be understood as a practice more tightly organized by
space and time, redesigning, particularly in view of the whole collective of Linux
development, can be seen as a more loosely organized process. The 'loose-ness' of the
development process is often revealed when people on the list talk about 'redesigning'.

Re: Synchronous board drivers
(name removed)
Mon, 5 Jul 1999 12:55:25 +1000
...That being so I'd like to run my current thoughts for
redesigning the ppp support in the linux kernel past people
on this list.

Re: Linux stifles innovation...
(name removed)
Date: Sat Feb 17 2001 - 15:05:36 EST
...I suppose you could argue that redesigning linux every
few years is innovation, but unfortunately its the same
cast of characters doing it, so its not very innovative.

As these examples show, redesigning is understood as a practice that requires certain
kinds of consensus in order for its results to be accepted and used. However, often times,
the need for building consensus in order to successfully carry out a redesign, is seen as a
somewhat difficult process.

FAQ followup: changes in open fd/proc in 2.4.x?
(name removed)
Date: Fri Nov 17 2000 - 10:58:12 EST
So basically, before we begin the arduous task of redesign
is there anything in the 2.4.x kernel that will affect our
decisions?

 17

Re: [PATCH] Re: Move of input drivers, some word needed
from you
(name removed)
Date: Tue Aug 22 2000 - 06:48:23 EST
My point is just that if we're going to go through the
horror of completely redesigning serial.c we might as well
get rid of the "char by char" mentality, at least not so
that it limits the _fast_ ports out there.

Note the use of terms like 'arduous' and 'horror' to describe the process of redesign. These
terms are indicative of the way redesigning often works within the Linux kernel effort -
by fits and by starts. While the loosely organized nature of redesigning in this community
allows for certain kinds of freedoms, it also makes the global changes primarily driven by
redesigning difficult to accomplish. Often times, such as in the last example, tinkering is
understood as a way to accomplish changes without having to achieve the kinds of
consensus necessary to successfully 'redesign'.16

Chart of reworking
Having laid out the X and Y axis of the chart. Let me put the whole thing together:

primary artifact
(‘direct’)

secondary artifacts
(deferred)

‘Loose’

‘Tight’ Tinkering

Redesigning Chart of reworking

(figure 3: X and Y described as above, with diagonal line of tinkering/redesign)

16 A brief footnote here on consensus-building. Leigh Star has used the concept of 'boundary object' to
critique the notion that science requires consensus building. 'Boundary objects' are considered to be
artifacts which allow for communication to take place and work to continue despite disagreements as to the
nature of the tasks at hand. Incorporating this idea into my analysis of the Linux effort would create a more
nuanced way of talking about the kinds of consensus necessary to carry out the reworking practices I
describe in this paper.

 18

Note that with the addition of the vertical dimension, the activity of tinkering and the
activity of redesigning now follow a diagonal path. Thus, tinkering can now be described
as a 'tight' activity that involves 'direct' action of the primary object of work. Redesigning
can be described as an activity involving 'loosely' organized people and work being done
on multiple secondary artifacts which 'stand in' for work on a primary artifact.

While this may seem like a lot of work just to draw this fairly obvious relationship, there
are some insights to be gained here. Let me start by revisiting the 6 reworking steps
described above in a slightly different way.

3. Individual tries something
4. looks at source code
2. puts problem to list
1. multiple people on list try things
2. multiple posts to list
4. individual examines them
3. individual applies them to problem.

Redraw on the chart, this would look something like this.

secondary artifacts
(deferred)

primary artifact
(‘direct’)

‘Loose’

‘Tight’ Tinkering

Redesigning Chart of reworking

(figure 4: diagram of shifts)

So what drives the shifts described above? One possible reason might be to overcome a
lack of relational coherence between quadrants.17 The initial shift between 3 & 4 might
be driven by a gap (between quadrants 3 & 4) caused by the secondary artifact not
adequately representing the primary artifact. In this case the primary artifact is
understood as the future working code and the secondary artifact is incorrect source code.

17 More conceptual work needs to be done here on this notion of 'relational coherence'. Two possible
notions that might be useful starting points are the idea of 'gaps' drawn from Dewey, (Dewey, 1971) and the
ideas of 'disturbance' and 'contradiction' from activity theory.

 19

Equally this gap could be caused by an inability to see the relationship between the
secondary artifact and the primary artifact. In this case both the primary and secondary
artifacts are the source code and the individual needs help understanding why the code
works the way it does. At any rate, the gap drives the shift to quadrant 2 - the
incorporation of others into the problem. While the reworking problem might be solved at
this stage, e.g. someone on the list immediately understands the problem and posts the
solution, often times the other development list members themselves try out the code and
post results (shifting between 1 and 2). This last shift can thus also be understood as
driven by attempts to overcome a lack of coherence between quadrants 4 & 2.

Managing the shifts
While this may seem a somewhat reductive way of understanding the activity of
reworking, the above chart does reveal some important places to look when reworking
practices are not successful. Gaps between quadrants and, more importantly, an inability
to overcome these gaps by taking the work to another quadrant, can be understood as
reasons for unsuccessful activities. There are many examples of these on the kernel list.
The most obvious ones are when posts of problems are not picked up by other list
members:

(example of custom kernel config post)

In this post, an individual asked for help creating a custom kernel. His attempt to make
the shift to quadrant 3 was unsuccessful - there were no responses on the list. This is not
to say that his reworking practice was ultimately unsuccessful. He may have received off
list responses that would assist him. However, such responses would not indicate a
successful move to quadrant 2, the incorporation of other list members and other
secondary objects. Instead, responses would typically direct him away from the kernel list
and towards other communities where he might be able to get assistance and incorporate
other individuals and objects into his activity. In this example, it is easy to place the gap
as being based on incomplete knowledge of the community rules and norms. The kernel
list FAQ - itself an important secondary artifact - states that that questions about
compiling and creating custom kernels will not be answered.

Artifact multiplication and subtraction
Just as upward moving shifts can restrict the success of reworking activity, downward
moving shifts can also cause trouble. Earlier in this paper I articulated the expansion of
secondary artifacts to include different aspects of the primary artifact, including conduct,
functional, and structure and how these aspects of the artifact contain traces of uses,
behaviors, and organization. But in addition to expansion, artifacts also multiply and
substract through use. By multiplication and subtraction I mean that the models of
primary artifacts (the secondary artifacts) increase and decrease as reworking goes on.
To demonstrate this, let me diagram the process of reworking another way:

 20

primary

multiplication subtraction

secondary

(figure 5 - artifactual change through reworking.)

In this diagram, the initial primary artifact (larger dot) is modeled by a series of
secondary artifacts (smaller dots) some of which impact the primary artifact. Note that
these secondary artifacts model may model the conduct, function, or structure (see above)
of the primary artifact. Also note that the process of change detailed in this diagram is
somewhat cyclical as represented by the two horizontal arrows.

This diagram makes it somewhat easier to see the multiplication of artifacts (shifting
upwards) and subsequent reduction of artifacts (shifting downwards) necessary for a
successful reworking process. It also reveals why it is often difficult to talk about success
or failure. In many cases, the transformation of the primary artifact during the multiple
shiftings between levels, results in a discontinuity between the beginning and end of the
process. In other words, the mirror image of the multiplication of secondary artifacts is
the multiplication of primary artifacts. That the circular motion depicted in the above
diagram is often not circular at all is a reflection of the kind of circular quality of
consciousness as explained by Leon'tev. Just as the 'subject-activity-object' cycle is
broken in 'sensory-practical activity itself' (Leontjev, 1978, pg.78), the cycle of artifacts
is also not a 'magic circle.' To think that the movement is purely cyclic is to believe two
ridiculous notions. First, that the results of the multiplication of artifacts is wholly
predictable, i.e. that there is always a rational progression from primary to primary
artifacts, and two, that the resultant primary artifacts are fully realized (and realizable)
versions of their secondary models. This latter mistake is (again) a clear indication of the
problems with the postulate of directness. However, this should not be taken to mean that
these movements have a tendency to stop. In fact, it often seems that stopping the
multiplication of artifacts actually takes hard work.

A good example of this can be seen in Latour's examination of the 'black boxing' of two
different artifacts, a computer system and a 'scientific fact.' (Latour, 1987) Stabilizing the
Eclipse computer and the double-helix nature of DNA took immense leveraging of both

 21

institutional and 'natural' constructs. This stabilization can thus be understood as a
process by which artifacts are prevented from multiplying via secondary artifact
modeling. Equally, it might be possible for artifacts to achieve stability by its very lack -
the subtraction that must take place in order for the changes explored via secondary
artifact modeling to be reincorporated into the primary artifact. I take this as both a
theoretical and a methodological point, first that artifacts 'just want to be free', i.e they
want to become models for themselves and multiply; and second, that the stability of
artifacts generated either through multiplication or subtraction requires explanation.18

Obviously, there are many other reasons why these shifts do not take place. Suffice it to
say the the above charts provide places to start looking for reasons reworking activities
are successful or unsuccessful, as well as a possible way of tracing the development of
innovative aspects of the Linux kernel. Also, the chart of reworking makes visible an
aspect of work on the list that is often ignored or forgotten. This is namely the lack of
connecting line between quadrants 1 & 3.

secondary artifacts
(deferred)

primary artifact
(‘direct’)

‘Loose’

‘Tight’ Tinkering

Redesigning Chart of reworking

(Figure 6 - return to figure 4 - no connection between 1 & 3)

It is difficult to see activities on the Linux kernel list within quadrant 1 - multiple people
working together on the primary artifact. This is partially due to the form of the list -
conversations on it take place in a spatially and temporally discontinuous or
asynchronous mode - one aspect of the 'looseness' of the organization. That shared
physical space is not a requirement is made obvious by the ongoing reworking practices
that are facilitated by internet chatting, such as takes place on IRC and other syncronous
electronic forms. However, that this quadrant is an important aspect of successful
reworking activities is revealed by the many conferences, chat rooms, and shared work
environments of the developers. Thus, the difficulties of connecting quadrant 1 to the rest
of the chart provide us with a healthy reminder of the dangers of focusing too intently on

18 Again, more work needs to be done on the multiplication and subtraction of artifacts that takes place
around human activity. The recent focus on 'objectual practice' by Knorr-Cetina mentioned above is one
starting point. Another is Cantwell-Smith's text On the origin of objects, (Smith, 1996).

 22

just the interactions that take place within one form of communication, in this case the
Linux kernel list.

Charting other 'reworkers'
How might other groups of reworkers be placed on the chart of reworking. Below is one
attempt to place some particular groups.

primary artifact
(‘direct’)

secondary artifacts
(deferred)

‘Loose’

‘Tight’ Tinkering

Redesigning Chart of reworking

Turnbull’s
masons

Classic ‘lone’
scientists/engineers

(figure 8: Chart of reworking with other 'reworkers'.)

As you can see, the chart becomes another way of exploring views of working practice.
In quadrant 1, I have placed the masons described in Turnbull's work on the construction
of Chartres cathedral (Turnbull, 2000) As Turnbull notes, many architects and structural
engineers held that Chartres, like other gothic cathedrals, was proof that architectural
knowledge had been lost or great genius was at work in its construction. According to
these opinions, gothic builders were working without the theoretic knowledge that is used
today in structural analysis. This meant that explaining the construction of gothic
cathedrals required "? the invocation of such imponderables as an 'insuperable barrier' or
'genius' or a long-forgotten secret building technique. (pg.55) Turnbull remarks that a
more 'performative' approach overcomes the need to rely on such mysteries. Rather than
great unknown genius architects with knowledges that have since been lost, the building
of Chartres can be better understood as an 'experimental' activity, that brought together
three essential components. First, talk, which allowed the patron (or his representatives)
who planned the building and the masons who did the actual construction to collectively
engage in an activity that melded the spiritual and scholastic traditions of the day with the
necessary craft knowledge. Second, masonry traditions that provided continuity in
technique as well as constant innovation. Third, templates, thin wood cut-outs that
allowed masons to cut stones to the correct size in the absence of an overall plan. Thus,
talk, traditions, and templates allowed for a kind of working practice that was both 'direct'
in the sense that the work took place in local, physical ways, as well as 'loose' in the sense
that the process took place without blueprints or architects (as we know them today), took

 23

place over hundreds of years, and was eventually completed despite stoppages that lasted
for weeks, months, or even years. The success of such practices is obvious in that they
created a building that has lasted over 800 years.

Turnbull's explication of cathedral building can provide some characteristics of 'loose'
and 'direct' practices - use of templates rather than an overall plan, practices that move by
'fits and starts', directed by 'mastre masons' rather than architects. In fact, Turnbull's
masons serve as a rather good parallel to the Linux kernel developers, especially when
you consider the importance of ongoing talk (via the list), the way development traditions
structure the work, and finally the way segments of source code of Linux serves as
templates that guide overall development activity.19

In addition, I have positioned another category called 'lone classic scientists'. This work is
characterized as 'deferred' and 'tight'. Such a characterization is a good reminder of the
less than ideal nature of these categories. Just as most science work is neither purely
'tight' nor 'deferred' (see the articles by Norris, Nutch, and Knorr-Centina for good
examples of this), none of the practices fit perfectly into these reductive categories. In
fact, it might be said that most successful working or re-working activity relies on
shifting between all sectors of the re-working chart.

Conclusion and future directions
First, it is important to note what is missing from the analysis above. First, in this
analysis, groups of people working together are understood merely as aggregates of
individuals. This does not give adequate attention to the notion of sociality as beyond
mere aggregation. Social groupings possess their own characteristics, forces, and
directions, and it is a mistake to understand them only as a sort of 'super-individual'. The
key to understanding sociality is however, not only the incorporation of what might be
considered to be the macro-societal issues faced by the sociality in question. These
issues, which might include concepts of race, of ethnicity, of gender, and related
questions of power, structure, and control, are important to address. However, 'going
macro' is not the way to increase our understandings of these issues.

In part these difficulties are due to my focus on the artifacts of activity rather than the
objects. A more detailed examination of reworking would have to address these
connections more explicitly. The kind of analysis I've carried out in the above work, does
little more than hint at the need for this more complete work. Thus, although the chart of
reworking activity is an important starting place, the insights gained through such work
can be made more relevant and more generalizable via a micro-transactional analysis.

19 Such a parallel provides us a new way to understand Eric Raymond's work on open source software 'The
Cathedral and the Bazaar'. Rather than the highly controlled and heirarchically organized process that
cathedral building was supposed to be, it turns out to be much more like Linux. Over vast amounts of time
(hundreds of years in some cases) a loose collection of masons and other builders built the Chartres
cathedral. Instead of a complete architectural plan designed by an medieval engineer or architect, the
masons relied on some simple drawings and physical templates in order to make such that all the pieces
somehow 'fit' together.

 24

Such work might start by looking at the kinds of resources required to carry out the
activities noted above. These resources include the knowledges required to understand
and write computer source code, access to computer and networking technology, the
documents and shared history of the group, as well as the explicit and implicit rules and
norms that structure the group experience and provide ways to negotiate, change, as well
as revoke any aspect of the group dynamic. This latter dimension might well be called the
political aspect of the Linux kernel work. Understanding this work as activity, as well as
how this activity relates to the macro issues listed above and the meso-level
understandings generated by my charting experiment, remains an elusive and important
goal.

This paper is merely the beginning of a much larger project. And yet, a few useful
insights have emerged from this work. The first point is methodological; one way to
understand and analyze practice is by exploring the 'shifts' that go on in that practice. In
the above analysis, I explored the shifting of Linus software development work by
mapping the shifts on a chart made up of two dimensions; the x axis represented the
artifacts used in the work, the y axis represented the kind of organizational 'coupling' that
characterized different moments in the work. The analysis revealed that the ability to shift
between the quadrants on the chart was essential to the ongoing nature of Linux
development. Further, the analysis indicated that one reason for the necessity of shifting
had to do with the coherence or discontinuity of the artifacts involved in the work. This
latter aspect was indicative of the complex artifactual ground upon which the work took
place. I briefly explored the multiplication and subtraction of the artifacts used in the
work - i.e. the construction and destruction of this complex artifactual ground. The ability
to navigate this ground can be understood as a version of 'expertise.' Thus, future work
should take the following steps:

1)expanding the notion of artifacts to include the topological and 'ecological' relations
between them - i.e. an 'ecology of artifacts',

2)expanding the notion of expertise to include experts who manage these relations.

Understanding how things multiply into secondary and tertiary artifacts and subtract into
primary ones, as well as how they expand into objects and contract back into artifacts
could thus serve as one way to reincorporate a notion of 'politics' into the study of
technology and work. Starting from 'reworking' rather than working provides an
important reminder not to focus too heavily on ideas of novelty and origins. The
metaphor of 'ecology' provides one way to describe the emergent and shifting quality of
technology reworking.

 25

Bibliography

Carter, K. (1991). Participatory Design in a Commercial Environment, CHI'91 (pp. 390),

New Orleans, LA: ACM.
Becker, H.S. (1982). Art worlds. Berkeley: University of California Press.
Cole, M. (1996). Cultural psychology : a once and future discipline. Cambridge, Mass.:

Belknap Press of Harvard University Press.
Dewey, J. (1971). How we think; a restatement of the relation of reflective thinking to the

educative process. Chicago,: Regnery.
Durkheim, E., & Mauss, M. (1967). Primitive classification (Phoenix edition. ed.).

Chicago: University of Chicago Press.
Engestroem, Y., & Escalante, V. (1996). Mundane tool or object of affection? The rise

and fall of the Postal Buddy. In E. Bonnie A. Nardi (Ed.), Context and
consciousness: Activity theory and human-computer interaction. (pp. xiii, 400):
The MIT Press.

Engeström, Y. (1987). Learning by Expanding. Helsinki: Orienta-Konsultit.
Engeström, Y., Miettinen, R., & Punamäki, R.-L. (1999). Perspectives on Activity

Theory. Cambridge: Cambridge University Press.
Ferguson, E.S. (1992). Engineering and the mind's eye. Cambridge, Mass. :: MIT Press.
Fujimura, J. (1987). The construction of doable problems in cancer research. Social

Studies of Science, 17.
Gregory, J. (2000). Sorcerer's apprentice : creating the electronic health record, re-

inventing medical records and patient care.
Harper, D.A. (1992). Working knowledge : skill and community in a small shop.

Berkeley: University of California Press.
Homet, R.S., & United States. Congress. Office of Technology Assessment (1983). The

international dimension : new technologies and intellectual property rights.
Washington, D.C.?: Congressional Office of Technology Assessment.

Hyysalo, S., & Lehenkari, J. (2001). An Activity-Theoretical Method for Studying
Dynamics of User-Participation in IS Design. S. Bjornestad, A. Morch, & A.
Öpdahl (Eds.), IRIS 24, 24th Information Systems Research Seminar in
Scandinavia, Ulvik in Hardanger, Norway.

Johnson, R.R. (1998). User-centered technology : a rhetorical theory for computers and
other mundane artifacts. Albany: State University of New York Press.

Kling, R., & Public Policy Research Organization (University of California, I. (1977).
The organizational context of user-centered software designs. Irvine: Dept. of
Information and Computer Science and Public Policy Research Organization
University of California.

Knorr, K.D. (1979). Tinkering toward success: Prelude to a theory of scientific practice.
Theory and Society(8), 347-376.

Knorr-Cetina, K., Savigny, E.v., & Schatzki, T.R. (2001). The practice turn in
contemporary theory. London ; New York: Routledge.

Latour, B. (1987). Science in action : how to follow scientists and engineers through
society. Cambridge, Mass. :: Harvard University Press,.

 26

Lave, J., & Chaiklin, S. (1993). Understanding practice : perspectives on activity and
context. Cambridge ; New York, N.Y.: Cambridge University Press.

Leontjev, A.N. (1978). Activity, consciousness, and personality. Moskow: Progress.
Lessig, L. (1999). Code and other laws of cyberspace. New York :: Basic Books.
Levi-Strauss, C. (1966). The savage mind. [Chicago]: University of Chicago Press.
Lévy-Bruhl, L. (1978). Primitive mentality. New York: AMS Press.
Lévy-Bruhl, L. (1985). How natives think. Princeton, N.J.: Princeton University Press.
Mead, G.H., & Morris, C.W. (1974). Mind, self, and society : from the standpoint of a

social behaviorist. Chicago: University of Chicago Press.
Miettinen, R. (1998). Object Construction and Networks in Research Work: The Case of

Research on Cellulose Degrading Enzymes. Social Studies of Science, 28.
Norman, D.A. (1990). The design of everyday things (1st Doubleday/Currency ed.). New

York: Doubleday.
Norris, K.S. (1993). Dolphin days : the life & times of the spinner dolphin. New York:

Avon Books.
Nutch, F. (1996). Gadgets, Gizmos, and Instruments - Science for the Tinkering. Science

Technology & Human Values, V21(N2), 214-228.
Patent Resources Group, & Bender, D.v. (1969). Software protection by trade secret,

contract [and] patent law; law, practice and forms. Washington.
Perrow, C. (1999). Normal accidents : living with high-risk technologies : with a new

afterword and a postscript on the Y2K problem. Princeton, N.J.: Princeton
University Press.

Rossi-Landi, F. (1983). Language as work & trade : a semiotic homology for linguistics
& economics. South Hadley, Mass.: Bergin & Garvey Publishers.

Samuelson, P., & University of California, B.E.T.O. (1997). Copyright in cyberspace.
Scribner, S., & Cole, M. (1981). The psychology of literacy. Cambridge, Mass.: Harvard

University Press.
Smith, B.C. (1996). On the origin of objects. Cambridge, Mass.: MIT Press.
Turnbull, D. (2000). Masons, tricksters and cartographers : comparative studies in the

sociology of scientific and indigenous knowledge. Amsterdam
Abingdon: Harwood Academic ;
Marston.
United States. Congress. Office of Technology Assessment (1987). Intellectual property

rights in an age of electronics and information. Malabar, Fla.: R.E. Krieger.
United States. Congress. Office of Technology Assessment (1990). Computer software &

intellectual property. Washington, D.C.: Congress of the U.S. Office of
Technology Assessment : For sale by the Supt. of Docs. U.S. G.P.O.

United States. Congress. Office of Technology Assessment (1992). Finding a balance
computer software, intellectual property and the challenge of technological change :

summary. Washington, D.C.?: Congress of the U.S. Office of Technology
Assessment.

Wartofsky, M.F. (1979). Models. Representation and the Scientific Understanding.
Dordrecht: D. Reidel.

