
An Insight into the Pull Requests of GitHub

Mohammad Masudur Rahman Chanchal K. Roy
University of Saskatchewan, Canada

{mor543, ckr353}@mail.usask.ca

ABSTRACT
Given the increasing number of unsuccessful pull requests
in GitHub projects, insights into the success and failure of
these requests are essential for the developers. In this paper,
we provide a comparative study between successful and un-
successful pull requests made to 78 GitHub base projects by
20,142 developers from 103,192 forked projects. In the study,
we analyze pull request discussion texts, project specific in-
formation (e.g., domain, maturity), and developer specific
information (e.g., experience) in order to report useful in-
sights, and use them to contrast between successful and un-
successful pull requests. We believe our study will help de-
velopers overcome the issues with pull requests in GitHub,
and project administrators with informed decision making.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Analysis—maintenance,
open source development

General Terms
Theory

Keywords
Commit comments, pull request, topic model

1. INTRODUCTION
GitHub, a popular web-based source code hosting service,

provides a convenient way for the software developers to
collaborate on open source software development with one
another. In order to contribute, a developer either creates
her own repository or forks from a base repository, and con-
tinues her work. GitHub maintains the source code and as-
sociated content (e.g., committed code, commit comments)
for both base and forked repositories separately. The idea is
to allow the developer to continue her work without report-
ing every single commit instantly to the base repository. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’2014, May 31 - June 01, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

approach helps her to avoid the frequent merge conflicts with
other developers of the project, and also provides flexibility
in the development. Once the developer completes a mile-
stone (e.g., module) involving several commits to the forked
repository, she makes a pull request to the owner (i.e., ad-
ministrator) of the base repository, and attempts to get her
commits merged. Then other members of the project ana-
lyze the posted commits, review the code, and the streams
of discussion among them are captured in terms of pull re-
quest commit comments. The posted commits are generally
accepted if both the merge operation succeeds without con-
flicts and the identified concerns by other developers are
properly addressed. Unfortunately, not all the pull requests
succeed and there are growing concerns of how to make suc-
cessful pull requests in GitHub [2]. In this research, we per-
form a comparative study between successful (i.e., merged
with base repository) and unsuccessful (i.e., failed to merge
with base repository) pull requests by analyzing different re-
lated artifacts such as the pull request discussion texts (i.e.,
code review comments), pull request history, and project
and developer specific statistics. The study can provide im-
portant insights into the success and the failure of a pull
request at GitHub repositories.

A number of existing studies focus on the analysis of email
messages, bug reports, MSR papers, and commit messages
of source code repositories [3, 4] for various software main-
tenace activities. Our work is closely related with the study
by Hindle et al. [4], where they extract the hidden topics
from the commit comments of a code repository, and then
map to different cross-project non-functional requirements
in order to analyze the software maintenance activities. In
this paper, we examine the pull request discussion texts
along with project and developer specific information using
a machine learning technique and then report the frequent
technical issues and inefficiencies in the source code hosted
at GitHub. We use MSR dataset [2], and collect informa-
tion about 78,517 pull requests made to 78 base projects by
20,142 developers from 103,192 forked projects. We extract
100 underlying topics that the reported issues of 9,421 pull
requests (containing pull request discussion) are based on.
In order to extract the topics, Latent Dirichlet Allocation
(LDA) with Gibbs sampling is used, and we manually label
64 topics. We identify eight frequently discussed techni-
cal topics, and manually analyze the pull request discussion
texts for useful insights. From the analysis of project and
developer specific information, our study reports that pro-
gramming language and domain specific factors can influ-
ence the success and failure rates of the pull requests. More

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597121

364

Figure 1: Pull Requests vs. Topics

importantly, it finds out that success rate of pull requests for
a project degrades comparatively with a large number de-
velopers (e.g., more than 4,000) or a large number of forked
projects (e.g., more than 3,000). While the extracted fre-
quent technical topics and language or domain specific in-
sights can help the developers with successful pull requests,
project and developer specific insights can aid the GitHub
project administrators with informed decision making in the
management of pull requests, projects and developers in-
volved.

2. DATASET
MSR challenge dataset [2] contains 78,955 pull requests

(33,910 merged and 45,045 merge failed) made to 88 base
projects by 20,142 developers. Among them, 9,601 pull re-
quests (4,091 merged and 5,510 merge failed) made to 78
base projects contain pull request commit comments. Pull re-
quest commit comments are generally short comments con-
taining code reviews by other developers of the project.
Each pull request contains a series of conversations (e.g.,
comments), and discusses a few topics concerning the com-
mitted code. We use the challenge datatset, and consider the
whole sequence of conversations associated with a successful
or a failed pull request as a document, and collect 9,601 con-
versation documents for the experiment. It should be noted
that we limit our study to the 78 base projects and their
forked projects, and also use other 68,916 pull requests (i.e.,
not containing discussion) for the experiment. We collect
the details of each project (e.g., domain, programming lan-
guage, age and maturity) and the corresponding developers
(e.g., number, experience) for the comparative analysis. The
hosted projects belong to different application domains such
as reusable frameworks and libraries, networking, database
management, IDE, statistics and so on. The projects are
written in 13 different programming languages such as Scala,
Python, Java, C# and so on.

3. TOOLS AND METHODOLOGY
We apply Latent Dirichlet Allocation (LDA), a popular

topic modeling technique, on the document collection to find
out the underlying topics discussed in each document (e.g.,
pull request conversation). In order to apply topic modeling
on the corpus, we normalize the content of each document
given that they contain natural language texts. We remove
stop words from them using a word list1 provided by Google,
and perform stemming to extract the root form of each word.
Then we represent the content of each document as a collec-
tion of stemmed tokens, and we use 9,421 such documents.
It should be noted that after stemming and removal of stop

1https://code.google.com/p/stop-words/

Figure 2: Pull Requests vs. Languages

words, we find the content of 180 documents insignificant
(e.g., empty, contains single word), and they are discarded
from the corpus.

Topic Modeling: We use JGibbLDA2, a LDA imple-
mentation that uses Gibbs sampling, in order to determine
the probabilistic topic model. We use 3,000 iterations of
sampling, and collect 100 topics discussed in the document
collection, where each topic is described using ten relevant
words. We also collect the probabilistic measures of the ex-
tent to which a corpus document discusses each of the 100
topics, which we use for comparative analysis in the later
phase.

Topic Labeling: The tool returns a list of ten relevant
words along with their probabilistic expressiveness for each
topic. However, the extracted topics should be more com-
prehensive for effective analysis which demands topic label-
ing. In order to label a topic, we analyze the corresponding
word list and choose the top four words representing the
topic. These words are not necessarily the words with the
topmost probabilities. The labeling approach is partially
motivated by the approach of Lau et al. [5], where they use
the article titles extracted from Wikipedia search for au-
tomatic topic labeling. In our research, we use the most
representative words from the list and a few programming
or technical jargons extracted from various online sources3,
and manually label each topic. We successfully label 64 out
of 100 topics, and the labeled topics are hosted elsewhere [1]
due to space limitation. We show the top four representative
words for each of the topics in the table, and the complete
word list for each of the topics can also be found online [1].

4. COMPARATIVE ANALYSIS
In this study, we analyze different artifacts and aspects

associated with the pull requests in order to extract useful
information that can provide insights into the success and
failure of the pull requests.

Technical Topics Discussed: The discussion texts as-
sociated with a pull request often contain useful information
about the technical concerns identified in the code. In our
research, we identify and use them to contrast between suc-
cessful and failed pull requests. From JGibbLDA tool, we
collect the probabilistic alignments of a document (e.g., pull
request discussion) to each of the 100 extracted topics. We
sort the measures in descending order and collect the top
five dominant topics (i.e., due to short volume of each dis-
cussion) discussed in the document. Then for each topic,
we collect the frequency of the pull requests (i.e., discussion
documents) and the information regarding their successes
and failures. Fig. 1 shows the percentage of the 9,421 pull

2http://jgibblda.sourceforge.net/
3http://www.webopedia.com/Programming

365

requests that involve each topic in the discussion. We note
that eight topics are widely discussed (i.e., each topic on av-
erage in 17.54% documents), and six of them can be labeled–
Recursion and Refactoring (in 18.35% documents), Database
Query Execution (in 16.16% documents), Arrays and func-
tions (in 11.12% documents), Actor Model (in 12.22% doc-
uments), OOP Paradigm (in 16.29% documents) and Space
and Indents (in 10.98% documents). The two unlabeled
dominant topics are discussed in 28.60% documents on av-
erage. The remaining 92 topics are less discussed (i.e., each
topic in less than 4% documents on average). We also note
that each topic is more prevalent in the discussion of the
unsuccessful pull requests than that of the successful pull
requests except a dominant topic– Actor Model. Thus, the
study reports that a few technical problems (i.e., topics) are
frequently associated with the pull requests; however, most
of the time, they are not properly solved, and therefore, the
pull requests do not succeed.

Programming Language: Programming language of a
project is an important aspect to take into account when
we are interested in comparative analysis of pull requests.
We find 13 programming languages used in the 78 GitHub
projects, and we find nine of them having 8-10 projects
each. However, we also select R language containing three
projects, and discard CSS, Go and TypeScript from the ex-
periment due to their insignificant number of projects. We
consider the average number of successful and failed pull
requests for a project from each of the programming lan-
guages. We also note that age of the project can be an
influencing factor in this case, and therefore, we determine
the average number of successful and unsuccessful pull re-
quests made per month. Fig. 2 shows the average number
of pull requests made per month to any single base project
of each programming language by its forked projects. We
note that projects using Scala, C, C#, R and PHP pro-
gramming languages made more successful pull requests on
average than failed ones, whereas projects of JavaScript(JS),
Java, Python, Ruby and C++ did the opposite. We investi-
gate the forks and the developer pool associated with those
projects, and find out that the first group of projects except
the PHP-based ones have less forks but more developers in-
volved than those of the latter group. We also note that
on average, PHP and Ruby-based projects made the high-
est number of pull requests per month; however, Ruby-based
projects are often found with increasing number of failed pull
requests per month. Although we speculate, this is due to
the maximum number of forks in Ruby projects, the finding
can encourage the research on the language specific factors
on pull requests.

Application Domain: Domain specific concerns can be
introduced in the pull request discussions, and they can af-
fect the chance of merging for a pull request. In our re-
search, we consider the domain of the project, and identify
seven major domains– Networking, Database, IDE, Statis-
tics, Framework, Library and Client Apps. We manually
categorize each of the 78 base projects into different do-
mains consulting their documentations provided online. We
also determine the number of pull requests received each
month by a base project from a particular domain. Fig. 3
shows the pull request statistics for each domain. We note
that projects from Framework and IDE domains made the
maximum number of pull requests each month, and their
success rates are relatively higher than that of the projects

Figure 3: Pull Requests vs. Domains

Figure 4: Pull Requests vs. Durations

from other domains. Projects from Networking, Library and
Client apps domains showed comparatively similar success
and failure rates in the merging of pull requests.

Project Age & Maturity: Over time, a project either
may get lost or get matured through the collaboration of a
number of open source developers online. We believe that
age (i.e., the time interval between project creation date
and latest recorded date in the dataset, October 5, 2013)
and number of forked projects are two important factors
that may influence the success rate of the pull requests of
a project. We consider a timeline of five plus years from
February, 2008 to October, 2013 with one year interval, and
determine the average number of pull requests made to any
single base project each month during each interval. Fig.
4 shows the results of the experiment. We note that up to
September, 2009, no pull request are made (i.e., not recorded
in the challenge dataset), and from October, 2009 to onward,
the pull requests (i.e., both successful and failed) increase al-
most exponentially. It should be noted that throughout the
intervals there is an increasing trend on age and number of
projects, and developer participation, which actually help
the higher rate of pull requests for the projects.

We consider the number of forked projects as an estimate
of the maturity of a base project. We find at most 103,192
forks for 78 base projects, and we choose certain ranges.
Then, for each fork count range, we determine the aver-
age number of pull requests made to a corresponding base
project each month. Fig. 5 shows the results of the exper-
iment. We note that with increase in forked projects, the
average number of pull requests per month increases; how-
ever, it does not show a regular pattern. Moreover, with the
increase in forked projects, the failure rate of pull requests
increases especially for the projects with more than 2,000
forks.

Project Developers & Experience: Number of de-
velopers involved into a project along with their working
experience with the project are also two contributing fac-
tors that can influence the success and failure rate of the
pull requests. We collect the information of 20,142 develop-
ers involved into 78 base projects, whose working experience
varies from five months to 68 months. We sort the projects
according to their total developer range, and Fig. 6 shows

366

Figure 5: Pull Requests vs. Project Maturity

Figure 6: Pull Requests vs. No. of Developers

Figure 7: Pull Requests vs. Experience

the average number of pull requests made to a base project
each month with a certain range of developers. We note that
the average number of pull requests does not increase com-
paratively with higher participation; however, the projects
with a large developer crowd may make an excessive number
of unsuccessful pull requests.

We choose a set of ranges for the developer experience,
and Fig. 7 shows the average number of pull requests made
each month to a base project having developers in the forked
projects with certain range of experience. We interestingly
note that developers with 20 months to 50 months of ex-
perience are found the most productive, and they made the
maximum number of pull requests each month. However, de-
velopers with further experiences are found either less pro-
ductive or making a number of unsuccessful pull requests
each month. We can speculate that the experienced develop-
ers might be involved in management activities rather than
development; however, more insights could be extracted if
the role information is provided, which the dataset does not
provide.

5. DISCUSSION AND CONCLUSION
In this study, we conduct a comparative study between

successful and unsuccessful pull requests made to 78 GitHub
base projects by 20,142 developers from 103,192 forked projects.
We analyze the pull request discussion texts that contain
useful information about the frequent technical issues en-
countered. We also analyze the pull request history along
with project and developer specific information in order to
extract useful insights into the success and the failure of pull

requests. This section reports our findings in brief as follows:
Eight topics (i.e., technical issues), six of which can be

labeled–Recursion and Refactoring, Database Query Execu-
tion, Arrays and functions, Actor Model, OOP Paradigm
and Space and Indents, are widely discussed in the texts of
pull request discussion. Each of those eight technical issues
is faced by 17.54% of the 9,421 pull requests on average, and
7.76% of the requests succeed to merge. The remaining 92
topics are less discussed, and each of them is covered only
in 3.90% of the discussion.

In case of 24 GitHub base projects using three program-
ming languages–Ruby, Java and JavaScript, average num-
ber of unsuccessful pull requests per month is exceptionally
higher than that of successful pull requests. While the study
points out excessive forking as a possible reason, future re-
search can investigate into the language specific factors af-
fecting the success and failure of the pull requests.

Most of the projects under study belong to seven ma-
jor application domains, and three of them–Framework, Li-
brary and Client Apps, contain 39 projects. Projects from
IDE, Framework and Client Apps domains demonstrate a
comparatively higher success rate of pull requests, whereas
projects from Database and Statistics domains show very
limited activity in terms of pull requests. The study specu-
lates about less popularity of the target domains (in terms
of developer participation and created forks for a project on
average) as a possible explanation of their low activity; how-
ever, it also encourages the future research on the domain
specific concerns affecting pull requests.

The age and maturity (i.e., number of forks) of a GitHub
project clearly affects the success and failure rates of pull
requests. As time goes by and more forks are created from
the base project, the number of pull requests increases and
so do their success and failure rates. More importantly, our
study finds that the failure rate of pull requests increases
rapidly (for seven projects) when more than 3000 forks are
created, which can be an important piece of information for
the administrators of the base projects.

The number of developers involved into a project and their
experience can affect the success and failure rates of pull re-
quest for a project. Our study finds that the average num-
ber of pull requests per month for a project increases almost
regularly against increased participation of the developers;
however, the rate of unsuccessful pull requests increases ex-
ponentially (for one project) with more than 4000 develop-
ers involved. The study also suggests that developers with
20 to 50 months experience are found the most productive
in terms of submitting and getting pull requests accepted.
While we cannot provide a suitable explanation for this due
to lack of information in the dataset, the findings can help
the project administrator to attract the appropriate audi-
ence, and manage the existing developer pool involved into
the project.

REFERENCES
[1] Experiment Data. URL http://www.usask.ca/~mor543/msr2014.
[2] G. Gousios. The GHTorrent Dataset and Tool Suite. In Proc.

MSR, pages 233–236, 2013.
[3] A. Hindle, M.W. Godfrey, and R.C. Holt. What’s Hot and What’s

Not: Windowed Developer Topic Analysis. In Proc. ICSM, pages
339–348, 2009.

[4] A. Hindle, N.A. Ernst, M.W. Godfrey, and J. Mylopoulos. Auto-
mated Topic Naming to Support Cross-Project Analysis of Soft-
ware Maintenance Activities. In Proc. MSR, pages 163–172, 2011.

[5] J.H. Lau, K. Grieser, D. Newman, and T. Baldwin. Automatic
Labelling of Topic Models. In Proc.HLT, pages 1536–1545, 2011.

367

