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ABSTRACT
Pull requests form a new method for collaborating in distributed
software development. To study the pull request distributed devel-
opment model, we constructed a dataset of almost 900 projects and
350,000 pull requests, including some of the largest users of pull
requests on Github. In this paper, we describe how the project se-
lection was done, we analyze the selected features and present a
machine learning tool set for the R statistics environment.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version control; D.2.9 [Software Engineering]: Man-
agement—Programming teams

General Terms
Management

Keywords
pull-based development, pull request, distributed software develop-
ment, empirical software engineering

1. INTRODUCTION
Pull requests as a distributed development model in general, and

as implemented by Github in particular, form a new method for col-
laborating on distributed software development. In the pull-based
development model, the project’s main repository is not shared
among potential contributors; instead, contributors fork (clone) the
repository and make their changes independent of each other. When
a set of changes is ready to be submitted to the main repository, they
create a pull request, which specifies a local branch to be merged
with a branch in the main repository. A member of the project’s
core team is then responsible to inspect the changes and pull them
to the project’s master branch. If changes are considered unsatis-
factory, more changes may be requested; in that case, contributors
need to update their local branches with new commits. Further-
more, as pull requests only specify branches from which certain
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commits can be pulled, there is nothing that forbids their use in the
shared repository approach (cross-branch pull requests).

To understand what the underlying principles that guide pull-
based development are, we created pullreqs, a curated dataset of
almost 900 projects along with a set of tools for its analysis. A pre-
vious version of the dataset has been used to quantitatively study
the pull request development process [8]. The pullreqs dataset is
based on our previous work on GHTorrent [7], albeit only for its
construction. While GHTorrent is a full mirror of all data offered
by the Github API, the pullreqs dataset includes many features ex-
tracted by combining GHTorrent and the project’s repository; the
dataset is offered in a format ready to be processed by statistical
software. In this paper, we describe the construction process of the
dataset and outline directions for further research with it.

2. FEATURE SELECTION
The feature selection was based on prior work in the areas of

patch submission and acceptance [12, 3, 15, 2], code reviewing [14],
bug triaging [1, 6] and also on semi-structured interviews of Github
developers [5, 13]. The selected features are split into three cate-
gories:

Pull request characteristics. These features attempt to quantify
the impact of the pull request on the affected code base. When
examining external code contributions, the size of the patch is af-
fecting both acceptance and acceptance time [15]. There are var-
ious metrics to determine the size of a patch that have been used
by researchers: code churn [12], changed files [12] and number of
commits. In the particular case of pull requests, developers reported
that the presence of tests in a pull request increases their confidence
to merge it [13]. To investigate this, we split the churn feature into
two features, namely src_churn and test_churn. The num-
ber of participants has been shown to influence the time required
to do a code review [14]. Finally, through our own experience ana-
lyzing pull requests, we have found that in many cases conflicts are
reported explicitly in pull request comments while in other cases
pull requests include links to other related pull requests. We there-
fore included corresponding binary features in the dataset.

Project characteristics. These features quantify how receptive to
pull requests a project is. If the project’s process is open to external
contributions, then we expect to see an increased ratio of exter-
nal contributors over team members. The project’s size may be a
detrimental factor to the speed of processing a pull request, as its
impact may be more difficult to assess. Also, incoming changes
tend to cluster over time (the “yesterday’s weather” change pat-
tern), so it is natural to assume that pull requests affecting a part
of the system that is under active development will be more likely
to merge. Testing plays a role in speed of processing; according
to [13], projects struggling with a constant flux of contributors use



testing, manual or preferably automated, as a safety net to handle
contributions from unknown developers.

Developer. Developer-based features quantify the influence that
the person who created the pull request has on the decision to merge
it and the time to process it. In particular, the developer who cre-
ated the patch has been shown to influence the patch acceptance
decision [10]. To abstract the results across projects with different
developers, we include features that quantify the developer’s track
record [5], namely the number of previous pull requests and their
acceptance rate; the former has been identified as a strong indicator
of pull request quality [13]. Bird et al. [4], presented evidence that
social reputation has an impact on whether a patch will be merged;
in our dataset, the number of followers on Github can be seen as a
proxy for reputation.

All features must be calculated at the time a pull request has
been closed or merged, to evaluate the effect of intermediate up-
dates to the pull request as a result of the ensuing discussion. Fea-
tures that contain a temporal dimension in their calculation (e.g.,
team_size or commits_on_files_touched) are calculated
over the three-month time period before the pull request was opened.

The full list of features can be seen in Table 1.

3. DATASET CONSTRUCTION
The distribution of pull requests per project in Github is ex-

tremely skewed (quantiles 5%: 1, 95%: 68, mean: 26, median:
4). By the end of 2013, 255,914 projects had received a pull re-
quest while only 8,600 had received more than 100. To ensure that
the selected projects used pull requests as part of the project devel-
opment cycle, rather than just occasional external contributions, we
only selected the top 1% of projects by total number of pull requests
created. The initial selection led to 2,551 projects. In addition, to
evaluate testing related features as described above, we needed a
way to determine whether a source code file in a project repository
represented test code. For that, we exploited the convention-based
project layout in the Ruby (Gem), Python, Java and Scala (both
Maven) language ecosystems, so our project selection was limited
to those languages. 1,517 projects where thus filtered out.

For the remaining 1,034 repositories, the full history (includ-
ing pull requests, issues and commits) of the included projects was
downloaded and features were extracted by querying the GHTorrent
databases and analyzing each project’s Git repository.

Merge detection. To identify pull requests that are merged out-
side Github, we resorted to the following heuristics, listed here in
order of application:
H1 At least one of the commits associated with the pull request

appears in the target project’s master branch.
H2 A commit closes the pull request (using the fixes: conven-

tion advocated by Github) and that commit appears in the
project’s master branch. This means that the pull request
commits were squashed onto one commit and this commit
was merged.

H3 One of the last 3 (in order of appearance) discussion comments
contain a commit unique identifier, this commit appears in
the project’s master branch and the corresponding comment
can be matched by the following regular expression:
(?:merg|appl|pull|push|integrat)(?:ing|i?ed)

H4 The latest comment prior to closing the pull request matches
the regular expression above.

If none of the above heuristics identifies a merge, the pull request
is identified as unmerged. The heuristics proposed above are not
complete, i.e. they may not identify all merged pull requests, nor
sound, i.e. they might lead to false positives (especially H4).
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Figure 1: Cross-correlation (Spearman) among all dataset fea-
tures. Blue color (or right slant) indicates positive correlation,
red color (or left slant) is negative correlation. The darker the
color, the stronger the correlation.

Test case detection. In Ruby projects, files under the /test/
and /spec/ directories are considered test files. Test cases are
recognized by scanning through the test files lines for method name
patterns as required by the RUnit, Rspec, Shoulda and Minitest
frameworks. The popular Cucumber behaviour driven development
testing framework is excluded from the analysis due to inexistent
naming conventions. In Python, project conventions do not specify
specific directories for test files, so test file detection is based solely
on whether the file name contains the word “test” as prefix or suffix.
Test cases and asserts are discovered both in source code and also in
API examples embedded in documentation comments (also known
as doctests).

Following Maven conventions, in Java projects, files in directo-
ries under a test/ branch of the file tree are considered test files.
junit4 test cases are recognized using the @Test tag. For junit3,
methods starting with test are considered as test methods. Asserts
are counted by searching through the source code lines for assert
statements. Finally, as Maven underlies Scala’s default build sys-
tem (sbt), the same conventions as in the Java case can be used to
discover test files. In addition to junit, the process can discover test
cases and assert statements as defined by the scalatest and specs2
testing frameworks.

Counting lines, files and file types. In the pullreqs dataset,
a line of code is an executable statement, excluding blank lines and
comments. To measure lines, we developed custom comment strip-
pers for all the programming languages the dataset supports, as we
could not find any tool that can count lines reliably (block com-
ments in Ruby and Python were a particular problem). Moreover,
we delegated the identification of file types to a Ruby library called
Linguist (the same that Github uses), which supports more than 250
file types.



Table 1: Selected features and descriptive statistics. A data point is a pull request. Histograms are in log scale.
Feature Description 5% mean median 95% histogram

Pull Request Characteristics

lifetime_minutes Minutes between opening and closing 0.00 15,418 581.00 72,508

mergetime_minutes Minutes between opening and merging (only for merged pull requests) 0.00 10,506 418.00 44,234

num_commits Number of commits 1.00 4.42 1.00 12.00

src_churn Number of lines changed (added + deleted) 0.00 282.95 10.00 846.00

test_churn Number of test lines changed 0.00 79.74 0.00 248.00

files_added Number of files added 0.00 4.01 0.00 7.00

files_deleted Number of files deleted 0.00 2.05 0.00 1.00

files_modified Number of files modified 1.00 7.56 2.00 21.00

files_changed Number of files touched (sum of the above) 1.00 13.62 2.00 32.00

src_files Number of source code files touched by the pull request 0.00 7.64 1.00 20.00

doc_files Number of documentation (markup) files touched 0.00 2.36 0.00 6.00

other_files Number of non-source, non-documentation files touched 0.00 2.74 0.00 4.00

num_commit_comments The total number of code review comments 0.00 0.73 0.00 4.00

num_issue_comments The total number of discussion comments 0.00 1.84 0.00 8.00

num_comments The total number of comments (discussion and code review). 0.00 2.57 1.00 11.00

num_participants Number of participants in the discussion 0.00 1.27 1.00 4.00
Project Characteristics

sloc Executable lines of code at creation time. 458.00 53,801 18,019 275,058

team_size Number of active core team members during the last 3 months prior to
creation.

1.00 20.64 7.00 93.00

perc_external_contribs The ratio of commits from external members over core team members in
the last 3 months prior to creation.

8.00 54.01 56.00 95.00

commits_on_files_touched Number of total commits on files touched by the pull request 3 months
before the creation time.

0.00 51.65 4.00 209.00

test_lines_per_kloc Executable lines of test code per 1,000 lines of source code 0.00 1,297 355.21 2,097

test_cases_per_kloc Number of test cases per 1,000 lines of source code 0.00 83.74 14.55 181.03

asserts_per_kloc Number of assert statements per 1,000 lines of source code 0.00 200.30 40.37 479.11

watchers Project watchers (stars) at creation 4.00 1,778 310.00 11,114
Developer Characteristics

prev_pullreqs Number of pull requests submitted by a specific developer, prior to the
examined one

0.00 42.81 11.00 196.00

requester_succ_rate The percentage of the developer’s pull requests that have been merged up
to the creation of the examined one

0.00 0.51 0.62 1.00

followers Followers to the developer at creation 0.00 20.93 4.00 80.00

Further Quality Control. After the dataset was constructed,
the following criteria were applied to ensure homogeneity:

• The number of pull requests in the data files should be more
that 70% of the pull requests in the database. The typi-
cal reason for some pull requests missing from the output
is that many projects use a dedicated branch for documen-
tation which includes no source code; the data generation
script skips such pull requests. Other reasons might include
the project has been deleted from Github or no source code
files could be identified in a specific version. 119 projects
were filtered out.

• The ratio of merged pull requests should be within reason-
able limits from the mean merge ratio across all Github projects.
In the GHTorrent dataset, the mean merge ratio is 72%. The
pullreqs dataset uses heuristics to identify merges done out-
side Github, so we generally expect a mean merge ratio close
to or higher of the one across Github. For this reason, we
filtered out the lowest 5% of the projects. The remaining
projects exhibit a merge ratio more than 50.8%. 43 projects
were filtered out.

Results. The final dataset consists of 865 projects (303 Python,
253 Java, 274 Ruby, 35 Scala) and 336,502 pull requests (120,475;
83,960; 113,665 and 18,402 for Python, Ruby, Java and Scala pro-
jects respectively). 60% of the pull requests are merged using
Github’s facilities while 16% are identified as unmerged. The re-
maining 24% is identified as merged using the heuristics described
above (H1: 11%, H2: 3%, H3: 4%, H4: 6%). Moreover, as Fig-
ure 1 shows, the selected features are fairly orthogonal, with very
few strong correlations between them. This indicates that they cap-
ture a wide range of pull request activities with minimal overlap.

4. TOOLS
The pullreqs dataset is accompanied by an extensive analysis

toolkit written in the R statistics language. The framework allows
researchers to load selections of projects in R, provides basic statis-
tics in tabular (e.g. Table 1) and graphical form (e.g. Figure 1), and
exposes a command line base interface that tools can extend. More-
over, it implements a modular, multi-step data mining framework
that researchers can easily re-use in similar machine learning ex-
periments. The data mining parts include all the necessary steps



for successfully executing a data mining experiment, such as distri-
bution plotting, cross correlation among features, pluggable model
and algorithm definitions, n-fold cross-validation and plotting of
important model variables such as Area Under Curve (AUC) and
accuracy across cross-validation runs. To cope with the pullreqs
dataset size, several parts of the tooling (mainly the cross validation
and variable importance steps) employ parallelism and can thus ex-
ploit multi-core machines.

5. LIMITATIONS
The dataset, while extensive, is not entirely representative of all

pull request activity on Github. Specifically, while it covers almost
10% of the pull requests available in the GHTorrent database, the
project selection process and consequent filtering leave out impor-
tant aspects (e.g. development in Javascript, the most popular lan-
guage on Github). Moreover, to analyze the projects, we extracted
data from i) the GHTorrent relational database ii) the GHTorrent
raw database iii) each project’s Git repository. Differences in the
data abstraction afforded by each data source may lead to differ-
ent results in the following cases: i) Number of commits in a pull
request: During their lifecycle, pull requests may be updated with
new commits. However, when developers use commit squashing,
the number of commits is reduced to one. Therefore the number
of commits feature is often an idealized version of the actual work
that took place. ii) Number of files and commits on touched files:
The commits reported in a pull request also contain commits that
merge branches, which the developer may have merged prior to per-
forming his changes. These commits may contain several files not
related to the pull request itself, which in turn affects our results.
We filtered out such commits, but this may not reflect the contents
of certain pull requests.

6. RELATED WORK
The pullreqs dataset is similar to the code review datasets pub-

lished by Hamasaki et al. [9] and Mukadam et al. [11]. While code
reviewing is an inherent characteristic of pull requests, pull requests
cover a wider range of project activities, such as discussion on
project features, integration of attached external tools (continuous
integration, code quality evalaution), management of project goals
through milestones etc. Thus the pullreqs dataset improves upon
those two datasets not only by covering a wider array of projects
and languages but also by offering more precise related data, such
as file counts and test cases and covering a wider range of activi-
ties. To the best of our knowledge, this is the only publicly avail-
able dataset covering pull-based development and certain aspects
of distributed software development in general.

7. RESEARCH OPPORTUNITIES
The pullreqs dataset can be used for a multitude of studies, apart

from basic exploration of the pull-based distributed development
model. Making the pull request process more efficient requires
research in topics such as pull request triaging and patch quality
evaluation. Tools that recommend appropriate developers for doing
code reviews or label pull requests according to their characteristics
might be possible. The dataset can then be used as a benchmark for
comparing recommender systems. Code reviews are a core ingre-
dient of the pull request model. Using this dataset, a researcher can
readily get quantitative data for thousands of code reviews, which
can then be combined with qualitative data for specific projects.
Finally, Github has been praised for lowering the entry barrier for
casual contributions to projects, but do projects actually take ad-
vantage of this? Community openess is an important property for

projects hosted on Github; the pullreqs dataset can be used to eval-
uate aspects of it.

We presented the pullreqs dataset, a curated dataset of almost
900 projects, along with a statistical tool set for its analysis. The
dataset itself can be extended to support more programming lan-
guages and more projects. All source code and data is available on
the Github repository gousiosg/pullreqs. Data on the ghtorrent.org
web site permit full replication of the construction process or the
expansion of this dataset. Pull requests are especially welcome!
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