

Data Sets: The Circle of Life in Ruby Hosting, 2003-2015
 Megan Squire

Elon University
Elon, NC 27244 USA
msquire@elon.edu

ABSTRACT
Many software development teams use web-based hosting
services to help create, distribute, and maintain their software.
Studying the way these hosting services are used can provide
valuable insights into the behaviors of large groups of software
developers and their projects. Traditionally, most analysis of
metadata collected from hosting services has been conducted by
specifying some short window of time, typically just a few years.
To date, few - if any - studies have been built from data
comprising the entirety of a forge's lifespan: from its birth to its
death, and rebirth. Thus, the first contribution of this data set is to
support the historical analysis of over ten years of collected
metadata from the now-defunct RubyForge project hosting site, as
well as the follow-on successor to RubyForge, the RubyGems
hosting facility. The data sets and sample analyses in this paper
will be relevant to researchers studying both software evolution
and the distributed software development process, in particular
those used in highly social coding environments.

CCS Concepts
• Software and its engineering � Collaboration in software
development • Software and its engineering � Open source
model • Computing Methodologies

Keywords
FLOSS, data, RubyForge, RubyGems, repository, historical.

1. INTRODUCTION
In the early 2000s, a rapid increase in the number of
geographically and temporally distributed software teams meant
that developers needed to perform their work in an asynchronous,
location-neutral way [1]. Early project hosting services, such as
SourceForge and GNU Savannah, sometimes called software
forges or repositories, provided a low barrier to entry for
development teams, in particular open source development teams,
by offering space for file downloads, as well as version control
systems, mailing list software, wikis, bug tracking software, and
so on. Later forges included Google Code, Microsoft CodePlex,
Debian's Launchpad, and Github. Numerous research studies have
attempted to learn about a given software ecosystem by studying
these forges, the projects hosted there, and the developers who
participate [2][3][4][5][6][7].

For this paper, we focus specifically on building a large collection
of data for two Ruby language hosting services that have not been
studied before: RubyForge and RubyGems. Table 1 shows key
events in the lives of these sites, including our collection of the
data, and its subsequent donation to the FLOSSmole project. After
describing our data collection and data model, this paper shows
how our data can be used to provide a basic, detailed analysis of
these two forges, both comparing RubyForge to itself as it
changed over a decade, and also comparing RubyForge to its
successor RubyGems. Finally, we conclude with some ways that
this data can be analyzed in the future.

Table 1. Events in the transition from RubyForge to RubyGems

Date Event

July 2003 RubyForge is launched

July 2006 First FLOSSmole collection of RubyForge data

April 2008 Github starts gem building services [8, 9]

Summer
2008

Gem hosting debate: RubyForge vs. Github [10]

April 2009 Nick Quaranto begins building Gemcutter as an
alternative to gems.github.com [11]

Aug. 2009 Gemcutter launched, RubyForge gems imported [12]

Oct. 2009 Gemcutter is the new official default gem host [13],
Github stops building gems [14], RubyForge to be
phased out. [15]

Feb. 2010 Gemcutter becomes RubyGems.org, officially
replaces RubyForge as gem host. [16]

Nov. 2013 Announcement RubyForge to be shut down. [17]

Dec. 2013 RubyForge project data frozen. No new changes.

May 2014 RubyForge.net shut down. Last FLOSSmole
collection of RubyForge.

Nov. 2015 First FLOSSmole collection of RubyGems

2. DATA COLLECTION AND STORAGE
2.1 Data Collection
Our RubyForge data sets were made from 58 different automated
collection sessions, conducted between April 2006 and May 2014.
The RubyGems data sets were collected beginning in August
2015. The raw RubyForge and RubyGems data sets have been
donated to the FLOSSmole repository [18], both as MySQL
database tables, as well as in downloadable flat files [19,20]. To
build the data sets initially we followed these three steps:

1. Generate a master list of projects from sites (RubyForge and
RubyGems);

2. For each project on that list, collect the project's home page
and store the HTML (RubyForge) or XML (RubyGems) for
that complete page in a MySQL database;

3. Parse HTML/ XML for facts, and store those in the database;
4. Repeat steps 2 & 3 periodically until site goes defunct (for 10

years in the case of RubyForge; RubyGems still ongoing).

For both RubyForge and RubyGems, in step 2 we only collected
public-facing data, such as what anyone would see through a non-
authenticated web browser. It may be helpful to some readers to
know that the RubyGems site now makes available PostgreSQL
dumps of some of their site data on a weekly basis [21].

2.2 Data Models
Tables 2 and 3 show the database tables and column names of the
collected, parsed, and stored RubyForge and RubyGems data.
Each time data is collected, it is timestamped and added to the

This is a pre-print of a paper presented at Mining Software Repositories 2016 in Austin, TX, USA.

data that is already there, thus providing a long-term archive of
how the site looked at each moment in time.

Table 2. RubyForge Database Tables

Table Name Description
rf_project_indexes Unparsed, raw index html files.
rf_projects Project name and basic facts about the

project (e.g. date registered, URL)
rf_developers List of developers currently working on any

project in the RF system.
rf_developer_proj. Connects developers to projects.
rf_project_desc. Textual description of project.
rf_environment Computing environment(s) of project.
rf_intended_aud. Intended audience(s) of project.
rf_licenses License(s) assigned to the project.
rf_natural_lang. Natural language(s) of project.
rf_operating_sys. Operating system(s) of project.
rf_prog._lang Programming language(s) of project.
rf_status Project status, e.g. Alpha, Beta, Production.
rf_topic Project topic(s), e.g. Games, Rails, Internet.

Table 3. RubyGems Database Tables

Table Name Description

rg_project_pages Unparsed, raw html and RSS files.

rg_project_facts Gem name and basic facts about each
gem, from the gem's main page.

rg_project_owners Owner(s) of gem

rg_project_authors Author(s) of gem
rg_project_rtdep Gems claimed as runtime dependencies

rg_project_devdep Gems claimed as dev dependencies.

rg_project_links Links for a gem (e.g. homepage).

rg_project_versions Versions of gem that have been released.

rg_proj._create_dates First known release date for each gem.

3. DATA ANALYSIS
In this section we give some basic examples of site-level, project-
level, and person-level analyses that can be performed with this
data.

3.1 Site-level Analysis
Counting Projects: RubyForge. The final number of projects
that were being hosted on RubyForge at the time of its shutdown
was 9,603. Figure 1 confirms that the rate of RubyForge project
creation slows dramatically when Gemcutter was announced.
Figure 2 shows new project registrations each month. We again
see a sharp drop-off in new project registrations, corresponding to
the release of Gemcutter.
Counting Projects: RubyGems. As of December 15, 2015 there
are 109,822 gems on RubyGems.org. To find their creation dates,
we used the list of gem versions that we had collected for each
gem, and found the earliest version listed for each, removing those
with errors for dates (for example, they had years of 1970 or
2051). Figure 3 shows the results.

Fig. 1. Count of projects hosted on RubyForge 2006-2014

Fig. 2. Rubyforge new project registrations/month 2003-2013

Fig. 3. RubyGems project registrations/month 2004-2015

3.2 Project-level Analysis
RubyForge Project Characteristics. The data set includes the
types of environments, intended audiences, natural languages,
operating systems, and topics that the project administrators chose
to describe their projects. We compare these from our first
collection in 2006 until the last collection in 2014. In Table 4, for
space reasons, we have shown only the operating systems
category and topics categories.

Table 4. RubyForge (Selected) Category Changes

2006 2013
Operating Systems Op. Systems

 Count % Total % OS Count % Total % OS

OS Ind. 620 53% 69% 2151 22% 68%
Linux 147 13% 16% 501 5% 16%
POSIX 113 10% 13% 412 4% 13%
Windows 77 7% 9% 278 3% 9%
OS X 59 5% 7% 239 2% 8%

Project Topics Project Topics

2006 2013
 Count % Total % Top Count % Total % Top

SW Dev. 206 18% 20% 734 8% 20%
Rails 90 8% 9% 403 4% 11%
Dynamic 57 5% 6% 148 2% 4%
WWW 51 4% 5% 261 3% 7%

License Use Over Time. There has been some hand-wringing of
late in the FLOSS community about whether or not people are
relying less on licensing in general [22], whether this is a good or
bad thing [23], and whether it is the fault of Github [24]. Since we
have a longitudinal data set for RubyForge, we can add to this
conversation by showing whether unlicensed projects did in fact
increase in number over the life of RubyForge (thus helping to
confirm a general decline in people wanting to license their
software), or whether the numbers of unlicensed projects stayed
relatively steady for the life of the forge. Tables 5 and 6 show the
overall license choice distribution for the two sites. By 2013, both
sites show around 60% of projects using no license.

Table 5. RubyForge Licenses, 2013
License Count % Total % of Licensed
None 5881 61% -
MIT/X 1212 13% 33%
Ruby 670 7% 18%
GPL v2 661 7% 18%
BSD 348 4% 9%
GPL v3 298 3% 8%
LGPL 257 3% 7%

Table 6. RubyGems Licenses, 2015

License Count % Total % of Licensed
None 61152 56% -
MIT/X 40840 13% 33%
Apache 2 1708 2% 4%
BSD 558 .5% 1%
GPL v3 518 .5 %

However, Figure 4 shows the percentage of RubyForge projects
that chose to specify a license, over time. In 2006, about 60% of
projects were licensed, and the most popular license was the GNU
Public License (GPL) version 2. In 2013, at the end of the
RubyForge life span, only about 39% of projects were licensed,
and the most popular choice was the permissive MIT license.

Fig. 4. Percent of RF projects specifying some license over time

3.3 Person-level Analysis
In this section we use the RubyForge and RubyGems data sets to
learn about project teams. For example, from RubyForge, we can
learn about the number of projects per developer, and discover the
length of time between a developer's first and last created project.
For RubyGems, we examine the number of owners and authors
per gem, as well as how many gems each owner and author is
listed as working on.

RubyForge: projects per developer. Here we will focus our
attention on the last collection, since that data set has the most
data in it (9,603 projects and 7,105 developers actually assigned to
at least one project). The highest number of projects for a
developer was 33, and only 77 developers worked on more than
10 projects. Of those developers with more than 10 projects, were
they active for the entire lifespan of RubyForge? Were they early
adopters who left during the 2009 timeframe like other users? Or
did those frequent users continue to join projects late in the
lifespan of the site? Figure 5 shows each developer with 10 or
more projects, all the projects they worked on, and what date the
project was created.

Fig.5. RubyForge developer create dates (>10 projects)

Figure 5 reveals that the vast majority of the developers working
on 10 or more projects got started very early in the RubyForge
lifespan. In fact, very few of them got started on RubyForge after
2007. Also, we can see that these heavy users / early adopters
stopped creating new projects when Gemcutter was announced in
2009. Figure 6 shows the same developers with 10 or more
projects, along with the length of time between when they created
their first and last project. Users who joined later have more
tightly spaced first and last projects than users who joined earlier.

Fig. 6. Days between first and last RF project, per developer

RubyGems: Counts of Developers and Gems. Counting gems
per developer on RubyGems is a little different since the
nomenclature is not exactly the same as on RubyForge. On the
RubyGems site, there are both gem authors and gem owners.
Somewhat perplexingly, the RubyGems interface shows a
username and gravatar for owners, but a regular text name for
authors. For example, the owner with the highest number of gems
is 'jrobertson' with 202 gems, but to find this user in the authors
table requires knowing that his full name is 'James Robertson'
(198 gems). Thus, because of this discrepancy, we have stored
collected owners and authors in separate tables (as shown in Table
2). In the future we will need to develop a procedure for linking
owners and authors.

4. FUTURE WORK AND CONCLUSIONS
As is usually the case with a plethora of longitudinal data, asking
the first question leads to more and more questions. The
RubyForge and RubyGems data sets are very rich and their long-
term nature is very unusual for forge studies.

Questions for future work on RubyForge could include building
social networks of developers over time, studying evolving team
sizes, and looking at markers of quality in teams and projects. For
RubyGems, we would like to study the interdependence of gems,
as measured in their development dependencies and runtime
dependencies, as well as their popularity. It will also be interesting
to study the extensive version information available on
RubyGems, for example counting versions per gem, or looking at
release patterns such as days of the week or day-to-day release
patterns in a given year. Connecting RubyForge projects to the
equivalent gem on RubyGems is another challenge that should be
tackled in the future. The advantage of connecting these is that we
will have a continuous, unbroken chain of events for those
projects that existed on both sites. Techniques that are used for
entity matching [25] in this way can be applied to other long-term
forges, such as SourceForge (which is over 10 years old as well)
or, eventually, to Github.

This paper presents two new data sets, a decade-long collection of
metadata from the now-defunct RubyForge project hosting site,
and the beginnings of a similar collection of data for its successor,
RubyGems. We present a description of how to access and use the
data, including some basic descriptive analyses of the data. Some
of these analyses are only possible because the data set is
longitudinal, for example knowing how license choices changed
over a long period, or being able to see the patterns in project
creation over a decade of the site's existence. This long-term,
birth-to-death-to-rebirth focus is unusual among forge data sets.
These data sets will allow researchers to be begin to design
techniques for tracking projects over many years of development,
and even as they move between forges.

5. ACKNOWLEDGMENTS
We gratefully acknowledge National Science Foundation (grant
number NSF-14-05643) for helping to support this work.

6. REFERENCES
[1] Booch, G., Brown, A.W. Collaborative development

environments. Advances in Computers (59) 1- 27. (2003)

[2] Lerner, J., Tirole, J. The scope of open source licensing. J. of
Law, Economics, and Policy 21(1). 20- 56. (2005)

[3] Delorey, D.P., et al. Programming language trends in open
source development: An evaluation using data from all
production phase SourceForge projects. In Proc. 2nd

Workshop Public Data Software Dev. (WoPDaSD).
Limerick, Ireland (2007).

[4] Krein, J.L., et al.. Impact of programming language
fragmentation on developer productivity. Int. J. Open Source
Sw. & Proc, 2(2). 41-61. (2010)

[5] Krein, J.L., et al. Language entropy: A metric or
characterization of author programming language
distribution. In Proc. 4th Workshop Public Data Software
Dev. (WoPDaSD). Skovde, Sweden (2009).

[6] Vendome, C. A large scale study of license usage on
GitHub,, In Proc. 37th Int. Conf. Softw. Eng. (ICSE), 2, 772-
774. (2015)

[7] Vasilescu, B., et al. Gender and tenure diversity in GitHub
teams. In Proc. CHI. ACM. (2015)

[8] Github's RubyGem server, https://github.com/blog/51-
github-s-rubygem-server

[9] History of the canonical gem host for Ruby gems,
http://www.rubycoloredglasses.com/2012/05/history-of-the-
canonical-gem-host-for-ruby-gems/ (2012)

[10] Gems from RubyForge and Github, http://www.infoq.com/
news/2008/08/gems-from-rubyforge-and-github

[11] About RubyGems, https://rubygems.org/pages/about

[12] Roberts, R. Gemcutter A fast and easy approach to Ruby
gem hosting. RubyInside. Aug 20. http://www.rubyinside
.com/gemcutter-a-fast-and-easy-approach-to-ruby-gem-
hosting-2281.html (2009)

[13] Cooper, P. Gemcutter is the new official default ruby gem
host. RubyInside. Oct 26. http://www.rubyinside.com/
gemcutter-is-the-new-official-default-rubygem-host-
2659.html (2009)

[14] Wanstrath, C. Github gem building is defunct. Oct 8.
https://github.com/blog/515-gem-building-is-defunct (2009)

[15] Schuster, W. RubyForge to be phased out. InfoQ. Oct. 26.
http://www.infoq.com/news/2009/10/rubyforge-phased-out-
rubygemsorg (2009)

[16] Blair, P. RubyGems.org Replaces RubyForge as Gem Host.
InfoQ. Mar 30. http://www.infoq.com/news/2010/03/
rubygems (2010)

[17] Evan Phoenix tweet, https://twitter.com/evanphx/status/
399552820380053505 (2013)

[18] FLOSSmole, http://flossmole.org

[19] RubyForge Data on FLOSSmole, http://flossdata.syr.edu/
data/rf/

[20] RubyGems Data on FLOSSmole, http://flossdata.syr.edu/
data/rg/

[21] Rubygems.org data dumps, https://rubygems.org/pages/data

[22] Villa, L. Younger developers reject licensing, risk chance for
reform. Feb 13. https://opensource.com/law/13/2/post-open-
source-software-licensing (2013)

[23] Phipps, S. Why all software needs a license. InfoWorld.
November 7. http://www.infoworld.com/article/2839560/
open-source-software/sticking-a-license-on-everything.html
(2014).

[24] McAlister, N. Study: Most projects on GitHub not open
source licensed. The Register. April 13.

[25] Squire, M. Integrating projects from multiple open source
code forges. Int. J. Open Source Software & Proc., 1(1) 46-

57 (2009).

