
105

Open Source and Closed Source Software Development Methodologies

Vidyasagar Potdar, Elizabeth Chang
School of Information System, Curtin University of Technology, Perth, Australia 6845

PotdarV@cbs.curtin.edu.au, ChangE@cbs.curtin.edu.au

Abstract

Open source software development represents a
fundamentally new concept in the field of software
engineering. Open source development and delivery
occurs over the Internet. Developers are not confined to
a geographic area. They work voluntarily on a project of
their choice. As new requirements emerge, the software
is enhanced by the user/developers. In this paper we
show a comparative study of open source and closed
source software development approaches and present a
software life cycle model for open source software
development.

1. Introduction

The concept of free software is not new. It has been
around since the 1960s in universities such as MIT and
corporate firms such as Bell Labs who freely used source
code for research [1,2,3,4]. Software was not a means of
revenue generation but was used to hook more and more
customers to buy new computers [5]. In the early 1980s,
Microsoft started writing software for the sole purpose of
profit. It gave only compiled code; source code was
hidden from the user. This move had a great impact and
could be considered as the birth of open source. Richard
Stallman, researcher at MIT, founded the �‘Free Software
Foundation�’ (FSF) to develop and distribute software
under the General Public License history (GPL) while
Bruce Perens defined a set of guidelines that a software
license must grant its user, and he called this Open Source
Initiative (OSI). In this paper, we briefly describe the
open source software development and compare it with
closed source software development. The paper is
organized as follows; in section 2, we describe how open
source software is developed. In section 3, we compare
open source and closed source software development
approaches. In section 4, we propose a life cycle model
for open source software development.

2. Open Source and Who, Why, What?

Bruce Perens defines that Open Source is a
specification of what is permissible in a software license

for that software to be referred to as Open Source [2].

2.1 Who is an open source developer?

Simply put, �“any one who contributes to the open
source project is an open source developer�”, such as a
user of the software, a developer who develops the
software, a debugger or hobbyist who likes spending time
on open source, or a promoter who funds such a
development.

2.2 Why do they produce open source?

Eric states that developers are attracted towards open
source development because that gives them an
opportunity to demonstrate their ability. So they
voluntarily select a project and start contributing. When
programmer�’s, code gets accepted, it boosts their ego and
they get recognized for their effort in the community, [7]
Peer recognition creates reputation and a reputation as a
good programmer is a great achievement.

2.3 What do they do in open source?

Open source developers are involved in a variety of
activities such as designing, coding, debugging and
utilizing. Each activity occurs simultaneously. Parallel
development and debugging is the key to open source
success. Users also play a vital role in the debugging
process by reporting bugs to developers or sometimes
fixing it themselves. Developers are well aware that users
are the best beta testers [7,8].

2.4 What are the major customer concerns?

2.4.1. Maintaining consistent software architecture.
This is one major concern, but it�’s outside the scope of
this paper [12, 13].

2.4.2. Support and coordination for deployment. When
end users utilize open source component they want to
know whether the component is fully automated or does it
need any integration with other components. However
when end users come up with bug reports, feature

106

requests or installation guidelines they expect a full
support and coordination from the developers.

2.4.2. Managing upgrade and complexity. The end
users are concerned with the future upgrades. They are
not sure, as components get more and more powerful and
large, whether the complexity of the code can be
automatically managed. Managing complexity is a big
concern because OSS often has parallel developments
going on [1].

3. Open Source versus Closed Source
Software Development

Open Source Software Development (OSSD) is a
recent phenomenon, while traditional closed source
software development (CSSD) has been here since the
dawn of software development. One major difference
between these two models is source code visibility. In this
section we will point out most of the differences between
these approaches. We begin with their process models.

3.1. Process Models

CSSD normally follows a spiral or iterative model of
development i.e. software development goes through all
phases like planning, design, implementation [14]
whereas OSSD follows an evolutionary model for
development where the software never reaches a final
state and keeps on evolving according to customer needs
[15]. It�’s more of a concurrent or parallel process. CSSD
has clear cut milestones using which the progress of the
project can be tracked but in case of OSSD it not possible
although CVS do help to keep some track.

3.2. Requirements Definition and Specification

CSSD starts with requirements definition and
specification. Here requirements are vague. Project
developers are not aware of the actual requirements. They
need to interview stakeholders to elicit requirements and
then start implementing [1, 14]. On the contrary OSSD
starts with a motive of requirements satisfaction.
Requirements are clear, as developer is fully aware of the
requirements [15]. In case of CSSD all the user
requirements may not be implemented because of time or
budget constraints [16, 14] where as in OSSD it possible
because user is often the developer [1, 15]. In case of
CSSD system architect and project manager decide which
requirements will be incorporated while core members of
the open source project decided which requirements to be
implemented [14].

3.3. Documentation

In case of CSSD project plan is document and
followed. Once the requirements are clear they are
documented [14]. Even the designing and testing
procedure is documented. Where as in OSSD there may
or may not be any official documentation. [14,16]

3.4. Analysis and Design

In CSSD, system architects and project mangers spend
a lot of time in designing the project [14], whereas in
OSSD designing is often merged with
implementation.[17, 12, 15].

3.5. Software Architecture

Maintaining consistent software architecture is
enforced during the development phase itself, there is
rarely a drift between software�’s conceptual and concrete
architecture. [12, 13, 14]. In case of OSSD this has been
recognized as a major concern. Maintaining consistent
software architecture is difficult because of its highly
collaborative and distributive nature. [12, 13]

3.6. Implementation

Only one implementation is possible for one
requirement [14] whereas in case of OSSD multiple
implementations are possible for the same requirement.
This is considered as a major issue as it results in code
forking. The rate of development is comparatively slower
that the open source because the number of developers
assigned to a CSS project can never match a full-scale
open source project like Linux [6, 7, 14]

3.7. Source Code

In CSSD source code is hidden from the user while in
OSSD source code is open as a result user can view and
modify the code to suit individual needs [2, 15]. Such
freedom is not available in closed source software.

3.8. Testing

In OSSD, users act as bug reporters and beta testers.
Whenever a user finds any bug in the software they either
try to solve it or bring it to the notice of the community
[1]. But commercial closed source products use service
packs to repair bugs [15]. OSS community believes �“no
bug can survive wide testing�” [7].

3.9. Release and Delivery

Open source products are released quite often on a
daily or weekly basis whereas closed source products are
released on a yearly basis. In commercial softwares,

107

product is often released due to marketing pressure and
tight schedule whereas open source products are released
once the developer thinks that it has reached a functional
stage [1, 14].

3.10. Maintenance

Service packs are needed quite often to repair bugs in
commercial closed source products, whereas bug
reporting and bug fixing takes care of maintenance in case
of open source products.

3.11. Product

Close source products may soon reach a finalized state
once the documented requirements are implemented
whereas open source products are always in a
evolutionary phase because as requirements emerge they
get implemented [14].

3.12 Type of Software

Commercial software development is more of a
solution kind of development. Developers create solutions
for a big company. It is more like customized
development whereas open source development is more
components-based i.e. plug-n-play type software.
Developers create small programs, which work on a
variety of platforms.

3.13. Security

It is a common belief that commercial closed source
product is highly secure because it is developed by a
group of professionals confined to one geographical area
under a strict time schedule. But quite often this is not the
case, hiding information doesn�’t make it secure, it only
veils weaknesses [10]. In CSS security is achieved
through obscurity, however in OSS security is achieved
through �‘open source�’. The ability to modify the source
code works to your advantage if you want to deploy a
highly secure system. One can ask for a third party
security certificate or get the system scrutinized by a
professional security expert for possible back door entries.
[10, 11], such freedom is not available with commercial
closed source products. Another argument that supports
open source security is community reaction to bugs.
Community reaction to bug reports is much faster
compared to commercial closed source which makes it
easier to fix bugs and make the component highly secure.

3.14. Productivity, Quality and Cost

Developer�’s productivity may decrease if they are
forced to work on a project in which they are not

interested, which is contrary to OSSD where developer is
free to choose the project on which they want to work
[15]. Developing open source software is faster, better
and cheaper. All the three factors can be satisfied
simultaneously. Cost is reduced because no one is paid for
the job everyone is a volunteer. Speed is increased
because development is parallel and collaborative in
nature. And finally quality is maintained because the
product is released only when the developer think the
product is stable and functional [16]. However with
CSSD this doesn�’t work well. At one time only one factor
can be satisfied fully. E.g. if speed is maintained quality
and cost may go up or if cost is to be maintained quality
and speed may go down [9, 14, 16] Hence CSSD can be
considered slow and expensive.

3.15. Environment

Often we find centralised, single site development in
CSS while decentralised, distributed, multi-site
development in OSS. In CSS development happens in a
geographically confined area, while in OSS development
occurs on the Internet [1, 14].

3.16. Group work and Communication

Open source is co-operative and need high level of co-
ordination over the Internet and multi-site. Lack of
coordination among developers results in code forking
[1]. However in case of CSS, inconsistency is easily
managed by face to face or weekly team meeting.

4. New Life Cycle Model for Open Source

Software life cycle determines the set of activities that
constitute a software project. It may not be surprising that
the OSSD life cycle differs from CSSD [15].

4.1. Traditional life cycles do not suit open source

In case of waterfall model, after every stage
documentation is done. But in case of OSSD often
simultaneous development occurs. OSSD has more of a
modular approach. Several individual developers can
simultaneously work on several different modules without
worrying about the final integration. This is one of the
reasons why waterfall model doesn�’t suit OSSD.
Waterfall model is linear in nature. It has clear
milestones. But OSS has very vague milestones. Because
of its evolutionary nature it never reaches a stage where
we can confidently say it has finished a particular phase.
As OSSD has vague milestones it�’s really difficult to
point out its progress. This is another reason why we feel
the existing waterfall model is not suitable for OSSD.

108

4.2. Some phases in traditional software life cycle
do not apply to open source

Commercial CSSD is confined to a geographic
location. During planning stage project leader organizes
teams, schedules meetings, and assigns roles and
responsibilities to the team members. When we compare
this with OSSD we figure out that there are no teams, no
meetings at all as all the communication happens through
mailing lists or project web sites. User or developer is free
to choose a project of their own choice. This removes the
need of assigning roles to developers.

 In CSSD planning is followed by requirement
elicitation, requirement documentation and feasibility
analysis. While in case of OSSD the requirements are not
vague, they are clear to the developer, as most often a
user is also a developer. Apart from that, open source
development sites like www.sourceforge.net,
www.kde.org have a feature where users can request new
features to be implemented in particular software, which
reduces the need for requirement elicitation. Since the
requirements are clear to the developer they just need to
be analysed and implemented. This removes the
requirement elicitation phase from OSSD. Design is
generally followed by implementation. Since there is a
large list of requirements, normally each and every
requirement does not need detailed design. In such cases
requirements are directly implemented. So we remove the
detailed design phase from OSSD.

Multiple implementations create complexity and raise
the issues for proper coordination. Traditional life cycle
didn�’t tackle this problem but this is a phase which we
think should be introduced in open source SDLC.

Concurrent implementations create architectural
defects. As the user requirements change, the software
changes to fulfill these requirements. Often these changes
are done without considering the conceptual architecture.
As changes go on adding up; the software�’s concrete
architecture starts drifting from its conceptual
architecture. OSSD is highly prone to this because of its
collaborative and distributive nature. Hence we need a
phase to tackle this issue as well [12, 13].

OSS lacks coordination and hence it is sometimes
difficult to manage. This necessitates the need for a
separate or simultaneous phase to manage complexity and
maintain coordination. This phase is normally not taken
care off in traditional life cycle [1].

 We hope it is clear from the above discussion that
there is a necessity for some phases while others are not
required. The issues outlined above need to be considered
when a SDLC model for open source is proposed.

We propose a requirement oriented pendulum model
to solve some of the issues highlighted above. The
proposed model tries to provide guidelines on how open
source project should proceed. Our main aim is to try and
estimate the progress of an open source project.

5. Requirement Oriented Pendulum Model
for Open Source Software Development

We propose the requirement oriented pendulum
model, to provide a mechanism to track which
requirements have been submitted and which of those
have been implemented and tested. The proposed model
has four stages which we described below.

Figure 1: The Pendulum model for Open Source

5.1. Requirement Analysis and Specification.
In the pendulum model this is the first stage in which

requirement analysis is done. Different users in the
system have different requirements. Users submit feature
requests which become new requirements. At this stage
the pendulum is in the center. When the requirement
analysis and specification starts the pendulum gets into
motion. Once requirements are analyzed it reaches the left
most end, which is represented by state B.

5.2. Implementation and Testing

Two main activities in this phase are implementation
and testing. Major outcome of this stage is source code.
Coding involves writing source code to implement a
requirement. Once the requirement is implemented it
should be tested. So in the second half of this phase
testing should be conducted. It requires careful planning
and coordination. Major goal should be to make sure all
components created during implementation function
properly. Apart from that, this stage should include alpha

Initial
State

Oscillation
from

Reason for transition Final
State

A A to B Req. Analysis & Spec. B
B B to A�’ Implementation & Testing A�’
A�’ A�’ to C Validation C
C C to A Component Submission A

Pendulum Model for Open Source

Validation

Component
Submission Req. Analysis &

Specification

Implementation &
Testing

A

B C

Pendulum remains
stationery unless an
external force sets it to
motion (New iteration
stars by new
requirements)

When the pendulum
oscillates from A to B
and when it comes back
to A we refer that
stage as A�’ rather than
A.

Pendulum starts
Oscillation from
A to B to C and
finally stops at A

109

testing and beta testing. The testing should start with
standard test cases. Each test case should contain
information like test case name, action to be performed,
data to be used, expected outcomes, actual outcomes.
Normally this is done by the users or by the developers.
When the implementation and testing starts the pendulum
moves from B to A�’. It reaches the centre, which is
represented by A�’.

5.3. Validation

This is the next iterative phase in the pendulum model.
Major goal of this phase is to carry out field testing and
validation and then generate reports. Bug reports are a
major result of validation. Bug reporting should be done
by user or developers. This can be done in many ways,
but it is suggested that one should use a bug reporting
software like Bugzilla or emailing the bug reports in a
pre-specified format to the project leader. However before
reporting a bug one should make sure that someone has
not reported it earlier. When validation starts, the
pendulum moves from A�’ to C. It reaches the other end,
which is represented by C.

5.4. Component Submission

This is the final phase of the pendulum model. This phase
has two activities submitting new feature requests and
submitting tested and validated components. Once the
validated components are submitted a new version of
open source component is developed. At the same time
new feature request which are submitted by the users or
the developers sets the pendulum into motion once again.
Feature request becomes the basis of new requirement and
as discussed above sets the pendulum in motion. When
component submission starts, the pendulum moves from
C to A. It reaches the initial position once again. This is
when one full oscillation completes.

6. Conclusion

From the study that we have conducted, it has come to
our notice that OSSD is similar to its traditional
counterpart in many aspects, but there are many areas in
which it differs tremendously and these features make it
different from the CSSD. As a concluding remark, we
can say open source software is a competent alternative to
CSS and the pendulum model that we proposed can very
well demonstrate the functioning of OSSD.

7. References
[1] Steven Webber, �“The Political Economy of Open Source
Software�”, California, June 2000.

[2] Bruce Perens, �“The Open Source Definition�” Available at:
http://perens.com/Articles OSD.html Acc. on: Oct 2002

[3] Malcolm M. �“Profit Motive Splits Open Source Movement�”,
Aug 26th, 1998. Available at http://content.techweb.com/wire/
story/TWB19980824S0012 Acc. on: Oct 2002

[4] �“What is Free Software Foundation�”? Available at:
http://www.gnu.org/fsf/fsf.html Acc. on: Oct 2002

[5] �“Overview of GNU Project�” Available at:
http://gnu.j1b.org/gnu/gnu-history.html Acc. on: Oct 2002

[6]Ko Kuwabara, �“The Bazaar at the Edge of Chaos�” Chap 2: A
Brief History of Linux. December 1999. Available at:
http://www.cukezone.com/kk49/linux/chapter2.html. Acc. on:
Oct 2002

[7] Raymond, E.S., �“The Cathedral and the Bazaar�” O'Reilly &
Associates, 2000.

[8] Vinod Valloppillil, �“Open Source Software, A (new?)
Development Methodology�” Nov 1998.

[9] Lerner, Joshua and Tirole, Jean, "The Simple Economics of
Open Source" (February 2000). http://ssrn.com/abstract=224008

[10] Ferrara Linux User Group, �“Open Source and Security�”
2001 Available at: http://members.ferrara.linux.it/pioppo/
aeronautica2001/opensecurity-2x1.pdf Acc. on: Nov 2002

[11] Dare Obasanjo, �“The Myth of Open Source Security
Revisited v2.0�”, 2002. Available online:
http://softwaredev.earthweb.com/sdopen/article/0,,12077_9907
11,00.html Acc. on: Nov 2002

[12] Tran, J.B., Holt, R.C., �“Forward and Reverse Architecture
Repair�” Proc. Of CASCON �’99, Toronto, pg 15-24, 1999

[13] Tran, J.B., Godfrey,M.W., Lee, H. S., Holt, R.C.,
Architectural Repair of Open Source Software. In Proceedings
of International Workshop on Program Comprehension,
Limerick, Ireland, June 2000.

[14] Satzinger, Jackson, Burd �“System Analysis and Design in a
Changing World�”, Thomson Learning, 2000.

[15] Scott H, Charles W, Plakosh D., Jayatirtha A.,
�“Perspectives on Open Source Software�”, Software Engineering
Institute, Pittsburgh, Nov 2001 p49.

[16] Walt Scacchi, �“Is Open Source Software Development
Faster, Better and Cheaper than Software Engineering?�”, 23rd
International Conference on Software Engineering, Toronto,
Ontario, Canada, 2001.

[17] Tran, J.B., �“Software Architecture Repair as a Form of
Preventive Maintenance�”, Masters Thesis, University of
Waterloo, 1999.

