
 

 

Evolutionary Software Requirements Factors and their Effect on Open 

Source Project Attractiveness 

 
Radu E. Vlas 

University of Houston-Clear Lake  

vlas@uhcl.edu 

 

William N. Robinson 

Georgia State University 

wrobinson@gsu.edu 

  

Cristina O. Vlas 

University of Texas at Dallas 

cristina.vlas@utdallas.edu

 

 

Abstract 
 

Successful projects effectively manage their requirements. 

How the mix of different requirements evolves throughout a 

successful project life-cycle is poorly understood. Moreover, 

requirements practices may be changing, according to the 

authors of the New RE—a model of six critical requirements 

factors. The New RE focuses on leveraging existing 

components to create new functionality. This practice is also 

central to open-source development. Thus, to understand the 

proposed New RE model and its relationship to open-source 

development, in this study, we analyze over 200 projects from 

GitHub.com and compare them with a prior analysis of 31 

projects from SourceForge. The results show that many of the 

proposed New RE factors are related to project attractiveness, 

which is important for open-source project success. 

 

1. Introduction 
 

The difficulty of requirements engineering (RE) tasks “has 

shifted from managing internal complexity to adapting and 

leveraging upon external and dynamic complexity.”[1] Jarke 

and Lyytinen argue that software design is “is more about 

adjusting multiple interconnected software systems and 

components and improving their environmental “fit” by 

adapting them into a growing number of technical, social, and 

organizational subsystems.” This growing design paradigm, 

that of reuse and adapting rather than designing from a blank 

slate, is not just a general RE concern, but is also an open-

source development concern.  

Recently, the established practice of modularization [2] 

has been elaborated to explain a form of emergent open-

source coordination, called superposition [3].  This 

practice addresses requirements evolution by supporting 

design evolution through adaption. Superposition is the 

result of development behavior, in which (potentially 

dispersed) code is augmented to fulfill new functionalities 

(similar to aspect-oriented programming [4]). This theory 

asserts that developers aim to contribute independent 

work with few dependencies: “[t]hese changes layered on 

top of each other over time, each conceived and 

implemented for their own sake, yet simultaneously 

creating the circumstances taken as given for the 

production of the next layer in a way analogous to the 

superposition of rock strata.”[3] This development 

technique supports independent, evolutionary software 

development.  

Both the New RE and open-source superposition, 

assert that modern software development activities are 

focused on incremental, evolutionary design adaptation. 

We aim to measure software projects to understand if, and 

how, these two theories are instantiated in practice. In this 

study, we provide a means to measure New RE 

evolutionary practices. These measures and then 

correlated with project attractiveness, which is important 

for open-source project success. 

 

1.1 The New RE  
 

According to Jarke et. al., requirements engineering (RE) 

is changing. “Despite its success over the last 30 years, the 

field of Requirements Engineering is still experiencing 

fundamental problems that indicate a need for a change of 

focus to better ground its research on issues underpinning 

current practices” [5]. We posit that these practices have 

changed significantly in recent years. We identify four new 

principles that underlie contemporary requirements processes, 

namely: (1) intertwining of requirements with implementation 

and organizational contexts, (2) dynamic evolution of 

requirements, (3) emergence of architectures as a critical 

stabilizing force, and (4) need to recognize unprecedented 

levels of design complexity.” [5] Their paper summarizes 

changing research and practices in support of their assertion. 

Finally, they present potential new practices, for each of the 

four new principles. Within the second principle, named 

evolve designs and ecologies, they present four potential new 

practices in a form similar to CMM practices [6]:  

 SG 2 Manage Requirements in Context 

 SP 2.1 Monitor and evolve customer requirements 

 SP 2.1 Monitor and evolve context requirements 

 SP 2.1 Monitor product satisfaction of requirements 

(continuous validation) 

These practices focus on monitoring requirements, 

mainly in support of managing their continuous change—

a theme intertwined throughout the four new principles. In 

theory, awareness of the changing requirements will aid 

their management, which in turn will improve software 

development. The particulars of what requirements 
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qualities should be monitored is addressed in recent 

editorial from [1], which we consider next. 

 

1.2 Six V’s of The New RE  
 

Classically, requirements engineering has focused on 

consistency, correctness, and completeness of the 

requirements document [7-9]. From the perspective of the 

New RE, addressing issues of requirements within a 

complex environment is central: “Whereas most of the 

interest in the past focused on understanding and 

managing the inner and static complexity of the design 

task by using abstraction, modularization, and related 

principles, today’s complexity is of a different ilk. It is 

also external and dynamic.” Their Six-V requirements 

measures illustrate how to address RE qualities in the New 

RE world.  

Many of the V-measures are long-held qualities in 

requirements engineering, which have simply been 

renamed for alliteration. These include the first three V’s 

of Error! Reference source not found.. The last three V’s 

are presented as new measures, although some RE 

researchers may take issue with the novelty 

characterization—certainly, vagueness and variance have 

been concerns, and in fact are supported by research and 

tools [10-13]. Most, however, would agree with the 

general view presented: RE needs modern measures for 

the New RE, especially regarding measures of external 

and dynamic complexity.  

The Six-V model is a modern interpretation of 

established measures. This study takes the model as given, 

rather than justify or extend the theory. Herein, we simply 

aim to assess the value of this model. The results may then 

be used to justify or extend the proposed Six-V model. 

Consider modern agile development, where the project 

dashboard is critical to managing projects [14]. The 

centerpiece of these dashboards are burndown charts, 

which graph progress toward work completion [15].  

Based on characteristics (e.g., slope, x-intercept) of such 

charts, managers can recognize and recover from potential 

project failure. For the New RE, one can envision 

dashboards graphically displaying assessments of the Six-

V’s, thereby providing a modern assessment through 

requirements.  This is critical because managing 

requirements is often cited as the most important factor in 

determining project success [16, 17].  

 

1.3 Open Source Requirements Engineering 
 

Many open source projects are successful [22, 23]. In 

open source, the software product is developed, 

distributed, and supported by users. Common 

characteristics are (1) many developers, (2) volunteering 

rather than delegating, (3) limited emphasis on design 

activities,  and (4) few plans, list of deliverables, or 

timelines[24]. Requirements are not represented in a 

classic requirements documents.  

Table 1. Six “V’s” of Requirements [1]. 

In open source development, many developers are also 

product users. They are stakeholders expressing needs that 

define system requirements [25]. It may appear that the 

requirements analysis stage is absent. However, Scacchi 

has identified software informalisms, which are “the 

Feature Definition Classic RE New RE 

Volume The size of the 

requirements 

pool 

influencing the 

scope of the 

work 

Major focus of  

RE as 

influences 

effort 

estimation 

Medium  to 

Large 

Significant 

during   RE 

as influences 

effort 

estimation [18] 

Large to Ultra-

large 

Veracity To what extent 

requirements 

express the 

needs of the 

stakeholders 

and are 

consistent 

Emphasized as 

the key feature 

of RE task, 

works well if 

requirements 

can be frozen 

Important as an 

ideal but not 

key feature of 

most RE efforts 

[5, 19]  

Volatility The rate at 

which the 

requirements 

change over a 

given period of 

time 

Recognized as 

a key reason for 

the  failure of 

waterfall, e.g. 

[20] 

Constant 

feature of 

software 

development 

for most 

environments 

[18] 

Vagueness To what extent 

designers and 

other 

stakeholders 

understand the 

content and 

consequences 

of the 

requirement 

Not recognized 

as an important 

element other 

than to be 

avoided during 

RE task 

Inherent feature 

of many RE 

initiatives due 

to initial lack  

of user learning 

or 

understanding 

of the 

dynamism 

introduced by 

the software in  

the 

environment  

Variance The variation in 

the design 

scope and 

consequences 

of the 

requirement 

pool and the 

heterogeneity 

of design 

components 

involved 

Not recognized 

as an important 

element in RE 

activity 

Significant 

element 

influencing RE 

dynamics and 

complexity. 

 

[5, 18] 

Velocity The rate at 

which 

requirements 

are changing 

over time 

Not important 

and recognized 

Significant 

contributor at 

specific context 

of RE 

especially in  

software 

platforms [21] 
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information resources and artifacts that participants use to 

describe, proscribe, or prescribe what's happening in an 

open source project” [26]. Scacchi identifies two dozen 

types of software informalisms, which include chats, 

email, forums, project digests, etc. By analyzing these 

unstructured, informal, natural language artifacts, one can 

better understand the requirements, and thus open source 

development. Such requirements analysis may help to 

predict successful projects.  

One can apply text-mining techniques to classify 

software informalisms as kinds of requirements [27-32]. 

In the case of a SourceForge project, one can apply text-

mining techniques to interpret the feature requests as 

requirements and their associated qualities. This provides 

a mechanism for analyzing the Six-Vs, both for research 

as well as presenting a modern requirements dashboard.  

 

1.4 Project Attractiveness  
 

Open source projects need to attract users and 

developers to keep a project active and successful [33-36]. 

Important success factors include, developer motivation 

and interest [37-42], and user interest [43]. Projects also 

have a self-reinforcing effect of attractiveness [44]. Users, 

often serving as the observing “eye balls” to bugs [45], 

contribute to a project’s success. Hence, it is important for 

an open source project to attract both developers and 

users.  Scweik et al. showed that for each developer 

added to an open source project, the chances of success 

increases 1.24 times [46]. Several studies attempted to 

identify what makes an open source project favored by 

developers and users. Drivers of attractiveness include 

contributors’ intrinsic and extrinsic motivations for 

joining open source projects [38-42], contextual factors of 

the project [44], visibility of the project, and the work 

activities performed towards software maintenance and 

improvement [44].  To understand better the 

requirements context, we will analyze the relationship 

between requirements measures and project 

attractiveness. 

  

1.5 Sustained Participation  
 

An open source project cannot survive without 

sustained participation. Success, which has been 

extensively examined in the open source literature, is 

mostly measured at one time. Sustained participation, on 

the other hand, focuses on long established open source 

projects. Considering that 80 percent of open source 

projects fail, not due to quality, but because of insufficient 

long-term participation [47], it is important to predict 

sustained participation. Fang and Neufeld [42] investigate 

why developers continually contribute to open source 

projects in a sustainable way. Results show that situated 

learning and identity construction behaviors are 

associated with sustained participation. Qureshi and Fang 

[48] examine growth patterns of developers' socialization 

behavior and how that relates to their status progression. 

They identify four groups of newcomer behavior, based on 

the initial level of social resources of the developer and 

the growth rate of his/her socialization. The software 

development platform contributes to the socialization 

process.  

GitHub.com is an example of a social-coding 

development-platform [49, 50], which supports rich, 

developer communications. Dabbish, et al. [51] found that 

developers use social coding capabilities for complex 

social activities, such as “inferring someone else’s 

technical goals and vision when they edit code, or 

guessing which of several similar projects has the best 

chance of thriving in the long term. Users combine these 

inferences into effective strategies for coordinating work, 

advancing technical skills and managing their reputation.” 

Thus, people that are attracted to successful projects will 

follow them or download their code. Measures for 

tracking sustained participation include the number of 

developers and users and their various contributions over 

time, as well monitoring the projects that they follow.  

 

1.6 Measuring Project Attractiveness 
 

There are a number of ways to measure open-source 

project attractiveness. Two ways are stars and forks. When 

a project is starred, it is a kind of web bookmark, allowing 

a person to follow the project’s activities. A fork is a kind 

of project copy, more common to developers who want to 

review or contribute to the code base. Both of these 

measures allow one to monitor the attractiveness of a 

project. We use these measures in our analysis of GitHub 

projects.  

 

1.7 Article Overview 
 

In this article, we present our study of how the Six-V 

requirements model relates to project attractiveness. 

Previously, Vlas and Robinson analyzed 31 projects from 

SourceForge, in a similar study [52]. Here, we develop a 

slightly different six-V measurement model and analyze 

the correlation between the Six-V’s and project 

attractiveness. Herein, we study 248 projects from 

GitHub, where two of the Six-V metrics are new. We set 

out to confirm the findings of the prior analysis with a 

larger data set from a different repository. (Note that many 

GitHub projects are scripting projects, compared to the 

standard programming projects from SourceForge.) Our 

results here confirm the prior study, but with higher 

statistical significance. There are also other significant 

differences, which we elaborate in later sections. In short, 

the Six-V model helps monitor requirements and relate 

their qualities to project attractiveness. Next, we introduce 

the research hypotheses, followed by the research design, 

results, and finally conclusions.  
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2. Research Hypotheses 
 

Having introduced related research on project 

attractiveness and the Six-Vs of requirements engineering, 

we now present our research model, consisting of six 

hypotheses. 

 

2.1 Hypotheses 
 

Following Jarke and Lyytinen, we start with the 

volume of requirements, defining it as “the size of the 

requirements pool influencing the scope of the work.” [1] 

We adopt the generally accepted assumption that 

requirements reflect stakeholders’ needs. Therefore, a 

large volume of requirements may have a positive effect—

it indicates a large volume of needs and, in the context of 

open source, a large interest in the software artifact under 

development. A larger interest in an open-source project 

leads to a larger pool of contributors and a larger volume 

of discussions describing the needs and preferences of the 

project community. This helps improve the overall quality 

of the software artifact, and consequently, its 

attractiveness and success. A large volume of discussions 

may also have a negative effect—indicating either: (a) a 

lack of consensus among community participants, or (b) 

an inability of the developers to convert community needs 

and preferences into software artifact features. Given 

these two perspectives, positive and negative, on the 

volume of the requirements discussions, we interpret the 

volume of requirements as having an inverse U-shaped 

relationship with project attractiveness. According to our 

interpretation, at lower values of requirements volume, 

increases in volume have a positive effect on project 

attractiveness (via increased interest). At higher values of 

requirements volume, further increases in volume have a 

negative effect on project attractiveness (via increased 

dissonance). 

Hypothesis 1 volume: Requirements volume has a 

curvilinear effect on open-source project attractiveness. 

Jarke and Lyytinen define requirements velocity as the 

rate at which project requirements change over time. We 

apply this perspective to open-source development. In 

GitHub.com, the initial assertion of a requirement is 

established with the posting of an issue. The subsequent 

comments to that issue (i.e., the threaded conversation) 

are the changes, until the requirement/issue is closed. Our 

velocity metric counts the number of events, from issue 

open, through modifications, to issue close. High velocity 

means many steps that a requirement goes through before 

its closing. We interpret this as requirements dissonance 

and a sign of instability within the project. Consequently, 

we expect high velocity to have a negative effect on a 

project community’s perceptions of project attractiveness. 

Hypothesis 2 velocity: Requirements velocity has a 

negative effect on open-source project attractiveness. 

Requirements volatility is defined as a rate of change 

of requirements content—meaning the topics of 

discussion[1]. Such volatility is inevitable, as it is arises 

from the innate variance within the pool of features that 

can fulfill project goals. Requirements volatility indicates 

a discussion of the goals or the means to fulfill those 

goals. However, after a threshold, increased volatility 

suggests a lack of focus, and the inability to respond 

consistently to stakeholders’ needs. Therefore, we claim 

that volatility has a negative effect on project 

attractiveness. 

Hypothesis 3 volatility: Requirements volatility has a 

negative effect on open-source project attractiveness. 

Requirements vagueness is the extent to which 

requirements exhibit ambiguity. Requirements ambiguity 

impedes developers’ ability to understand the needs and 

preferences of stakeholders. It impedes the ability of an  

open-source community to focus efficiently on topics of 

interest and value to the project, or to work efficiently 

towards specifying consistent requirements. 

Consequently, a higher value of vagueness is associated 

with an increased likelihood of wrong assumptions and 

interpretations, leading to a bad project with reduced 

attractiveness. 

Hypothesis 4 vagueness: Requirements vagueness has 

a negative effect on open-source project attractiveness. 

Table 2. Variable Operationalizations and Hypothesized 

Influence on Attractiveness. 

Variable Interpretation Operationalization H 

Volume 
Amount of project 

requirements 

Count of requirements per 

data window 
∩ 

Veracity 

The consistency 

and fidelity of the 

requirements in 

expressing 

stakeholder needs 

Count requirements within 

categories of 

completeness, consistency, 

and accuracy per data 

window 

+ 

Volatility 

Rate of change in 

the focus on a key 

subset of 

requirements over 

time 

Total change in 

requirements category 

rankings, as calculated 

between adjacent data 

windows; the more 

requirements in a category, 

the higher the ranking.  

- 

Vagueness 
Amount of 

ambiguity present 

in requirements 

The inverse of the count of 

requirements categorized 

as unambiguous 
- 

Variance 

Rate of change in 

the concepts 

represented in  

requirements over 

time 

Count of requirements 

types that appear or 

disappear between 

adjacent data windows 

+ 

Velocity 
The rate at which 

the requirements 

are changed 

The rate of change in the 

average workflow length 

per data window 
- 

 

A fifth factor described by Jarke and Lyytinen as 

defining the new requirements engineering is veracity.   

Requirements veracity is the extent to which requirements 
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are consistent and express the needs of the stakeholders 

[1]. We interpret requirements veracity as a measure of the 

extent to which requirements (a) express consistent points 

of view, (b) comprehensively express the needs of 

stakeholders, and (c) are accurate. A high value of veracity 

indicates a good match between requirements and 

stakeholders’ needs. This has a positive effect on the 

perceived attractiveness of the software artifact.  

Hypothesis 5 veracity: Requirements veracity has a 

positive effect on open source project attractiveness.  

Requirements variance is defined a measure of design-

related variability and heterogeneity[1]. We measure this 

as the changes in the mix of requirements types at various 

periods within a project. A high value for variance 

indicates that many requirement types are considered. We 

interpret no-longer-considered requirements types as 

describing features that have been implemented within the 

software artifact, and newly-considered requirements 

types as new directions for the project. Both cases are 

indications of progress. Therefore, we conclude that 

variance has a positive effect on the attractiveness of the 

project.  

Hypothesis 6 variance: Requirements variance has a 

positive effect on open source project attractiveness.  

 

3. Research Design 

 
3.1 Data Selection 
 

We collect data from 272 open-source projects from 

GitHub. We did not constrain data collection to any 

specific time frames. To obtain a sample with variation 

among successful projects, we use a stratified sampling 

strategy to sample projects with different level of 

popularity. The GitHub metrics, number of stars and 

number of forks, are proxies for the level of popularity to 

users and developers. We selected approximately 68 

projects from each of the following sets:  

1. >= 10,000 stars and >= 1,000 forks 

2. 5,000 >= stars < 10,000, and 750 >= forks < 1,000 

3. 1,000 >= stars < 5,000 and 500 >= forks < 750 

4. 1,000 > stars and 250 > forks and in Java  

We distinguished Java (in set 4) to investigate if 

language plays a role in projects’ development patterns. 

Most GitHub projects are scripting languages, like JScript, 

rather than traditionally complied languages (as found in 

SourceForge). The initial projects were reduced to the 

final 248 due to data issues.   

 

3.2 Data Preparation 
 

KNIME workflows automate our data acquisition and 

preparation. Data was obtained directly from GitHub.com 

and stored into a SQL database. The GitHub data is 

comprised of 16 collections, which are combined, through 

filtering and joining, into a single table for data mining. 

Our data was derived from these collections: issues, issue 

events, issues comments, pull requests, and pull request 

comments. Each record in the table provides a vector for 

input into our data mining process.  

The table represents a sequence of Git events. Of the 

18 Git events, we focus on six, which most closely 

associate with software development: 

1. IssuesEvent: An issue is created, closed, or reopened. 

2. PushEvent: Commit (push) code to the repository.  

3. PullRequestEvent: A user requests that new code be 

pushed to the repository.  

4. IssueCommentEvent: Comment associated with an issue. 

5. CommitCommentEvent: Comment associated with a 

commit (PushEvent). 

6. PullRequestReviewCommentEvent: A comment is 

associated with a PullRequest. 

From these events, we obtain text, which we analyze 

for requirements. Additionally, we characterize workflows 

to place the requirements in context. For example, these 

workflows allow us to characterize the number of events 

associated with requirements, which we use to 

characterize requirements velocity.  

 

3.3 Development Workflows as Motifs 
 

Git events, such as push and commit, represent work; 

however, the context of the work is missing. Work in most 

GitHub projects begins with an IssueEvent or a 

PullRequestEvent. Both represent a typical unit of 

development work, which may be scheduled, opened, 

closed, reopened, etc. Each contains text of requirements 

that guide software development. An IssueEvent typically 

represents a bug or enhancement. It follows a lifecycle of 

being opened, followed by code changes represented by 

commits, and then an issue close. For example:  

IssuesEvent.open, PushEvent, PushEvent, 

IssuesEvent.close 

Other events may intervene (e.g., comment events), as 

well as the issue may be reopened or never closed.  

The PullRequestEvent is similar to the IssueEvent, but 

the subsequent work events are related to integrating the 

new code into the project’s code repository.  

A rule-based system is applied to recognize event 

sequences beginning with IssueEvent or a 

PullRequestEvent. We think about them as design 

workflows, which are initiated in response to a work 

request (e.g., issue or pull request). However, we use the 

more neutral term, motif, to indicate recognition of these 

common sequence patterns.  

The rule-based system recognizes two kinds of work 

motifs in Git events. The basic form is as follows:  

1. (IssueEvent | PullRequestEvent) .*  

2. (Reopen (of #1)) .* 
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As indicated above, a work motif begins with either an 

IssueEvent or PullRequestEvent, followed by any other 

Git event that references the initiating event (by number). 

The motif records the initial event, and all subsequent 

events (and their attributes). When either an IssueEvent or 

PullRequestEvent is reopened, it is consider a new 

instance of the second motif pattern (above). Thus, open 

and reopen are each considered the beginning of a work 

motif. 

We use work motifs to characterize requirements 

velocity. The motif length is the number of Git events it 

contains. We calculate velocity as (MotifLengthw / 

MotifLengthw-1), where w represents a data window.  

 

3.4 Data Windows  
 

In support of trend analysis, we divide the timestamped 

project data into windows by date. Within each window, 

various measures are computed, and then compared 

between adjacent windows. Data mining with this 

approach is known as stream-mining [53]; panel data 

statistics are applicable to such windows [54]. Data 

window size can affect the analysis. After various tests to 

ensure sufficient data in each window, we settled on 4-

week windows, which is also meaningful to development 

cycles of GitHub projects.  

 

3.5 Recognizing Requirements  
 

Text in various Git events is parsed and analyzed for 

the discovery of requirements and of requirements types. 

Here we use an adapted version of Vlas and Robinson’s 

method of identifying and classifying requirements [28]. 

This method generates classifications for the identified 

requirements from a set of 23 defined requirements types 

[55]. 

 

3.6 Analysis Approach 
 

The dataset is analyzed as panel data using STATA 13.0 

tool. Subject to list-wise deletion, our final data set has 

9,268 observations. Multiple observations for each project 

over time raises concerns of potential interdependence 

among observations, which is addressed by lagging all our 

predictor and control variables with one window,  

compared to our dependent variable. This procedure also 

supports the claimed causation between predictor and 

dependent variable. Our dependent variable is project 

attractiveness and is measured with the natural 

logarithmic function of number of forks. The 

hypothesized causation between the predictors and the 

dependent variable is modeled using linear panel 

regression. Poisson regression is used to test results’ 

robustness. The Hausman test reveals that either random 

or fixed effects models are appropriate [51]. We choose 

the fixed effects model as it may better reflect the structure 

of our panel and the possible correlations that may exist 

within projects. To avoid an increase in multicollinearity, 

we start with a baseline model, which includes only 

controls, and sequentially add variables. We therefore 

build 8 models and compute the variance inflation factors 

(VIF) of the uncentered variables  for each model [52]. 

The full model’s VIF is 1.85, well below the 

recommended threshold of 10. Control and independent 

variables are standardized and lagged. 

 

3.7 Dependent Variable 
 

Our dependent variable is project attractiveness. We 

operationalize it with the natural logarithmic function of 

number of forks. Forks represent the interest of a user to 

use the project and are a proxy for the level of project 

attractiveness, because it reflects the popularity that each 

project has among users. The distribution of the original 

variable is highly skewed and therefore we log it. The 

resulting variable has a near normal distribution.  

 

3.8 Independent Variables 
 

We conceptualize a set of six predictor variables 

(volume, velocity, volatility, vagueness, veracity, and 

variance) as determinants of project attractiveness. In the 

following, we describe these six predictor variables and in 

the next section we report the regression results that test 

the relationships among the predictor and the dependent 

variables. 

Volume. To operationalize the concept of requirements 

volume we count the total number of requirements within 

each data window. The identification of requirements 

within a data window is performed by using an adapted 

version of the requirements discovery process proposed by 

Vlas and Robinson [27]. 

Velocity. Vlas and Robinson previously operationalized 

velocity as the rate at which the volume of requirements 

changes over time [52]. This operationalization as an 

aggregate value at the data window level was justified by 

the infeasibility of a manual requirement-level data 

extraction (extremely time consuming and error-prone). In 

this study, we benefit from the availability of additional 

requirement-level data. We define velocity as the rate of 

change in the number of events within a requirement 

workflow (the sequence of events from the inception 

throughout the closing of the requirement). We interpret 

this as the velocity of an individual requirement, and it 

aligns with the traditional concept of requirements 

change. 

Volatility. Following the definition of volatility as the 

rate of change in requirements content, we create a 

ranking of the requirements types present in a window 

based on the count of requirements within each type. We 

label the top-most rank in a data window as the focus of 

the data window. When there is a subset of two or more 
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requirements types that have same number of 

requirements we rank them equally by assigning them the 

top-rank within the subset. We compute the volatility of 

an individual requirement type as the absolute value of the 

difference between its rank in current data window and its 

rank in previous data window. To compute the overall data 

window volatility we sum up all individual requirement 

type volatilities. This approach measures the extent to 

which requirements content type changes over time. 

Vagueness. Open source requirements are present in 

software informalisms [25]. Capturing requirements 

vagueness requires the ability to identify ambiguity in 

textual data. This is highly dependent upon being able to 

capture and analyze the context of the item of interest, the 

requirement in our case. In text mining, capturing context 

is a major challenge. However, the identification of the 

inverse of vagueness (clarity) is not as dependent upon 

context. Thus, we first measure clarity by counting the 

number of requirements classified as simplicity, 

conciseness, or self-descriptiveness and we add them up. 

Second, we inverse the value of clarity and we interpret it 

as vagueness. This procedure allows us to measure a lack 

of clarity—in other words, vagueness. 

Veracity. Veracity is defined as a measure of 

consistency and fidelity. Following this definition, we 

focus on requirements completeness, consistency, and 

accuracy. We interpret the count of all these requirements 

as a measure of consistency and of the match between 

users’ needs and the features expressed by requirements.  

Variance. To compute a measure of variability of a set 

of requirements, we first identify and count the 

requirements types present in current data window that 

were not present in previous data window. Second, we 

identify and count the requirements types not present in 

current data window but present in the previous data 

window. To compute the overall variance of a data window 

we sum up all identified requirement types. 

 

3.9 Control Variables 
 

We control for a number of project characteristics that may 

explain project attractiveness. Project stars reflects the 

popularity that each project receives. As projects receive stars 

from users, they may become more attractive and therefore 

may influence the number of forks each project receives. 

Project age reflects the time that has elapsed since the start of 

the project (in weeks). Because users’ interest in the projects 

increase with time, project attractiveness may also be 

confounded by the passing of time. Commits represent updates 

made to the project. Committed updates are likely to affect the 

attractiveness of the project by raising users’ awareness of 

project quality. Total event size represents the total number of 

Git events in workflows and reflects changes made to the 

project or how active it is. Total event duration represents the 

time length of a work motif or how long it takes for an 

IssueEvent or PullRequestEvent to be closed. Comments 

represent the total count of comments associated with an issue, 

PullEvent or PullRequest in the workflow. These variables 

affect the complexity of a project and how quickly an issue can 

be resolved. LOC added represent the number of lines of codes 

written and LOC deleted represent the number of lines of code 

deleted. Together, these variables can affect the complexity of 

the project and the difficulty of solving an issue related to the 

project. We control for time series with Window fixed effects. 

 

4. Research Results  

 
4.1 GitHub 
 

We calculate descriptive statistics and correlations between 

variables using STATA. Project attractiveness has the highest 

correlation with the volume of requirements (r = 0.36*), 

meaning that as the volume of requirements increases, project 

popularity also increases. The Appendix presents the results of 

linear panel fixed-effects regression. We start with a baseline 

model with control variables only. Models 1 and 2 test 

Hypothesis 1 suggesting that requirements volume has a 

curvilinear (inverse U shape) effect on projects’ attractiveness. 

For this hypothesis to be supported, Model 1 must report a 

positive coefficient for the volume term at the first power and 

Model 2 must report a negative coefficient for the volume term 

at the second power while maintaining a significant effect for 

the first power term. All these conditions are met. 

Accordingly, we safely claim that Hypothesis 1 is supported. 

Hypothesis 2 claims that requirements velocity 

negatively affects project attractiveness. In Model 3, the 

velocity coefficient is β = -0.018 significant at p < 0.05. 

As a result, Hypothesis 2 is supported. 

Hypothesis 3 claims that requirements volatility has a 

negative effect on project attractiveness. The negative and 

significant coefficient for the volatility term (β = -0.117, 

p < 0.001) in Model 4 supports Hypothesis 3. 

Hypothesis 4 claims that project attractiveness is 

negatively affected by requirements’ vagueness. The 

negative and significant coefficient obtained in Model 5, 

β = -0.021 with p < 0.05, supports Hypothesis 4. 

Hypothesis 5 claims that requirements veracity has a 

positive effect on project attractiveness. In Model 6, the 

coefficient for veracity is positive (β = 0.161) and 

significant at p < 0.001. Thus, Hypothesis 5 is supported. 

Hypothesis 6 claims that requirements variance has a 

positive effect on project attractiveness. In Model 7, the 

coefficient for the variance term is positive (β = 0.274) 

and significant at p < 0.001. This result supports 

Hypothesis 6. 

Model 8 is the full model. This model includes all six 

predictor variables. We find that, with the exception of 

vagueness, the effects of all predictors are significant and 

consistent with the hypothesized direction.  
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Table 3. Regression Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 SourceForge Analysis and Comparison 
 

The reported results of GitHub projects are robust and 

consistent with previous analysis reported by Vlas and 

Robinson on SourceForge projects [52]. Their analysis of 

31 SourceForge projects over a 24 six-month long 

windows found that the attractiveness of open source 

projects (operationalized as download rate) is affected in 

a similar manner by the Six-V measures. Volume was 

found to display an inverse U-shape relationship with 

attractiveness, such that a high volume of requirements 

positively affected the download rate up to a threshold 

after which it had a negative effect. Velocity and volatility 

were hypothesized to negatively affect the download rate 

and support was found for the volatility-attractiveness 

relationship. Vagueness was conceptualized as “the extent 

to which designers make efforts to understand 

requirements” and its effect was found significant. 

Veracity and variance were hypothesized to positively 

affect the project attractiveness and support was found for 

veracity but not for variance. 

We claim that our analysis brings further support for 

Jarke and Lyytinen’s [1] Six-Vs model, and it proposes 

improved operationalizations of these factors. While 

building on Vlas and Robinson [52], a comparison reveals 

significant changes. First, the dependent variable differs. 

While Vlas and Robinson [52] capture attractiveness with 

the number of downloads, in this study we operationalize 

it with the number of forks. This different 

operationalization of the same construct (attractiveness) 

enhances our understanding and builds robustness.  

Second, herein we conceptualize velocity as the rate of 

change in the number of events within a workflow. This 

metric supports a correlation between velocity and project 

attractiveness. The prior study did not find support for this 

correlation [52]. Its velocity metric was an aggregate at 

the data window level, while our measure of velocity is at 

the requirement level, and thus, better aligned with the 

definition of the concept. 
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Third,  in Vlas and Robinson [52], vagueness was the 

total number of requirements classified as relating to 

simplicity, conciseness, and self-descriptiveness. These 

three categories were used under the assumption that 

requirements in these categories suggest an existing 

necessity to fix problems of clarity. This approach to 

vagueness indirectly depicts vagueness as the need for 

clarity. Therefore, it was hypothesized to have a positive 

effect on attractiveness. Here, we take a more direct and 

intuitive approach and operationalize vagueness as the 

inverse of clarity. To capture clarity we use simplicity, 

conciseness, self-descriptiveness, and a fourth category—

communicativeness. Thus, we hypothesize a negative 

relationship to project attractiveness. The new measure is 

more exhaustive due to the inclusion of this fourth 

category. Moreover, our approach on vagueness better 

matches the original definition by Jarke and Lyytinen [1] 

as “the extent [to which] designers and other stakeholders 

understand the content and consequences of the 

requirement.” 

Fourth, we find support for the positive relationship 

between variance and project attractiveness. Our 

improved model over the control model results in a 3.7% 

increase in R square. This suggests a causation effect 

between topic variance in stakeholder discussions and 

project attractiveness. 

 

5. Discussion 

 
5.1 Robustness 
 

We test the robustness of our analyses by running an 

additional regression test using STATA. Because our 

dependent variable is a count of forks (logged) and because 

fixed panel data models poorly estimate time invariant (or 

slowly changing) effects, which we may have in our dataset 

for some long-lifecycle projects, we consider a Poisson 

regression to test the robustness of our results. The results are 

mostly consistent with the results obtained from the fixed-

effects panel data model. Volume, volatility, veracity and 

variance measures affect project attractiveness according to 

the hypothesized direction, which extends the explanatory 

power of our model. Velocity and vagueness were not found 

to be significant in the Poisson regression.  

 

5.2 Contributions 
 

The ability to compare results across open source project 

repositories is important. While comparing our GitHub results 

to those of Vlas and Robinson, who analyzed SourceForge 

projects, we identify a number of valuable contributions. First, 

our results strengthen the validity of perceiving the Six-Vs of 

requirements engineering as important and defining 

characteristics of requirements in modern, open-source 

projects. 

Second, we find support for the effects of velocity and 

variance on project attractiveness, two hypotheses that 

were not supported in Vlas and Robinson. This may be 

attributed to the larger dataset in our study. We also claim 

that our operationalizations of the two factors are more 

accurate and better aligned with their corresponding 

definitions, as provided by Jarke and Lyytinen.  

Third, we address better the challenge of effectively 

capturing the spirit of the requirement-level definitions of 

Six-V measures. While these requirement-level factors 

were previously measured in an aggregate form, we find 

operationalizations that bring out the individual 

requirement characteristics into their calculation. 

 

5.3 Critical Assessment and Future Research 
 

While our study provides new insights on the importance 

of Six-V measures on project attractiveness, we recognize two 

important issues that can provide promising opportunities for 

future research. First, we use a 4-week rather than a 6-month 

data window size. This allows us to capture more refined 

trends in project lifecycles, but it can also be limited in 

capturing trends of slow-moving projects. Second, we use a 

number of aggregate-level measures. It would be ideal to 

collect data at the individual requirement level, but this may 

only be possible through manual (time consuming and error-

prone) methods that would very significantly limit the sample 

size. Future studies may consider a different data collection 

technique. Third, we acknowledge the external validity 

limitations of our study as our findings may apply to the open 

source context only. We identify future research avenues in the 

refinement of our text mining tools for a better identification 

of requirements. Finally, there are opportunities to extend our 

research to other areas of development and to an extended set 

of factors that might enhance understanding of the 

determinants of project success. 

 

6. Conclusions 
 

In the open source literature, success models are of great 

interest. While success has been mostly analyzed as a static 

concept, we posit and confirm that open-source success 

depends on the continuous developing of requirements. By 

building on a previous study, we refine the New RE model as 

related to project success and apply it to an extended dataset 

of open source projects. Our study provides more precise 

metrics and confirms the value of the Six-V model. 

Researchers and practitioners may find value in applying the 

Six-V model to understand how requirements development 

contributes to project success over time. This dynamic model, 

directly linking development activities to project success, 

appears to be significant but remains largely unexplored.  
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