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ABSTRACT
When writing software, developers often employ abbrevia-
tions in identifier names. In fact, some abbreviations may
never occur with the expanded word, or occur more often in
the code. However, most existing program comprehension
and search tools do little to address the problem of abbrevi-
ations, and therefore may miss meaningful pieces of code or
relationships between software artifacts. In this paper, we
present an automated approach to mining abbreviation ex-
pansions from source code to enhance software maintenance
tools that utilize natural language information. Our scoped
approach uses contextual information at the method, pro-
gram, and general software level to automatically select the
most appropriate expansion for a given abbreviation. We
evaluated our approach on a set of 250 potential abbrevia-
tions and found that our scoped approach provides a 57%
improvement in accuracy over the current state of the art.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement;
D.2.7 [Software Engineering]: Coding Tools and Techniques

General Terms: Human Factors, Reliability

Keywords: Automatic abbreviation expansion, software
maintenance, program comprehension, software tools

1. INTRODUCTION
When writing software, developers often use abbreviations

in identifier names, especially for identifiers that must be
typed often and for domain-specific words used in comments.
In some cases, the abbreviated form of a word is so preva-
lent that it occurs more often than the expanded form. For
example, the word ‘number’ occurs only 4, 314 times in the
Java 2 Platform, while its abbreviation ‘num’ occurs 5, 226
times.
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Unfortunately, most existing software tools that use the
natural language information in comments and identifiers do
nothing to address abbreviations, and therefore may miss
meaningful pieces of code or relationships between software
artifacts. For example, if a developer is searching for string
handling code, she might enter the query ‘string’. If the
abbreviation ‘str’ is used in the code instead of ‘string’, the
search tool will miss relevant code.

Thus, techniques for expanding abbreviations can improve
the effectiveness of a variety of language-based software tools
such as concern location [6, 13, 17, 19], documentation to
source code traceability [1, 12], or other software artifact
analyses [2, 16]. Automatically expanding abbreviations will
give these tools access to words and associated meanings
that were previously meaningless sequences of characters.

In this paper, we define a token to be a sequence of al-
phabetic characters delimited by any non-alphabetic token
such as spaces or underscores. We refer to any token that is
not found in an English dictionary as a non-dictionary word.
We use the term short form to refer to an abbreviation, and
long form for its corresponding full word expansion.

One simple way to expand short forms in code is to man-
ually create a dictionary of common short forms [16]. Al-
though most developers understand that ‘str’ is a short form
for ‘string’, not all abbreviations are as easy to resolve. Con-
sider the abbreviation ‘comp’. Depending on the context in
which the word appears, ‘comp’ could mean either ‘compare’
or ‘component’. Thus, a simple dictionary of common short
forms will not suffice. In addition, manually created dictio-
naries are limited to abbreviations known to the dictionary
builders.

The hypothesis driving our work is that automatically
mining short forms from the program itself can identify the
most appropriate expansions of short forms within the con-
text of the individual occurrences. In this paper, we present
an automatic technique to mine short and long forms from
a large set of programs, such that abbreviations in a pro-
gram can be automatically expanded to the most appro-
priate long form in the context of their occurrences. We
evaluate the effectiveness of our automatic program abbre-
viation expansion technique by comparing it with Lawrie,
Feild, and Binkley’s technique [9] and two variations of a
most frequent expansion-based approach. Our scoped ap-
proach provides a 57% improvement in accuracy over the
current state of the art. We are able to find appropriate ex-
pansions for single-word abbreviations including acronyms,
prefixes, and dropped letter short forms, as well as multi-
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word abbreviations including acronyms. Although our cur-
rent work focuses on Java programs predominantly written
in English, our approach can be applied to any programming
and natural language combination.

The major contributions of this paper are:

• A detailed analysis of the types of abbreviations found
in software and the challenges in automatically ex-
panding them

• A fast and effective technique for automatically ex-
panding program abbreviations of many types

• An experimental evaluation comparing the accuracy of
four techniques: the only known existing technique [9],
our scoped approach, and two derivative approaches

2. TYPES OF NON-DICTIONARY WORDS
IN CODE

There are many types of non-dictionary words used in
program identifiers, and these non-dictionary words are not
limited to abbreviations. We have found abbreviations gen-
erally fall into two categories: single-word and multi-word.

2.1 Single-Word Abbreviations
Single-word abbreviations are short forms whose long form

consists of a single word. This is in contrast to non-dictionary
words such as acronyms, whose long forms expand into mul-
tiple words. We have identified two major types of single
word abbreviations in programs: prefixes and dropped let-
ters. Prefix short forms are formed by dropping the latter
part of a long form, retaining only the few beginning let-
ters. Examples of prefixes include ‘attr’ (attribute), ‘obj’
(object), and ‘param’ (parameter). A subset of prefix short
forms are single letter prefixes. Single letter prefixes are
predominantly used for local variables with very little scope
outside a class or method [10]. Examples include ‘i’ (integer)
and ‘e’ (exception).

The second type of single-word abbreviation is dropped
letter. Dropped letter short forms can have any letters but
the first letter removed from the long form. Examples in-
clude ‘evt’ (event), ‘msg’ (message), and ‘src’ (source). Dropped
letter short forms are actually a super set of prefix short
forms, although they can easily expand to a much larger set
of long forms. For example, the abbreviation ‘org’ can ex-
pand to be a prefix of ‘organization’ or be the less probable
dropped letter ‘original’. Automatic abbreviation expansion
techniques must therefore be selective in expanding dropped
letter abbreviations to potential long forms.

2.2 Multi-Word Abbreviations
Multi-word abbreviations are short forms that when ex-

panded into long form consist of more than one word. The
most common are acronyms, which arguably belong in a
class of short forms separate from abbreviations. For the
purposes of this work, we consider acronyms to be a special
type of multi-word abbreviation. Acronyms consist of the
first letters of the words in the long form. Acronyms can
be so widely used that the long form is rarely seen, such as
‘ftp’, ‘xml’, or ‘gif’. Some uses of acronyms are very local-
ized, such as what we call type acronyms. When creating
local variables or naming method parameters, a common
naming scheme is to use the type’s abbreviation. For exam-
ple, a variable of the type ArrayIndexOutOfBoundsException

may be abbreviated ‘aiobe’, or StringBuffer as ‘sb’.

The second type of multi-word abbreviation includes more
than just the first letters of the long form. A combination

multi-word may combine single-word abbreviations, acronyms,
or dictionary words. Examples include ‘oid’ (object identi-
fier), ‘println’ (print line), and ‘doctype’ (document type).
By definition, combination multi-words must contain more
than two letters, otherwise the short form would be an acronym.
As with the relationship between prefixes and dropped let-
ters, acronyms are a subset of combination multi-words.

2.3 Other Types of Short Forms
Aside from abbreviated words, one of the most common

forms of non-dictionary words in code are multiple words
with no clearly delineated word boundaries. Most identi-
fiers that consist of multiple words contain word boundaries
by varying upper and lower case letters (i.e., camel casing)
or by using non-alphabetic characters as in the examples
ASTVisitor, stringBuffer, and TARGET WINDOW. However,
a programmer may not delineate word boundaries because:
(1) the boundaries are trivial for a human to recognize, such
as in ‘keystore’ or ‘threadgroup’; (2) the programmer fa-
vored typing fewer letters over general readability; or (3)
the words appear so often together that the programmer
may not realize the compound word does not exist in En-
glish. In the last case, the joined words may be considered
one word to most programmers, but English dictionaries cur-
rently include only the separate parts. We have found that
lack of word boundaries is especially common for colloca-

tions—words that often occur adjacent to one another and
represent a conventional way of saying things [11]. Examples
include ‘filesize’, ‘saveas’, and ‘dataset’.1

Misspellings are also present in identifiers, although less
so than for comments. Examples include ‘instanciation’ (in-
stantiation), and a strike ‘trought’ (through) font format.
Other types of non-dictionary words include mathematical
notation, such as for vector indices or notation specific to sci-
entific equations, and Hungarian notation [18]. More com-
mon for C-based languages than Java, Hungarian notation
suggests appending the first letter of the data type to every
variable name. Finally, some identifiers are just improba-
bly named: ‘zzzcatzzzdogzzz’. When variable names are se-
lected with little relevance to the underlying code, deriving
meaning can be impossible both for humans and automated
mining techniques.

3. AUTOMATIC ABBREVIATION EXPANSION
Automatically expanding abbreviations requires the fol-

lowing steps: (1) identifying whether a token is a non-dictionary
word, and therefore a short form candidate; (2) searching for
potential long forms for the given short form; and (3) select-
ing the most appropriate long form from among the set of
mined potential long form candidates.

For some applications, a completely automated approach
may be unnecessary and the final step of selecting the most
appropriate long form can be left to the human user. Exam-
ples include a program comprehension tool that automati-
cally presents the developer with potential long forms when
given an unfamiliar abbreviation as input; or a query expan-
sion mechanism that uses human feedback to determine ap-
propriate query expansions, which may include short forms

1Components of these types of multi-words are called soft
words by Lawrie, Feild, and Binkley [9].
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for a long form given in the query. However, for general
search or automated maintenance tools, a fully automatic
approach may be more appropriate. For the remainder of
this paper we focus on completely automatic abbreviation
expansion.

3.1 Observations and Challenges
To develop our automatic abbreviation expansion tech-

nique, we analyzed short forms and their corresponding long
forms in 15 open source Java programs. Based on our man-
ual inspection, we made the following observations that must
be taken into account when automatically mining abbrevia-
tion expansions:

Good dictionaries are hard to find. The most preva-
lent available English dictionaries are used for spell checking,
and may include proper nouns, common abbreviations, and
contractions, all of which may occur in software. However,
some dictionary words are less likely to occur in code. For
example, observing the token ‘io’ in software is much more
likely to stand for ‘input output’ than the proper noun ‘Io’.
In addition, legitimate English words may be used for ab-
breviations in code, such as ‘char’, ‘tab’, or ‘id’. Thus, there
is a trade off in including too many or too few words in a
dictionary. Too few words causes the automatic expansion
to attempt to find long forms for legitimate words; too many
words causes even legitimate short forms to be classified as
dictionary words.

Short form type is impossible to determine a pri-
ori. If it were possible to automatically identify the short
form type, it would be easier to narrow down the list of
potential long forms, and therefore more accurately select
the appropriate long form. Unfortunately, abbreviations are
short forms for longer words, and are by their very nature
less unique than the long forms themselves. Thus, the same
sequence of three characters may represent different long
forms depending on the context. For example, ‘def’ can re-
fer to ‘definition’, ‘default’, or even ‘defect’. In one instance,
we even observed that the acronym ‘dc’ was used to repre-
sent both ‘dynamic color’ and ‘duration color’ in different
branches of the same method. Thus, we cannot rely solely
on the abbreviation type to eliminate unrealistic long form
candidates.

The shorter the short form, the more potential long
form candidates. This observation presents one of the
more frustrating aspects of the automatic abbreviation ex-
pansion problem. By definition, the shorter the short form,
the more potential long forms it could match. For example,
a single letter abbreviation ‘i’ could conceivably match any
dictionary word beginning with the letter ‘i’; whereas ‘int’
is likely to match ‘integer’, ‘interface’, or ‘interrupt’; and
‘interf’ will match ‘interface’. However, most abbreviations
are short, consisting of just 1–3 letters. Thus, the majority
of short forms represent the most difficult instances of the
automatic abbreviation expansion problem.

Some abbreviation types have more long form can-
didates. Specifically, acronyms and prefixes have fewer
long form candidates than dropped letters and combination
multi-words. For example, the prefix ‘str’ is likely to be
‘string’ or ‘stream’, whereas the dropped letter ‘str’ could
match long forms ‘substring’, ‘store’, ‘september’, or ‘sat-
urn’. Thus, automatic expansion techniques should take
long form accuracy of abbreviation type into account when
choosing between potential long forms.

3.2 State of the Art
To our knowledge, Lawrie, Feild, and Binkley [9] are the

only other researchers to present and evaluate techniques
to address the problem of automatically expanding abbre-
viations that occur in program identifiers. In their earlier
paper [4], Feild, Lawrie and Binkley evaluated three auto-
mated techniques for splitting identifiers that are not easily
split by camel-casing or underscore clues left by the pro-
grammer. By first splitting the identifiers into their con-
stituent “words”, their abbreviation analysis can focus on
the individual “words” comprising each identifier.

More recently, Lawrie, Feild, and Binkley (LFB) [9] pre-
sented a strategy for automatically expanding abbreviations
used in identifiers by first extracting lists of potential expan-
sions as words and phrases, and then performing a two-stage
expansion for each abbreviation occurrence in the code. They
create several different lists to be used during expansion of
an identifier occurrence. For each function f in the program,
they create a list of words contained in the comments before
or within the function f or in identifiers with word bound-
aries (e.g., camel casing) occurring in f, and a phrase dic-
tionary created by running the comments and multi-word-
identifiers through a phrase finder [5].

In addition to the lists for each function, they create a list
of programming language specific words as a stop word list.
Stemming and the stop word list are used during extraction
to improve accuracy. The first letter of each phrase is used to
build acronyms. Expansion of a given non-dictionary word
occurrence in a function f involves first looking in f’s word
list and phrase dictionary, and then in a natural language
dictionary. A word is said to be a potential expansion of
an abbreviation when the abbreviation starts with the same
letter and every letter of the abbreviation occurs in the word
in order.

The LFB [9] technique returns a potential expansion only
if there is a single possible expansion. They leave the prob-
lem of choosing among multiple potential expansions found
at either stage as future work. When they manually checked
a random sample of 64 identifiers requiring expansion (from
a set of C, C++, and Java codes), one third were correctly
split and expanded. Of the identifiers correctly split, 58%
of the one–two letter forms were expanded correctly and
64% of the over-two letter forms. Thus, only approximately
20% (60% of 33%) of the identifiers were expanded correctly.
In their other quantitative study of all identifiers in their
158-program suite of over 8 million unique terms, only 7%
of the total number of identifier terms were expanded by
their technique; these expansions were not checked for cor-
rectness. These low precision results motivate a closer look
at alternative strategies for expansion. In addition, sets of
potential expansions for a given occurrence in their study
ranged from 1 to 6735, demonstrating the need for a heuris-
tic for choosing the most appropriate expansion for a given
occurrence.

Somewhat related work includes the work on restructuring
program identifier names to conform to a standard in both
the lexicon of the composed terms and the syntactic form
of the overall identifier composition of terms [3]. Identifiers
are split, and then a match between a standard dictionary
and synonym dictionary and the identifier components is
attempted. When no match is found, the user is prompted
for help. No automatic abbreviation expansion is attempted.

There exist acronym expansion techniques created for use
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in written English text [8, 14]; however, their premise does
not hold for software due to their reliance on textual patterns
that do not occur in code and do not apply in the context
of the syntactic structure of a program.

4. THE SCOPED APPROACH
As outlined in the beginning of Section 3, the LFB ap-

proach only addresses the first two steps of identifying non-
dictionary words and potential expansions [9]. When faced
with the final step of choosing between equally likely long
forms, their current approach returns nothing. With our
scoped approach, we attempt to effectively solve all three
steps of the automatic abbreviation expansion problem.

Also in contrast to LFB, we never attempt to match short
forms to an English dictionary of words, only those dictio-
nary words appearing within the scope of the software. This
is a direct consequence of our observation that word lists for
computer science are nonexistent, and many English dictio-
naries include too many words. Also, the only hand-tuned
word lists used in our approach are a stop word list and list of
common contractions. Our list of common abbreviations is
automatically derived from software, but could be improved
with a hand-tuned common abbreviation list, especially for
production systems.

Our automatic long form mining technique is inspired by
the static scoping of variables represented by a compiler’s
symbol table. When looking for potential long forms, we
start at the closest scope to the short form, such as type
names and statements, and gradually broaden our scope to
include the method, its comments, and the class comments.
If our technique is still unsuccessful in finding a long form,
we attempt to find the most likely long form found within the
program and in Java SE 1.5. With each successive scope we
include more general, i.e., less domain specific, information
in our long form search.

In our current work, we assume a short form has the same
long form for an entire method. Although infrequent, it is
possible for a short form to have multiple long forms within
a method. To handle such cases, our approach could be
extended to assume a short form has the same long form for
only block or even statement level scope.

4.1 Method-level Matching
The core of our approach is our long form search technique

within a method. In this section, we first describe how we
search for each type of long form within a method, define
how we select the long form from many potential long forms,
and how we attempt to expand short forms initially missed
at the method scope.

4.1.1 Single-Words
The first step in searching for long forms is to construct a

regular expression pattern from the short form and then use
the pattern to search for long form candidates over different
parts of the method body text. Our single-word search ap-
proach is presented in Algorithm 1, and the patterns used
for each type of short form are described below.

Stepping through Algorithm 1, line 6 prevents (1) search-
ing for unlikely dropped letter long forms and (2) expanding
short forms with many consecutive vowels as a single-word.
The first three predicates in line 6 restrict the search for
dropped letter long forms to only those short forms that are
longer than 3 letters or composed of all consonant letters
with an optional leading vowel. We restrict the dropped let-

Algorithm 1 Searching for single-word long forms. Quotes
are used to indicate regular expressions.

1: Input: potential short form, sf

2: Input: regular expression to match long form, pattern

3: Input: method body text, method comments
4: Input: class comments (Prefix only)
5: Output: long form candidates, or null if none
6: if ((prefix pattern) or (sf matches “[a-z][ˆaeiou]+”) or

(length(sf) > 3)) and
(sf does not match “[a–z][aeiou][aeiou]+”) then

7: In the following, when a unique long form is found,

return.

8: Search JavaDoc comments for “@param sf pattern”
9: Search TypeNames and corresponding declared vari-

able names for “pattern sf”
10: Search MethodName for “pattern”
11: Search Statements for “pattern sf” and “sf pattern”
12: if length(sf) 6= 2 then
13: Search method words for “pattern”
14: Search method comment words for “pattern”
15: end if
16: if (length(sf) > 1) and (prefix pattern) then
17: Search class comment words for “pattern”
18: end if
19: end if

ter pattern search because the pattern can greedily match
many incorrect expansions. For example, if left unchecked,
dropped letter may incorrectly expand ‘lang’ to ‘loading’,
‘br’ to ‘bar’, or ‘mtc’ to ‘matching’. The last predicate of
line 6 ensures that we do not try to expand short forms with
many consecutive vowels as a single-word. Most short forms
consisting of consecutive vowels expand into multi-word long
forms; consider ‘gui’ (graphical user interface), ‘ioe’ (invalid
object exception), or ‘poa’ (portable object adaptor).

Lines 7–19 of the algorithm describe the search process.
If at any line a unique long form is found, the algorithm
immediately returns. In line 8, we first search for the short
form and the pattern in the method’s Java Doc comment.
If unsuccessful, in line 9 we look for the short form and the
pattern appearing together in a variable declaration and its
type. Next we search the method name for the pattern in
line 10. In line 11 we continue searching for the pattern and
the short form appearing within the same statement.

In line 12 we restrict our search of the general method text
and comments to short forms of 3 letters long or more be-
cause short forms that are two letters long (1) are most likely
to be multi-words and (2) are capable of matching many dif-
ferent words. Since we do not search beyond method scope
for single letter prefixes, we also search the method text and
comments for single letter prefixes. Thus, in lines 13–14
we search for the pattern in the method words and method
comment words if the short form is not of length two.

Lastly, if the pattern is a prefix and the short form is
longer than a single letter, we search the class comments for
the pattern in line 17. Since single letter prefix short forms
are unlikely to have scope beyond a method, and since the
single letter prefix pattern may match so many long forms,
we do not attempt to match single letter prefix patterns
to the class comments. Likewise, since the dropped letter
pattern is so greedy, we do not search for dropped letter
long forms in the class comments.
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Algorithm 2 Searching for multi-word long forms. Quotes
are used to indicate regular expressions.

1: Input: potential short form, sf

2: Input: regular expression to match long form, pattern

3: Input: method body text, method comments
4: Input: class comments (Acronym only)
5: Output: long form candidates, or null if none
6: if (acronym pattern) or (length(sf) > 3) then
7: In the following, when a unique long form is found,

return.

8: Search JavaDoc comments for “@param sf pattern”
9: Search TypeNames and corresponding declared vari-

able names for “pattern sf”
10: Search MethodName for “pattern”
11: Search all identifiers in the method for “pattern”

(including type names)
12: Search string literals for “pattern”

{At this point we have searched all the possible phrases

in the method body}
13: Search method comment words for “pattern”
14: if acronym pattern then
15: Search class comment words for “pattern”
16: end if
17: end if

Prefix Pattern.
The first step in searching for prefix long forms is to con-

struct a regular expression from the short form. The prefix
pattern is thus the short form followed by the regular expres-
sion “[a–z]+”: “sf [a–z]+”. The letter ‘x’ is a special case: if
a short form begins with ‘x’, the expression “e?x” is added
to the beginning of the pattern. The pattern is then used as
input to Algorithm 1 to search for long forms.

Dropped Letter Pattern.
The regular expression pattern for dropped letter is much

less conservative than the pattern used for prefixes. The
dropped letter pattern is constructed by inserting the ex-
pression “[a–z]*” after every letter in the short form. Let
sf = c0, c1, ..., cn, where n is the length of the short form.
Then the dropped letter pattern is c0[a–z]*c1[a–z]*...[a–z]*cn .

4.1.2 Multi-Words
As with single-words, our approach for finding multi-word

long forms searches increasingly broader scopes until we find
a long form candidate that matches the pattern. However,
because multi-word patterns must search over spaces, it is
important to limit how far the pattern should extend. For
example, with a naive pattern the short form ‘il’ could match
the phrase“it is important to limit” in the previous sentence.
Thus, we preprocess the method body text and comments
so that we do not search for long forms beyond variable
declarations and method identifier boundaries. We also split
comments and string literals into phrases using punctuation
([?!,;]). So that abbreviations like ‘val’ are not expanded to
‘verify and load’, we remove common stop words from the
method body text and comments.

Our multi-word search approach is presented in Algorithm 2.
Line 6 ensures that we do not search for many incorrect com-
bination word long forms. Combination word patterns are
much less conservative than acronyms, and can frequently
match incorrect expansions. Thus, we restrict our search to

short forms of length 4 letters or more. This threshold will
cause our technique to miss some legitimate 3-letter com-
bination word expansions, such as ‘oid’ (object identifier),
but we feel it is necessary to restrict our search to find only
the most likely long forms. It should be noted that 3-letter
combination word abbreviations are not very common in
practice. In the random sample of 250 non-dictionary words
used in our evaluation, only 1 short form fell into this cate-
gory. Based on this sample, we expect 3-letter combination
word abbreviations to account for only 4% of all combination
words and just 0.4% of all non-dictionary words.

As with single-words, our technique searches for multi-
word long form candidates first in Java Doc, type names,
and the method name in lines 8–10. We were unable to
search for multi-words in statements due to run time com-
plexities of the regular expression. Next in lines 11–12 we
search the method identifiers and string literals for the pat-
tern, followed by method comments in line 13. Because ex-
pansions for well understood short forms in the context of
the class may not occur within the method text and com-
ments, we also search for acronym long forms in the class
comments in line 15. As with dropped letter, we do not
search for combination word patterns in the class comments
because the pattern can match many incorrect long forms.

Acronym Pattern.
The regular expression pattern used to search for acronym

long forms is simply constructed by inserting the expres-
sion “[a–z]+[ ]+” after every letter in the short form. Let
sf = c0, c1, ..., cn, where n is the length of the short form.
Then the acronym pattern is c0[a–z]+[ ]+c1[a–z]+[ ]+...[a–
z]+[ ]+cn. As with prefixes, the letter ‘x’ is a special case.
When forming the acronym pattern, any occurrence of ‘x’
in the short form is replaced with the expression “e?x.” This
enables our technique to find long forms for acronyms such
as ‘xml’ (extensible markup language).

Combination Word Pattern.
The pattern to search for combination word long forms

is constructed by appending the expression “[a–z]*?[ ]*?” to
every letter of the short form. Let sf = c0, c1, ..., cn, where
n is the length of the short form. Then the combination
word pattern is c0[a–z]*?[ ]*?c1[a–z]*?[ ]*?...[a–z]*?[ ]*?cn.
The pattern is constructed such that only letters occurring
in the short form can begin a word. This keeps the pattern
from expanding short forms like ‘ada’ with ‘adding machine’.
We use a less greedy wild card to favor shorter long forms
with fewer spaces, such as ‘period defined’ for ‘pdef’, rather
than ‘period defined first’.

4.1.3 Putting it all together
With a slightly different technique to search for long forms

of each abbreviation type, we now have to combine them
together to output a single long form. The first step is iden-
tifying the order to apply the expansion techniques. Within
the single- and multi-word types, it should be obvious that
acronyms should be matched before combination words and
prefixes before dropped letter, since the greedier patterns
will match all the long forms that the more conservative
patterns match. However, we were not immediately sure in
what order to search for acronym and prefix or dropped let-
ter and combination word. After manually inspecting hun-
dreds of example long forms for 15 open source Java pro-

83



grams, we concluded that the best order to apply the long
form search techniques is: acronym, prefix, dropped letter,
and combination word. If none of the abbreviation type
expansion techniques match locally within the method, we
attempt to match the short form to common contractions,
followed by our most frequent expansion (MFE) technique.

4.1.4 Handling multiple matches
Before presenting our MFE technique, we must address

how to handle short forms whose pattern matches multi-
ple long form candidates within the same method. Within
broader scopes such as method or comments, it is possible
for a single abbreviation type pattern to match many po-
tential long forms. For example, the prefix pattern for ‘val’
may match ‘value’ as well as ‘valid’ in a method comment.
Our technique for selecting between multiple long forms is
as follows:

Step 1. Use the long form that most frequently matches the
short form’s pattern in this scope. For example, if ‘value’
matched the prefix pattern for ‘val’ three times and ‘valid’
only once, return ‘value’.

Step 2. Group words with the same stem [15] and update
the frequencies accordingly. For example, if the words ‘de-
fault’ (2 matches), ‘defaults’ (2 matches), and ‘define’ (2
matches) all match the prefix pattern for ‘def’, group ‘de-
fault’ and ‘defaults’ to be the shortest long form, ‘default’
(4 matches), and return the long form with the highest fre-
quency.

Step 3. If there is still no clear winner, continue searching
for the pattern at broader scope levels. For example, if both
‘string buffer’ and ‘sound byte’ match the acronym pattern
for ‘sb’ at the method identifier level, continue to search for
the acronym pattern in string literals and comments. We
store the frequencies of the tied long forms so that the most
frequently occurring long form candidates are favored when
searching the broader scope.

Step 4. If all else fails, abandon the search and let MFE
select the long form. At this point we stop searching for
long form candidates of different abbreviation types. For
example, if a prefix pattern has already found long form
candidates, we avoid finding dropped letter long form can-
didates by halting the search for a given short form within
a method.

4.2 Most Frequent Expansion (MFE)
Our most frequent expansion (MFE) technique leverages

successful local expansions to help derive long forms for short
forms that would otherwise be missed. Although not all
short form expansions are correct, the assumption is that
taken over the entire program, the most frequently occurring
long form will be the correct one.

We calculate MFE by running our local abbreviation ex-
pansion approach over the entire program. Then, for each
short form, we count how many times the short form was
matched to a given long form. We calculate the relative fre-
quency that a short form was expanded to each long form.
The long form with the highest relative frequency is consid-
ered to be the most frequent expansion. As with the final
step in selecting between potential long forms, we also group
long forms with the same stem when creating the MFE list.

However, occasionally an incorrect long form may be con-
sidered the most likely expansion. To avoid this, we only

Short Long Relative
Form Form Frequency
int integer 0.821
impl implement 0.840
obj object 1.000
pos position 0.828
init initial 0.955
len length 0.990
attr attribute 1.000
num number 0.985
env environment 0.972
val value 0.894
str string 0.881
buf buffer 0.992
ctx context 0.962
msg message 0.977
cs copyright sun 0.665
var variable 0.974
elem element 1.000
param parameter 0.992
decl declare 0.920
arg argument 0.964

Table 1: Top 20 entries in the most frequent expan-
sion (MFE) list for Java 5.

consider long forms that were matched for more than half
(0.5) of the short form matches, and for short forms that
were matched at least 3 times in the entire program.

We apply our MFE technique at two levels: the program
level and the more general Java level. The program level ide-
ally helps expand domain matches. For example, an open
source implementation of Guitar Pro has frequent occur-
rences of the short form ‘gp’. Although ‘gp’ was incorrectly
matched to ‘graphics’ 8 times, our technique correctly ex-
panded ‘gp’ to ‘guitar pro’ with a relative frequency of 0.68.

In addition to program MFE information, we also use
more general programming knowledge from the Java API
implementation. The top 20 entries of our MFE list for
Java 5 are presented in Figure 1. If an unexpanded short
form is not present in the program MFE we look for it at
the more general Java level. The Java MFE list can be cal-
culated ahead of time, or even run over a larger set of Java
programs, rather than just the Java API implementation.
If our scoped approach were to be applied in practice, this
is the stage where a hand-tuned MFE list could be used to
improve accuracy.

It is possible that some frequently occurring short forms
may never occur with the correct long form, or that the
short form is so prevalent in the domain that the long form
does not appear anywhere at all. Examples include common
acronyms such as ‘xml’ or domain-specific terminology such
as ‘ast’ in compilers or ‘rsa’ in encryption. One solution
to this problem is to hand-tune the MFE list for the most
frequently occurring short forms, or train the JavaMFE ap-
proach on a larger set of Java programs as mentioned above.
Another solution would be to mine potential long forms be-
yond the scope of Java programs by utilizing online docu-
ments related to Java or computer science in general. For
example, abbreviation expansion techniques created for En-
glish [8, 14] could be used to mine potential long forms from
online textbooks in computer science.
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Program Version Developers NCLOC Types Methods # Non-Dictionary
Liferay Portal 4.3.2 94 393,802 4,050 39,747 188,955
OpenOffice.org Portable 2.2.1 8 372,807 4,213 20,374 274,969
iText.NET 1.4-1 2 361,403 4,465 34,141 217,965
Tiger Envelopes 0.8.9 1 350,046 3,005 19,706 191,787
Azureus 3.0.3.0 7 335,515 5,335 28,255 193,757

Table 2: Programs used in the evaluation.

4.3 Implementation
Our technique is fully automatic and is implemented as a

Java Eclipse plugin with command line scripts for the MFE
calculations, which could easily be added to the plugin in the
future. The current implementation is designed for batch
processing, but could be incrementally updated or run in
the background to support software maintenance tools.

Due to computational issues involved in Java regular ex-
pressions, we limited our non-dictionary words to length 10
or less. This rules out some non boundary words that would
otherwise be expanded to combination word long forms, such
as ‘numericfield’, but relieves our implementation from at-
tempting to find long forms for non-dictionary words like
‘pppppppppppq’ (which we actually came across in an open
source project). However, we do not feel that limiting the
short form length to 10 impairs our technique, since most
abbreviations are considerably less than this limit.

Our approach uses a number of word lists and dictionar-
ies, some of which have been hand-tuned for software. For
example, we have removed any words from our stop list that
could be content words in software, such as ‘face’, ‘case’, and
‘turn’. The word lists used in our implementation as well as
descriptions of how they were derived are available online.2

5. EVALUATION
We evaluated our automatic abbreviation expansion tech-

nique with two research questions in mind:

1. How does our technique compare to the program and
Java MFE approaches?

2. How does our technique compare to the state of the
art LFB [9] approach?

5.1 Experiment Design

5.1.1 Variables and Measures
The independent variable is the abbreviation expansion

technique, which we evaluated by measuring the accuracy
of each technique in finding the correct long forms for a
human-annotated gold set of non-dictionary words.

To evaluate how important local scope and domain in-
formation is to our expansion technique, we compared our
approach to storing and using just the program (ProgMFE)
or Java MFE (JavaMFE) information. To expand a short
form using an MFE technique, we run our local expansion
algorithm on either the entire program or Java once, and cal-
culate the MFE list. The list is used to expand every short
form. Thus, the ProgMFE approach expands every short
form for a given program to the same long form, and the
JavaMFE approach expands every short form to the same
long form independent of program.

2http://www.cis.udel.edu/∼hill/amap

We also compared our expansion technique with existing
work by implementing the Lawrie, Feild, and Binkley (LFB)
technique based on their description [9]. According to their
paper, we implemented LFB to search for dropped letter (in-
cluding prefix) and acronym expansions in dictionary words
appearing in the method or comment where the short form
occurs. Then, if the short form is not a Java reserved word,
an ispell dictionary of words is searched for expansions. Al-
though the paper mentions using maximum likelihood esti-
mation (MLE)3 to select between multiple long form candi-
dates in the future, the existing approach has no mechanism
to select between multiple long form candidates. Therefore,
if there is more than one long form found in the method and
comment, or in the dictionary, no long form is returned.

There was one aspect of the LFB approach that we were
unable to implement at this time. In contrast to our ap-
proach, which searches for no boundary short forms based
on our combination word pattern, LFB handles combina-
tion long forms by recursively searching for possible places
to split the short form. For example, the identifier split-
ting approach would split the non-dictionary word zeroinde-

gree into zero-in-degree. To split these non-dictionary words,
LFB searches for successively shorter prefixes and suffixes of
dictionary words and a list of common abbreviations. We
did not have access to this list of common abbreviations, and
felt it might be unfair to evaluate the effectiveness of their
approach with a substituted list. The only short form types
this affects are combination word (CW), thus we only com-
pare our technique to LFB for prefix (PR), dropped letter
(DL), and acronym (AC) short form types.

The dependent variable in our study is the effectiveness
of each technique, measured in terms of accuracy. Accuracy
is determined by counting the number of short forms that
are correctly expanded from a gold set of non-dictionary
words. If the non-dictionary word is a short form, the tech-
nique should output the corresponding long form, otherwise
the technique should output nothing (no long form). To
calculate accuracy, we divide the total number of correctly
expanded non-dictionary words by the total number of non-
dictionary words in the gold set.

5.1.2 Subjects
The subjects in our study are short forms originating from

Java programs. We selected 5 open source Java programs
from different domains and with different numbers of de-
velopers. We chose our programs with approximately equal
lines of code (between 300-400K) to avoid bias during our
random selection of non-dictionary words for the gold set.
Table 2 shows characteristics of the subject programs.

3Our notion of most frequent expansion is closely related to
maximum likelihood estimation [11]. However, because we
filter on the number of matches and require the long forms
in our MFE list to be matched in the majority of cases, MFE
is not identical to MLE.
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Abbreviation Type Total
AC PR SL DL CW OO NCW Total

Count 49 59 64 9 23 46 227 250
Percent 19.6% 23.6% 25.6% 3.6% 9.2% 18.4% 90.8% 100%

Table 3: Distribution of short forms in abbreviation types for the gold set. The 5 abbreviation types are acronym
(AC), prefix (PR), single letter prefix (SL), dropped letter (DL), combination word (CW), and other (OO). The column
‘NCW’ totals all abbreviation types but CW.

Liferay Portal. Liferay Portal is an open source portal
framework for integrated Web publishing and content man-
agement with an enterprise service bus and service-oriented
architecture. Because Liferay Portal is a secure portal plat-
form, the program text contains terms from security in ad-
dition to web publishing and content management.

OpenOffice.org Portable. The goal of the Portable-
Apps.com project is to make applications portable by tak-
ing existing applications and packaging them to run from a
portable device (e.g., USB flash drive). The program text
contains terms relating to document editing, run time GUI
management, and mathematical calculations.

iText.NET. iText is an open source library for creating
and manipulating PDF, RTF, and HTML files in Java. For
example, iText allows developers to extend the capabilities
of their web server applications in order to generate a PDF
document. The program text contains terms related to read-
ing and converting PDF files.

Tiger Envelopes. Tiger Envelopes is an open source
personal mail proxy that automatically encrypts and de-
crypts mail. The program text contains terms related to
encryption and mail clients.

Azureus. Azureus is a Java-based client for sharing files
using the BitTorrent file-sharing protocol. The program text
contains terms related to file management, runtime GUI
management, and networking.

We randomly selected 250 non-dictionary words from the
5 subject Java programs. Two human annotators who had
no knowledge of our mining technique manually inspected
each short form candidate to identify the abbreviation type
and the most appropriate long form for the given context.
This served as our gold set. Some non-dictionary words were
not abbreviations at all, such as mathematical variables or
the program name, and were marked as abbreviation type
‘other’ (OO). The distribution of short forms across abbre-
viation types is listed in Table 3. We consider an occurrence
of a non-dictionary word to be unique per method. Thus, for
any given method, we assume that all instances of a short
form have the same long form.

5.1.3 Methodology
We ran each of our implemented tools including our Scope

technique, LFB, JavaMFE, and ProgMFE, on the entire
set of 250 non-dictionary words. We compared the out-
put of each tool with the gold set. If the long form in the
gold set and the technique’s automatically determined long
form have the same stem according to Porter’s stemmer [15],
then the expansion is considered to be correct. If the non-
dictionary word was not an abbreviation and the technique
output no long form, then the expansion is also considered to
be correct. We computed the accuracy for each type of ab-
breviation for each tool. We then computed the accuracy of
each tool for short forms by length from one character to 10
characters long, aggregated over all types of abbreviations.

Type LFB JavaMFE ProgMFE Scope
CW 0.000 0.304 0.000 0.174
DL 0.111 0.778 0.667 0.778
OO 0.826 0.652 0.609 0.478
AC 0.285 0.122 0.408 0.469
PR 0.322 0.728 0.746 0.797
SL 0.297 0.313 0.594 0.688

NCW 0.401 0.467 0.599 0.630
Total 0.364 0.452 0.544 0.588

Table 4: Percent correct expansions for each tech-
nique and abbreviation type. To fairly compare our
Scope technique to LFB, use the NCW total accuracy.

5.2 Threats to Validity
We attempted to gather a domain-independent gold set of

short forms by selecting large programs with different func-
tionality. However, many of our subject programs involve
a security component, and our gold set includes a number
of short forms related to network security and encryption.
Therefore the results of the study may not generalize to all
program domains. In addition, because our technique is de-
veloped on Java programs predominantly written in English,
the results of the study may not generalize to all program-
ming language and natural language combinations.

As with any subjective task, it is possible that the human
annotators did not identify the correct long form for a given
short form. In some instances, a single short form may be
interpreted as different long forms by different developers.
To limit this threat the gold set short forms were mapped
by two independent developers who were unfamiliar with
any of the techniques used in this study. When the appro-
priate long form was unclear, the non-dictionary word was
classified as type ‘other’ (OO).

5.3 Results and Analysis
We present the accuracy results for our experiment in Ta-

ble 4. Overall, our approach provides a 57% improvement
in accuracy over the current state of the art, LFB, when
non-combination-word (NCW) short forms are considered.
In addition, both the JavaMFE and ProgMFE had higher
accuracy overall than LFB. Because LFB outputs nothing
rather than choose between two potential long forms, a sig-
nificant portion of the technique’s correct results are due to
correctly not identifying long forms. This is evidenced by
LFB’s high accuracy, over 80%, for the other (OO) category.

The accuracy results in Table 4 also demonstrate the ef-
fectiveness of using scope in correctly identifying long forms.
As illustrated in Figure 1, there is a steady increase in
accuracy as more local context information is used, from
JavaMFE to ProgMFE to our fully contextualized Scope
approach.
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Figure 1: Number of correct expansions by abbrevi-
ation type. To fairly compare all the techniques to LFB,
do not include the top most bar for combination word (CW).

Figure 2 shows the number of correct matches broken
down by short form length rather than type. Interestingly,
LFB performed best on short forms of length 1 and 2 (with
accuracy of 65% and 45%, respectively), worst on short
forms of length 4 (only identifying 12% correctly), and aver-
age for longer expansions. As expected, the Scope approach
had the highest accuracy for short forms of length 3 (64%
accuracy), as well longer short forms of length 6 and 7 (78%
and 60% accuracy, respectively). The MFE approaches per-
form similarly, although JavaMFE outperforms ProgMFE
for longer length short forms and JavaMFE underperforms
all techniques for length 2.

6. DISCUSSION AND FUTURE WORK
The results of our experiment demonstrate that our scoped

approach is a significant improvement over the state of the
art LFB. For the 227 NCW non-dictionary words, our tech-
nique had an accuracy of 63.0%, whereas LFB correctly iden-
tified just 91 long forms for an accuracy of 40.1%. Out of the
159 incorrect expansions for LFB, 123 short forms had more
than one long form candidate and were therefore missed.
Thus, the majority of long forms missed by LFB were due
to not choosing between multiple possible expansions.

Despite our success over LFB, there is still room for im-
provement. We manually investigated the short form ex-
pansions missed by the Scope approach and identified some
patterns in the set of missed and incorrect expansions which
point to avenues for further research.

Humans unable to identify the long form. For some
incorrect results, a human was unable to identify the long
form. Out of 103 total incorrect expansions for our Scope
approach, 36 were single letter abbreviations. Over half of
the incorrect single letter expansions lacked a clear expan-
sion given the context according to the human annotators.
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Figure 2: Number of correct expansions by abbre-
viation length in letters.

Some single letter abbreviations, such as ‘i’ or ‘x’, are com-
monly used out of convenience and add no semantic value
to the code. In future, we plan to automatically identify
when an abbreviation has no intended meaning rather than
attempting to assign meaning where none is intended.

Incorrectly choosing between multiple candidates.
A second class of missed short form expansions were due
to selecting the incorrect candidate from multiple choices.
For instance, the short form ‘loc’ was expanded to ‘locate’
instead of ‘local’. The incorrect long form was found at
the program level using the program MFE list because no
expansion of ‘loc’ was found in the method. Both of these
long forms are common within the program and occur in
the same proximity. By refining our long form selection
algorithm, especially at class and program levels, we hope to
obtain more appropriate long forms when choosing between
two seemingly acceptable long forms.

Long form based on domain knowledge absent in
code. Missing domain knowledge also presents a problem to
expanding abbreviations. For example, the short form ‘lsup’
occurred in the math-based typesetting class StarMathCon-

verter, and no long form candidate was found in the entire
program. The human annotator investigated beyond the
program into domain knowledge and found that ‘lsup’ is a
Tex command that stands for ‘left superscript’. This par-
ticular short form was part of a set of abbreviations that
are so common in math-based typesetting code that they
are generally understood by the developers and thus long
forms are not present anywhere in the code. Many domains
have similar sets of generally understood abbreviations that
make finding expansions exceedingly difficult. To remedy
this problem, we plan to improve our Java MFE list by min-
ing over more programs and hand-tuning the long forms for
the most frequently occurring short forms.
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Further improvements. The Scope approach could be
further improved by using a specialized edit distance to elim-
inate unlikely dropped letter and combination word expan-
sions. An edit distance [7] assigns a similarity score between
two strings based on the number of edits, in terms of ad-
ditions and deletions, required to convert one string, such
as a short form, into the other, such as a long form can-
didate. For example, vowels are more likely to be dropped
than consonants, so a specialized edit distance would penal-
ize consonant additions more than vowel additions.

Another avenue of future research is in using a long form
candidate’s part of speech to eliminate unlikely candidates.
For example, many abbreviation expansions in our gold set
are nouns, such as ‘integer’ or ‘string’, or noun phrases, such
as ‘extensible markup language’ or ‘pseudo random num-
ber generator’. However, there are two issues that must be
overcome with this approach. First, part of speech is more
difficult to determine for software words than for English
text. This is because many of the sentences and phrases in
software are in the imperative form, which existing part of
speech taggers are not trained on. Second, the part of speech
of a short form, and thus its long form candidate, may vary
depending on the location. Consider the short form ‘def’ in
the identifiers defFont and fontDef. In defFont the appro-
priate long form is the verb ‘define’, whereas in fontDef the
appropriate long form is the noun ‘definition’. Thus, the lo-
cation of a short form within an identifier must be taken into
account with the parts of speech of the surrounding words.

Finally, in this work we have only begun to expand ab-
breviations for Java programs predominantly written in En-
glish. Although the technique can theoretically be applied
to any natural language, further evaluation and development
are necessary to maximize the performance of our automatic
abbreviation expansion technique for other languages.

7. CONCLUSION
Automatically generated abbreviation expansions can be

used to enhance software maintenance tools that utilize nat-
ural language information, such as search and program com-
prehension tools. In this paper we present an automatic min-
ing technique to expand abbreviations in source code. Our
scoped approach uses contextual information at the method,
program, and general Java level to automatically select the
most appropriate expansion for a given abbreviation.

We evaluated our approach on a set of 250 potential ab-
breviations and found that our scoped approach provides a
57% improvement in accuracy over the current state of the
art [9]. In addition, we noted that applying the most fre-
quent expansion (MFE) component of our approach at the
program and Java level also provided improvements beyond
the current state of the art.
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