
Evaluation of Source Code Copy Detection
Methods on FreeBSD

Hung-Fu Chang
University of Southern California

University Park Campus,
University of Southern California

Los Angeles, CA 90089, USA
+1 213 740-9621

hungfuch@usc.edu

Audris Mockus
Avaya Labs Research

233 Mt. Airy Rd.
Basking Ridge, NJ, USA 07920

+1 908 696-5608

audris@avaya.com

ABSTRACT
Studies have shown that substantial code reuse is common in open
source and in commercial projects. However, the precise extent of
reuse and its impact on productivity and quality are not well
investigated in the open source context. Previously, we have
introduced a simple-to-use method that needs only a set of file
pathnames to identify directories that share filenames and
partially validated its performance on a set of closed-source
projects. To evaluate this method and to improve reuse detection
at the file level, we apply it and four additional file copy detection
methods that utilize the underlying content of multiple versions of
the source code on the FreeBSD project. The evaluation
quantified unique advantages of each method and showed that the
filename method detected roughly half of all reuse cases. We are
still faced with a challenge to scale the content based methods to
large repositories containing all versions of open source files.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement – Restructuring, reverse engineering, and
reengineering; Version control

General Terms
Algorithms, Measurement

Keywords
Cloning, Version Control, Clone Detection, Code copying, Open
Source

1. Introduction
Code reuse is a technique that reduces redundant work by copying
existing code to another program during software development.
Previous studies [2, 3] suggested that highly reused code provides
more reliable code and requires less maintenance efforts. Besides,
research on large-scale reuse detection indicated more implicit
advantages of understanding code reuse relations among different

projects and version control systems. For example, the code reuse
relation may help trace bugs among all reused copies if we find
one in anyone of them. Because source codes often embed the
knowledge or expertise, knowing code transfer also means that we
can discover the knowledge transfer between projects.
Furthermore, we can identify the original authors of the program.
Our particular objective is to join multiple version control systems
via detected instances of file copying to analyze the complete
history of each file.
Software repositories store the whole path of files, for example,
“/directory1/directory2/file” and the content of each version of the
file. Most code reuse detection methods focus on determining the
copied files, reused components or reused functions based on the
content of the underlying source code. Our previously proposed
method [5], Filename Comparison (FC), suggested that it may be
sufficient to have only the file paths to identify reuse at the file
and directory level, without the need to extract and process
massive volumes of multiple versions of the underlying source
code. Although the accuracy of FC method has been validated
with experiments on Avaya’s projects with known instances of
reuse, we could not establish how many files that were copied
without our knowledge were missed by FC detection approach.
This issue is particularly salient in open source projects, where no
instances of file copy are known a priori. Therefore, constructing
a validation process suitable for open source code is essential to
establish the performance of FC and other methods. We designed
and implemented four additional easy-to-implement file-level
copy detection methods in this process. As other traditional
methods, these methods rely on the underlying source code.
However, the comparisons are based on the entire sequence of
versions of a file instead of being based on a single (often final)
version. Furthermore, many open source projects have not been
systematically investigated by any current copy detection
technique. We propose the validation process using methods as a
systematic way to quantify the file reuse relations in open source
projects and other situations where there is no golden reference to
validate a method.
Our ultimate objective is to create a more promising solution to
detect the code copy patterns in the large-scale data such as the
set of all open source projects. To achieve that, we start by
applying copy detection on FreeBSD project (of nontrivial size,
yet manageable) and compare clone detection methods against
each other to validate the detection. After the FreeBSD
experiment, we plan to apply a similar procedure on dataset
including all open source projects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MSR’08, May 10–11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05...$5.00.

61

The rest of paper is arranged as follows. Section 2 starts with the
related work. Section 3 reviews the Filename Comparison and
describes other four file copy detection methods used in this
study. Section 4 presents experiment results. We conclude our
study and propose future work in Section 5.

2. Related Work
Many kinds of code copy detection approaches have been
proposed in the past. For instance, Ducasse [9] suggested a pattern
matching technique to compare strings divided from programs to
find out copies. Kamiya [10] developed a tool - CCFinder to
identify duplicated codes according to the matched syntax trees
from the lexical analysis of source code (our AST based approach
is similar the CCFinder). However, until now, existing methods
have not been used to quantify reuse in large open source
repositories because most of these studies emphasize developing
better algorithms or tools to detect clones. They also tend to be
applied on relatively smaller datasets in comparison to the
collection of all the open source codes.
Bellon et al. [14] proposed an evaluation technique that defined
three types of clones to compare 6 existing clone detection tools.
Their experiment was based on eight large C and JAVA programs
with a total of almost 850 KLOC. The results indicated that one
tool cannot analyze programs across language (only for C) and
some tool's performance in worse cases was disappointing even
on a single relative large program of their dataset. However, their
study emphasized the more significant evaluation methods and the
quality of current existing clone tools rather than applying them to
investigate all open source codes.
Because the version history of a software system represents the
evolution process of software itself, Godfrey and Zou [15]
suggested an origin analysis to detect function or file merges and
splits that have happened between versions. Although their
approach can detect the relations between versions, it may be
limited within a single system and also requires human efforts on
deciding the real match of two entities (function or file). It might
not be suitable to be applied across different software projects
(systems) such as all OSS projects.
German [12] investigated binary reuse by examining
dependencies in the Debian distribution. Here we are only looking
at the instances where the source code was copied, not reused
without change in binary form.
A service offered by Google allows users to search source code. It
is not clear how large the dataset or the methods employed by this
service.
Stefan et al. [4] believe knowledge reuse has been particularly
salient in code reuse but there are few systematic investigations of
code reuse in open source software projects. Their approach
invited open source developers to join the survey in order to
quantify code reuse among some open sources projects. Although
they observed the knowledge reuse behaviors, their method lacks
copy detection methods that can automatically identify the code
reuse in open source projects. The data they collected may not be
as large as the FreeBSD repository and much smaller than all OSS
code.

3. Method
Our focus is to measure reuse at the granularity of individual file
in open source repositories - not at a finer granularity of a method
or a function. We refer to this as a large-scale reuse as opposed to
small-scale reuse that investigates reuse at the function, method,
or even a code block level. Our interest in large scale reuse is
motivated by our overreaching objective to reconstruct a complete
history of each source code file fen if it spans multiple version
control systems or other types of repositories. To simplify further
discussion we define two terms - Files and Reused Files. The term
“File” represents the whole pathname of a file in a repository. If at
least one nonempty (>60 characters) version of the first File is
identical (is represented by the same string) to at least one version
of the second File, the files are called Reused Files. We refer to
this way of identifying reuse as Identical Content method (IC).
We first apply FC method and then compare it to IC method on
the entire FreeBSD repository. We then further validate the copy
instances that are detected only by the FC method but are not
identified by IC method. To accomplish that, we apply Nilsimsa,
Abstract Syntax Tree, and Vector-Space methods on this subset of
files and manually inspect a small sample of mismatches. Our
fundamental assumption underlying the validation process is that
different methods are likely to detect somewhat different
instances of copying and, therefore, instances obtained by at least
one of the five methods would provide an approximation to the
full extent of reuse. We start by describing each method, present a
comparison among them, and discuss the results of the validation.

3.1 Algorithms
3.1.1 Filename Comparison
In Filename Comparison method, Reused Files are detected by
finding directories that have a large fraction of identical
filenames. It contains two steps: (1) finding directory pairs with a
large fraction of identical filenames; (2) considering files with the
same names in an identical directory pair to be Reused Files.
More details are presented in [5].

3.1.2 Identical Content
Identical Content method considers entire content in the version
of a source code file as a string. File A and file B are determined
to be Reused Files if there is at least one nonempty version of file
A matching at least one version in file B (the two strings
representing these versions are identical).
This method presents a way to organize our sample data. We
extract the content of all versions of all files in our target open
source site and then place them into an associative array indexed
by the content (See Table 1). The array is implemented using
Berkeley db using hash functions.
The IC method has the largest storage requirements, and, as other
content-based methods requires retrieval of all versions of the
code, but is computationally the fastest among content-based
methods used in validation.

62

Table 1. A schematic table of the structure of sample data

Content 1 filename1/version3;filename1/version5;
filename2/version4;…; filename20/version4

Content 2 filename1/version1;filename4/version9
... …
Content M filename 8/version3;filenameN-1/version2;

filenameN/version4;…filenameN/version5

3.1.3 Nilsimsa
This algorithm accumulates trigrams from the file content and
then hashes the summation into a 64 digit hex code. The different
bits between two Nilsimsa codes are on a scale of -128 to +128.
For example, if we get 92 after comparing two Nilisimsa codes,
we know 36 bits are different and 220 bits are the same. In this
method, we setup around 24 bits as our thresholds (around 10 %)
and apply it between two file versions; that is, we identify two
files are Reused Files if the different bits between any one version
of one file and any one version the other file are smaller 24 bits.

3.1.4 Vector-Space
Like Identical Content and Nilsimsa, Vector-Space method is also
applied on two file versions to define Reused Files. We extract
programming language keywords (ex: include and main) to build
term-by-document matrices between two file version contents and
then compute the similarity (cosines of two matrices). We setup
the similarity value 0.9 as the threshold.

Table 2. Method comparison

Method Pros/Cons

Filename
Comparison

(FC)

Does not require retrieval and processing of the
code. Simple to apply and fast on large-scale
data. Cannot determine which version of a file
matches. Misses cases where individual files
were copied or renamed

Identical
Content (IC)

Simple to apply and fast (once data has been
retrieved and stored in the array). Miss cases
where copies involved a slightest edit in the
content. Is less likely to detect reuse in
repositories without version history. Requires a
large network bandwidth to retrieve and disk
space to store the data (this drawback applies to
all content-based methods).

Nilsimsa

Compare files (versions) without removing any
text. Programming language independent.
Requires some computation to compare 64 digit
hex codes. May suffer from many false
positives.

Vector-Space

Programming language independent. Requires
time to extract language related tokens from
files (versions). May suffer from many false
positives.

Abstract
Syntax Tree

Can detect control flow reuse. Needs to know
about programming language syntax.

3.1.5 Abstract Syntax Tree (AST)
We approximate the Abstract Syntax Tree by extracting control
flow keywords and block delimiters from two different versions;
then each AST becomes a string. By using string similarity
comparison method on two strings, if their similarity value is over
the threshold 0.8, we think these two versions are duplicated. We
can also identify Reused Files by its definition. We use code to
extract AST provided by Prof. A. Hassan.

3.1.6 Discussion of Reused File detection methods
Table 2 summarizes the advantages and disadvantages of each
method. By understanding the pros and cons, we can understand
the possible false-positive cases in each method. In addition, a
better Reused File detection can be created by integrating
different methods though this is beyond the scope of this paper.

3.2 Filename Comparison Validation
Above four content-based methods can be used to validate the FC
method. Because IC method indicates reuse only when two
versions share identical content (our definition of reuse), it is used
as the first choice in the validation process. Figure 1 shows four
possible validation situations.

Figure 1. Validation groups

(1) Filename & Content:
Reused Files are found by both FC and IC.

(2) Filename only:
 Reused Files are found by FC but not by IC.
(3) Only Content:

Reused Files are not found by FC but found by IC.
(4) No reuse detected:

Neither FC nor IC can detect any Reused Files.
Figure 1 shows total numbers of files in each area. If the source
code is changed after a copy, the Identical Content method would
be unable to detect those files as reused. Most of these cases may
be still identified by the other three content-based methods.
Therefore, we apply Nilsimsa, Vector-Space and AST methods on
Filename only Reused Files to validate reuse that was not
identified by Identical Content method.
We apply the remaining three methods on this subset to further
validate FC method and to compare Nilsimsa, Vector-Space, and
AST methods. The following steps describe this process:

63

Step 1: Apply the three methods on FC-only subset.
Step 2: Extract and categorize Files detected as reused by a

single method (in addition to the filename method).
For example, reuse detected only by the AST method
but not by Nilsimsa or Vector-Space method.

Step 3: Randomly sample several files from these sets
detected by one method. This way we manually
check only a sample where a method is most likely to
have produced a false positive. Otherwise we are
likely to spend most of manual comparison effort on
files that are not false positives and we would need a
much bigger sample to see a meaningful number of
false positives. The size of the sample should be large
enough to make inference about method's error rate
on that set.

Step 4: Assign two experts to investigate the reuses and
record the results and reasons.

Step 5: Compare two result sets.
To get a more complete understanding of performance of all
methods, we plan to apply the last three methods to the entire
dataset to estimate the reuse cases missed by IC and FC methods.
More extensive manual validation may allow to test our
underlying assumption that different methods are likely to detect
different instances of copying.

4. Results
The sample data were extracted from the FreeBSD project. The
project had a total of 57128 Files and 492583 versions of which
360877 are distinct and nonempty. All the versions of all Files
contain 8.16e9 characters. For comparison, the File list takes only
2.6e6 characters – a difference of 3.5 orders of magnitude.
Because the current AST tool we have works only on C or C-like
programming language (ex: JAVA), we apply our methods only
to C or C-like sample data here. Consequently, 47559 Files were
extracted and 12908 Reused Files were found by Filename
Comparison method and 13077 Reused Files were found by
Identical Content method. Figure 1 shows the distribution of those
Reused Files. According to the total number Reused Files
detected by both methods, we can say that at about 43 % C-
language related Files ((7328+5580+7947) / 47559 = 43%) are
reused in FreeBSD.
Upon inspection of Reused Files detected by both methods, we
noticed that many clones were detected among different
platforms; for example, file “gen/_set_tp.c” was identical in
subdirectories “amd64”, “sparc64”, “powerpc”, “ia64”, and
“i386” of the “/freebsd/src/lib/libc/” directory. Other clones
appear to relate to directory restructuring, fore example,
“bit_fix.h“ is reused in “/freebsd/src/gnu/usr.bin/as/” and in
“/freebsd/src/contrib/binutils /gas/”.
Table 3 shows the results of validation using the other three
content-based methods on the Filename only subset. Both
Nilsimsa and AST methods detected around 3000 Reused Files
but Vector-Space method detected only 1120 files. Fewer reuses
detected imply that Vector-Space method might be influenced by
the language relevant keyword frequency. For some small size
files, Vector-Space is unable to detect copying. Furthermore, 812
files were not detected as Reused Files by the three methods
suggesting that these files are false positives (incorrectly

identified as reused) by the Filename comparison method. The
false positive rate would then be 4% (818/(20855-818)).

Table 3. Nilsimsa, Vector-Space and AST results in Filename
only zone

Method Number of Reused Files Detected

Nilsimsa 3027

AST 3143

Vector-Space 1120

Table 4 presents expert (represented by the two authors)
evaluation of the 60 samples identified as copied by only one of
the three methods. It shows that both experts agreed that AST
method correctly identified 12 Reused Files in this set. We found
that most of those Non-Reused Files were not C-language code,
for example, “c.t” file. For the Nilsimsa-only samples, only one
sample caused disagreement between two examiners. We also
found that Nilsimsa appears to match primarily on the copyright
notice. This is not particularly surprising, given the small size of
the files. The most controversial method is Vector-Space, where
both examiners have disagreement on 12 files suggesting that
even manual comparison may need firmer guidelines (the
disagreements were largely caused by different interpretations of
what constitutes copying). Based on agreed cases Vector-Space
had the highest false positive rate and, in conjunction with the fact
that it identified the smallest number of copied files, it implies
that Vector-Space may not be particularly suited for copy
detection. We heard a similar opinion from private
communications with other researchers in this area.

Table 4. Summary of random sampling results

Method Both True Both False Disagreement

AST 12 8 0

Nilisimsa 12 7 1

Vector-Space 3 5 12

5. Conclusion and Future Work
Our primary contribution is to propose a large-scale copy
detection and validation process for repositories where the
information about the copy patterns is not easily obtainable, as,
for example, in open source projects. We also extend the concept
of copy detection to the comparison files having multiple versions
and exemplify the methods and the validation process on
FreeBSD CVS version repository.
In particular, we validated previously introduced Filename
Comparison method that uses only file paths without the need to
retrieve and process file content. We found FC to detect a
significant fraction of Reused Files in FreeBSD. Despite its severe
limitation of not using file content, it detected around 60% of
Reused Files that were identified using content based methods
and it has produced a 4% false-positive rate. We also plan to
validate the basic assumption of our validation procedure that
different methods detect somewhat different instances of reuse

64

and to estimate file copy patterns in a much larger database of all
open source projects.
Based on expert investigation on Reused Files detected by a
single content-based method, we conclude that Vector-Space
method may not be suitable for copy detection in the source code.
We may be able modify it in the future to get better results, but
we would not recommend using it based on our current
experience. We still look for a more promising method to detect
Reused Files in large-scale data. Fortunately, expert evaluations
combined with validation with multiple automatic methods help
us evaluate the performance of various content-based methods
and to approach our ultimate objective. Evaluation on FreeBSD
showed us that some content-based methods have to overcome the
computational challenge to be scaled to much larger scale data.

6. Acknowledgements
We thank Prof. D. German, Prof. A. Hassan, and Dr. D. M. Weiss
for their helpful suggestions, and, especially, Prof. A. Hassan for
providing us AST approximation code.

7. References
[1] Brenda Baker. On finding duplication and near duplication in

large software system, IEEE Working Conference on
Reverse Engineering 1995.

[2] B. Lague, D. Proulx, E. Merlo, J. Maryland, J. Hudepohl,
Assessing the benefits of incorporating function clone
detection in a development process, IEEE International
Conference on Software Maintenance 1997.

[3] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi
Sato and Ken-ichi Matsumoto. Software quality analysis by
code clones in industrial legacy software, Proceedings of the
8th International Symposium on Software Metrics 2002.

[4] Stefan Haefliger, Georg von Krogh and Sebastian Spaeth.
Code reuse in open source software. Management Science,
Articles in Advance, pp. 1-14.

[5] Hung-Fu Chang and Audris Mockus. Constructing universal
version history. ICSE’06 Workshop on Mining Software
Repositories, pp. 76–79, Shanghai, China, May 22-23 2006.

[6] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P.
Samarati. An Open Digest-based Technique for Spam
Detection. ACM, vol. 41, no. 8, pp. 74-83. The 2004
International Workshop on Security in Parallel and
Distributed Systems.

[7] Michael W. Barry and Murray Browne. Understanding
search engines: mathematical modeling and text retrieval.
SIAM 1999.

[8] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo
SantAnna and Lorraine Bier. Clone detection using abstract
syntax trees. In Proceedings of the 8th International
Symposium on Software Metrics 1998.

[9] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
International Conference on Software Maintenance 1999.

[10] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. IEEE Trans. Software Engineering,
Vol. 28, No.7, 2002.

[11] Audris Mockus. Large-scale code reuse in open source
software. International Workshop on Emerging Trends in
FLOSS Research and Development, May 20-26 2007.

[12] Daniel M. German. Using Software Distributions to
Understand the Relationship among Free and Open Source
Software Projects.ICSE’07 Workshop on Mining Software
Repositories, pp.24, 2007.

[13] Cory Kapser and Michael W. Godfrey. Improved tool
support for the investigation of duplication in software.
International Conference on Software Maintenance 2005.

[14] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens
Krinke, Ettore Merlo. Comparison and Evaluation of Clone
Detection Tools. IEEE Transactions on Software
Engineering, vol. 33, no. 9, pp.577-591, Sep., 2007.

[15] Michael W. Godfrey, Lijie Zou. Using Origin Analysis to
Detect Merging and Splitting of Source Code Entities.
IEEE Transactions on Software Engineering, vol. 31, no. 2,
pp.166-181, Feb., 2005

65

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

