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ABSTRACT

Software archives are one of the best sources available to re-
searchers for understanding the software development pro-
cess. However, much detective work is still necessary in or-
der to unravel the software development story. During this
process, researchers must isolate changes and follow their
trails over time. In support of this analysis, several research
tools have provided different representations for connecting
the many changes extracted from software archives. Most of
these tools are based on textual analysis of source code and
use line-based differencing between software versions. This
approach limits the ability to process changes structurally
resulting in less concise and comparable items. Adoption of
structure-based approaches have been hampered by com-
plex implementations and overly verbose change descrip-
tions. We present a technique for expressing changes that
is fine-grained but preserves some structural aspects. The
structural information itself may not have changed, but in-
stead provides a context for interpreting the change. This
in turn, enables more relevant and concise descriptions in
terms of software types and programming activities. We
apply our technique to common challenges that researchers
face, and then we discuss and compare our results with other
techniques.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement— Version control

General Terms

Management, Measurement

Keywords

bytecode analysis, semantic diff, change pairs

1. INTRODUCTION

Researchers and software metrics enthusiasts turn to repos-
itories for insights into software products and their develop-
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ers. Software changes across revisions offer particularly in-
sightful clues about bug fixes, feature and concept changes,
task difficulty, and latent relationships among components.

Determining what is meant by change is an ongoing prob-
lem in software engineering. Many software processes re-
quire documenting changes including maintenance logs, bug
tracking, peer review checklists, feature change lists, and
software change requests. Human expression of change is
usually described using a mixture of feature and code struc-
ture vocabulary. Although the description is concise, by
nature, it is neither consistent nor complete.

Software processes, repository tools, and software engi-
neers would benefit from a rich and consistent vocabulary
for expressing change. Unfortunately, the most readily avail-
able automated unit of change, the method or function that
the change is located in, has several limitations. First, a
change to a method is not a fine-grained description. The
change may be to fix an off-by-one error in an array index.
In this case, the change is more strongly associated with the
array and with array indexing than it is with the location of
the statement. Second, changes are not always localizable.
Some changes impact several modules or methods. For ex-
ample, internationalizing string values in a program involves
changes to the many methods processing strings. When the
impact is large, as in this case, describing changes in terms
of all method locations is overly verbose. In general, we
want to be able to characterize change in terms of associ-
ated features.

In this paper, we propose a technique for capturing the
context of a change. This context can be used to better
summarize fine-grained changes, query changes in associ-
ation with features and topics, and consolidate a change
across many locations (e.g. a renamed method).

The technique works on fully annotated bytecode to take
advantage of type information that is harder to obtain with
textual representations. For each method body, we decom-
pile the bytecode instructions into a source code represen-
tation and perform a line-based difference across versions.
For each statement that has changed, we emit a set of sym-
bol pairs and find which pairs have been deleted or added
between successive revisions. The symbols are annotated
with the type information and fully qualified source code
location. With this set of change pairs, we can establish a
relationship between a change and its context. Furthermore,
we can consolidate the analysis to allow the development of
tools supporting automatic summarization and tagging of
software revisions, measurement of feature and topic activ-
ity, and detection of restructuring.



The contributions of this research are to show how to
1. perform bytecode differencing

2. extract a minimal change along with its type-rich con-
text for later analysis

3. use the context to perform several analyses without
reexamining the program structure.

In the next section we discuss the related work, and in
Section 3 we introduce the role vocabulary has in describing
changes. In Section 4 we describe our motivation for byte-
code analysis, and in Section 5 detail how we extract the
change and its context. In Section 6, we present technical
details on performing bytecode differencing, and in Section 7
we describe a case study in which we use our technique for
measuring feature activity and the restructuring of code.
Finally, we conclude with a discussion of future work.

2. RELATED WORK

Software researchers have not always agreed on how to
describe changes made to software, nor what definition or
granularity to use for describing the location of a change.
Change and location have been primarily defined textually,
dating back to work with UNIX diff [8, 16]. Many techniques
since then have attempted to cope with the line-based id-
iosyncrasies and the necessity of reconstructing structural-
level modifications in order to recover higher-level changes.
For instance, coping with the physical swapping of two meth-
ods can be troublesome for traditional diff. However, using
text similarity metrics [2], these type of problems can be
alleviated.

The task of recovering structural-level modifications has
received considerable attention from researchers attempting
to detect moves, renaming, and other refactorings. Sev-
eral methods work only at a signature-based level [19, 20,
12]. They primarily rely on finding some correspondence in
method signatures. Others do try to account for text simi-
larity [5] and binary matching [18] to relate regions or basic
blocks between two versions. Overall these techniques fail
to cope with more drastic changes such as splits and merges
of methods.

In origin analysis [23, 13], several factors are taken into
account to detect movement, renames, merging, and split-
ting of methods. The key insight of this work is the use of
caller and callee patterns to identify methods among ver-
sions. Origin analysis matches the structural role of the
method instead of matching the corresponding names or re-
lying on textual similarity of the body. Although most oper-
ations are defined at the method level, the technique can be
applied to work on a part of a method’s body. Techniques
such as origin analysis and refactoring reconstruction work
at the structural level. They provide a good sense of how
much activity has occurred in code movement; however, they
do not assist in understanding fine-grain changes.

Other techniques extract fine-grain change representations.

With semantic diff analysis [10], data flow pairs in a method
body are computed for each version. Afterward, the set of
pairs are compared to find any difference in the pairs. Any
new pairs are displayed to inform the programmer of depen-
dence relations. The technique has interesting insight, but
is limited in several regards. Control flow is not accounted
for, and no further aggregation of the relations is explored.
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Some context for a change is captured in terms of the de-
pendency pairs, but it is limited in its ability to express to
the nature of the change.

Another approach to fine-grain changes compares sets of
tokens between two versions [22]. A token is composed of a
token type and a value. In each version, the set of tokens cor-
responding to code and method bodies are extracted. Using
this technique, tokens frequencies can be used to determine
patterns in token types and token values. In this technique,
the context of the change is limited to the token type (e.g.
call or operator) and the method location of the token.

Researchers wishing to achieve more soundness in analy-
sis have explored graph-based differencing [6]. Several ap-
proaches later refined this technique by simplifying the graph
representation [14, 1] and using tree-differencing [7, 4]. How-
ever, the scope of the graph techniques differs in focus-
ing on data and control dependence. The results in tree-
differencing is sound but precision tends to be poor.

An unfortunate problem with text-based approaches is
that they do not offer an easy way of getting type informa-
tion without the burden of parsing and type-checking. Our
technique avoids this problem and others associated with
text-based difference by using bytecode analysis.

Like semantic diff, we compute pairs; however, semantic
diff only computes the data-dependence among local vari-
ables. Instead, we compute dependencies between any sym-
bolic values in the language. For example, we capture the
relationship between a method call and a variable that stores
the method’s return value. This relationship does not fol-
low from the abstract syntax tree (AST) of the program,
but rather the pushing and popping behavior of the byte-
code instruction stack. This allows us to capture differences
in the local information flow dependence among symbolic
elements. Furthermore, because the symbols can appear in
contexts other than just a single site, we develop algorithms
for consolidating this information in order to take advantage
of its broader scope.

3. CHANGE CONTEXT MODEL

Software companies need to summarize developer’s work
sessions on a particular task. The summarization must con-
sistently categorize changes in a manner that enables com-
parison with other projects, and with the project itself as it
matures. The data also should be accessible to engineers for
feedback.

There are several problems with addressing this need.
Even though a manager specifies a task for programmers
to work on, the actual tasks performed can differ greatly.
Unanticipated design flaws, requests from teammates to get
something else working, and task switching, make it difficult
to get a sense of what actually occurs.

Revision history offers an interesting potential — changes
and times are recorded in detail; however, the challenge be-
comes that of reconstructing the work efforts without the
interpretation context of the original programmer’s intent.
Without intent, we must focus on how to enrich the vocab-
ulary used to categorize change.

In this paper, we use several terms that we would like to
define explicitly:

token: An atomic element of syntax.

feature: An atomic domain element implemented by one
or more program elements.



change: The difference between two versions of a program
expressed in terms of tokens.

revision: A collection of changes simultaneously commit-
ted to a source code repository. Changes may occur in
multiple files.

location: A fully qualified path in the program, (e.g. a
method’s location is its package and class.)

symbol: A fully qualified name composed of a location,
name, and type (e.g. a variable’s location is the pack-
age, class, and method signature; its name is the vari-
able name; its type is the variable type.)

The focus of much revision history research has been on
where change occurs. But the vocabulary used to describe
change should be much more expressive. We would like to
understand change in terms of what features, domain top-
ics, programming tasks, design patterns, and architecture
were involved. This allows better traceability between the
vocabulary of a software developers and managers and the
analysis the researchers perform.

Consider the vocabulary found in a language’s API. That
set of terms is relatively fixed. It only changes with new
releases of the language. However, the language API use is
extensive throughout software development. The language
API is also very distinctive. The API was designed for de-
scribing specific programming tasks such as file handling,
network connections, string processing, and math opera-
tions.

In addition to language API calls, programmers also ex-
press changes with other mechanisms. The developer may
refer to their own vocabulary from methods, and classes in
the program. Developers can also share vocabulary. They
can use, exchange, and introduce new vocabulary in the form
of design patterns or frameworks.

However, if a developer makes changes by replacing an
integer value with a different integer value, then that is not
the most revealing change description. Sometimes we want
to understand the context of the change. If we know that
the integer change happened in the context of a math call,
we can infer that some calculation was not desirable and was
altered. The context of a change improves our interpretation
of software changes, in the absence of the original change
intent.

The goal of this paper is to both identify which entities
describe change, and situate change with entities interact-
ing with that change. We believe future analysis will use
this information for measuring activity of features, topics,
program plans, design patterns, and domain concepts.

‘We propose a preliminary model for capturing change con-
text:

location: Where the change occurs in the program.

values: The types of the symbols associated with the change.

sources: Where values are produced.

destinations: Where values are consumed.

For example, the addition of the following line of code
results in the change activity below:

+ db.Store( "name", nameTextBox.Text );
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location: Login.cs

values: String

sources: “name”, TextBox.Text
destinations: DataTable.Store

Future analysis can use this result to label this change as a
data-entry activity. The analysis makes the inference by rec-
ognizing the symbol TextBox.Text as a Ul component (the
symbol is from the Forms namespace of the language API),
and the symbol DataTable.Store as a persistence mechanism
(the type is from the Data namespace of the language API).
Finally, the act of sending a String from UI component to a
database is classified as data-entry activity.

4. BYTECODE ANALYSIS

Many comparison techniques use lightweight methods that
avoid structural constructions, leaving the burden to the
user to reconstruct the aspects of structure they need. The
challenge is to design a lightweight technique [15] that per-
forms within the desired level of efficacy. What often arises
is that performance or viability of queries suffer from struc-
tural information omitted by the technique. However, if too
much structural information is provided, then the interac-
tion with that data becomes complex and unwieldy. Some
balance must be achieved between providing a change de-
scription that is both concise and appropriately annotated.

Consider if some statistics needs to be gathered on the
prevalence of off-by-one errors in software development. One
possible approach searches software change data for when
values decrease by a literal - 1. Using a token-based ap-
proach [22], one could recall a significant portion of instances
of these errors by simply noting the introduction of the two
tokens -, 1. However, many irrelevant queries would have
to be sifted through to get the appropriate data.

Using a line-based unit of change, one could go further.
Now we can attempt to limit the cases of finding the to-
kens - 1 to be only used within the context of an array
index or looping statements. But how do we do this? With-
out type information, we must instead rely on syntax clues,
such as if the difference appears within an array’s bound-
aries. Issues with operator overloading exists; however, even
bigger problems are ahead. Syntax clues become less help-
ful as more code uses collection objects instead of arrays.
Suppose now a framework designer wanted to extend the
study to measure error rate differences between a method
parameter design choice of using a list range method that ac-
cepts the parameters (int start_index, int end_index)
instead of (int start_index, int count). Such a query,
now requires knowing the class type and method call. Un-
fortunately, such a query cannot be written leaving no choice
but to rely on matching the method name with a lightweight
tokenizer. A large study would be hampered by having to
filter out all the instances of mistaken identity with other
range functions. Again the burden of recovering the struc-
ture is placed on the query user.

The goal is a lightweight technique that arrives at the
smallest unit of change with the least context necessary to
understand that change. A token-based technique presents
the smallest unit of change, but it gives no context. A line-
based technique gives a change with a context, but the con-
text has no structure. Structured-based techniques can pro-
vide types and structure, but at a cost: the changes are
expressed in terms of the structural changes, which are of-
ten not minimal because they do not have the strict order-



Revision Author Change Relation Context Location Intent

43 Bob 3 Parameter ~ Server.timeout(int) init() “Increase timeout”

237 Amy -1 Index array[length] visitNodes()  “Fix array-out-of-bounds error”
311 Steve CalcScale() Assignment graphPane.xAxisScale OnResize()  “Refactor to use CalcScale()”

Table 1: Example changes in context.

ing and flatness imposed by source code lines. Furthermore,
structured-based techniques are not lightweight or robust.
Parsing and type-checking is notoriously difficult, especially
with advanced object-oriented features, code-generation tech-
niques, and in-house and third party tools used in the build
process.

About the only tool that is privileged with both the build
environment of the software product and the proper lan-
guage know-how is the compiler or integrated development
environment (IDE). One approach is to use the IDE’s in-
terface and parsing functionality to ease tool development.
While possible, this is not ideal. The approach is not entirely
lightweight, and it restricts the ability to process the test
subject that requires certain licenses to commercial products
and tools outside of its original build environment. However,
compilers and IDEs do provide another interface to their ser-
vices: the generated bytecode.

Using bytecode-based differences offer several advantages:

1. Bytecode has access to type information from the com-
piler.

2. Analysis can be performed at both the class and meth-
od level [11], as well as the instruction level.

3. The artifacts are smaller and self-contained.

4. Bytecode is executable: dynamic analysis, testing, per-
formance analysis can be more readily performed.

5. Fine-grained transactions can be collected. Collecting
intermediate builds from software developers can offer
insights into software development and without having
to instrument the IDE for change operations [17].

There are several challenges as well:

1. Some operations hidden from the programming lan-
guage are exposed at the bytecode level.

2. Source code statements can be decompiled from byte-
code, but they will not be exact.

3. Compilation may re-order basic blocks and may apply
strength reduction optimizations on statements.

4. Without debug symbols, local variables do not have
names and may change with addition of new variables.

However, these challenges can be addressed to improve how
we understand change in software.

5. EXTRACTING CONTEXT PAIRS

When examining the differences between software ver-
sions, we can only understand what has changed by looking
at what stays the same across both versions; that is, the
change must be contrasted to some anchoring context. For
example, if a programmer makes a change to the value of a

parameter of a method call, then the parameter is the sub-
ject of the change. But what does the change fasten to? In
this example, the change can be said to be anchored onto
the method call, the method call is anchored onto the calling
method body, and so on.

Our goal is to provide additional context to any change.
When we identify a change, we find which symbols also in-
teract with that changed symbol. This context can later be
used for analysis. In this view, one symbol is a producer of a
value, and the other is a consumer of the value. If a symbol
produces a value, then the goal of the symbol pair analysis
is then to locate the symbol that consumes the value.

The interaction of stable elements with changing elements
offers insight into the concepts programmers are concerned
with during a programming session. Furthermore, they pro-
vide landmarks for understanding and situating change. Cap-
turing these interactions requires examining element connec-
tions to find new connections that signify the presence of key
phenomenon.

In Table 1, we provide some examples of how a change
is associated with its context. The location refers to the
method location where the change occurred. The relation
between the change and context describes how values are
propagated between the change and context. A revision of
software may have many changes associated with it; this is
only one such change. Intent describes the original program-
mer’s reason for performing the change. This may or may
not be reflected in the revision log.

5.1 Symbols

Recall that a symbol is defined by its location, name, and
a type. The location is a fully qualified path in the pro-
gram, whereas a type is either a system type or user-defined
type. For example, in the following code snippet the result-
ing symbols are described in Table 2.

SetName (e, fullname)
e.Name = fullname.SubString( fullname.LastIndexOf(".") + 1);

Code Element Symbol Kind Location

fullname Parameter Class.SetName
SubString Method String
LastIndexOf Method String

«“r Literal

Name Field Class

Table 2: Resulting symbols of code elements.
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Consider the following source code difference:

- sum( list );
+ sum( values() );

In the above code example, the receiver of the value pro-
duced by values is sum. This was formerly produced by the
symbol list.



We model the interaction of two symbols with what we
call a change pair. In a change pair, the left-hand symbol
produces a value that is consumed by the right hand symbol.
These are the change pairs of the two versions.

- list -> sum
+ values -> sum

Changes can be related to a symbol through a fixed set of
relationships. The category of relationships and category of
symbols discussed in this paper are described in Table 3.

Symbols Relationships
Type Assignment
Method Parameter

Field Index

Parameter Condition

Variable Name qualification
Literal Return

Table 3: Supported symbols and relationships.

Suppose in another version of the software a change is
made to only sum a subset of the values in the list.

- sum( values() );
+ sum( values().subset(x) );

The change pairs are as follows:

values -> sum

+ x -> subset
+ values -> subset
+ subset -> sum

In the new version, values no longer is associated directly
with sum. Further, three new pairs are introduced. Com-
paring the two sets of change pairs, we find that some sym-
bols existed before, whereas others are newly introduced. In
general, we refer to a symbol that previously existed in the
method body as an anchor or anchored symbol.

In the previous code example, if x did not previously exist,
then it implies that the method body had to add a param-
eter, or an additional query had to be added to retrieve the
value. The consequence is that several ripple changes must
be created to flow new information through the program.
If x was already present in the method, then we know the
scope of the change would be less severe.

6. BYTECODE DIFFERENCING

In this section we describe how to extract a set of symbol
pairs from a method body. We do this by recovering the
code statements from the bytecode and then performing a
line-based difference between the code statements. From the
differences in code statements, we identify which statements
have been affected. For each affected statement, we emit
each symbol with its related symbol. We then compare the
differences between the symbol pairs.

By restricting the analysis to capturing only a set of pairs,
we avoid problems caused by block reordering and statement
movement while still achieving our goal of finding the change
context. Consider the following code example:

- int x
+ int x

AC1 + B(y) );
AC1 +B(y) +y);
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In the code example, the expression “+ y” is added. We
wish to associate that change with the symbol A.

If we were processing source code, then we would use the
AST to guide our process. But because we analyze bytecode
in order to to ease access to type and property information,
we must use another method to recover a similar represen-
tation. Furthermore, we need a mechanism to know which
symbol is associated with an instruction. Both goals can be
readily achieved with the assistance of bytecode tools such
as Mono.Cecil [3] and JABA [9].

First, we construct a flow graph of the method body in-
structions. This creates a graph of basic blocks with each
block containing a list of bytecode instructions. Segmenting
the instructions into basic blocks is necessary in order to
properly recover the statements. The next challenge is then
to create an AST-like representation for the statements. We
use an abstraction called a pop tree over the bytecode in-
structions to recover a simplified model of the AST.

6.1 Pop Trees

Both Java and C# bytecode are executed on a stack-based
virtual machine. Because of this, if the stack state is not ac-
counted for, then it is difficult to tell the difference between
a sequence of method calls from a complex chain of nested
method calls.

The instructions for the above code example

int x = AC1 + B(y) +y );

would appear as following:

Program 1 CIL assembly for addition example.

this IL_003: ldarg.0
y IL_004: 1dloc.1
this IL_005: ldarg.0
y IL_006: ldloc.1
IL_007: call instance int Exp.Form::B(int)
IL_OOc: add
1 IL_00d: 1ldc.i4.1
IL_OOe: add
IL_00f: call instance int Exp.Form::A(int)
X IL_014: stloc.O

A pop tree corresponds to a single statement in the orig-
inal source code. A pop tree is constructed by simulating
the instruction stream to push and pop various values onto
a stack. For example, an add instruction pops two values
off of the stack and pushes the sum onto the stack, whereas
a load instruction pushes one value onto the stack. An in-
struction owns another instruction if it pops its value off the
stack. The resulting tree of instructions ends with the top
node consuming the value of all the other child instructions.
If desired, a post-order transversal would closely correspond
to the original AST. The resulting pop tree for the code
example is shown in Figure 1.

6.2 Emitting Symbol Pairs

After constructing the flow graph and pop trees for each
block, the pairs are ready to be emitted. To emit a pair,
the pop tree is visited in post-order. If the node is asso-
ciated with a symbol, then the tree is searched up for the
first symbol to consume the child symbol. Only calls, loads,
and stores can be associated with a symbol. Consider the
following code statement:
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Figure 1: Pop tree for addition example.

int x = array[ array.Length - 1 ];

Figure 2 shows the resulting pop tree.
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Figure 2: Pop tree for array example.

The following pairs would be emitted:

array -> x

array -> length
length -> array
1 -> array

6.3 Context Paths

Further variations are possible by choosing different poli-
cies in how to select the ancestor. For example, the top-most
ancestor can always be selected. Second, symbols do not
have to be so restrictive, they could include any bytecode
instruction desired; whereas, in this paper, we focused on
higher-order operands.

Recall, we emit pairs as a set. This was primarily done
to avoid problems caused by block reordering and state-
ment movement. If finer-grain analysis was desired, then
approaches used in binary matching [18] may be incorpo-
rated. This allows differences to be scoped at the basic block
or statement level. However, it is not clear if the noise from
errors is worth the extra precision.

In contrast to performing differences scoped at the basic
block or statement level, another approach is to extract a
fully specified context path from each version. This path
could contain all the symbols that are ancestors of the sym-
bol, as well as the symbols of any predicates that dominate
the basic block that the statement resides in. This captures
the control flow relationship between basic blocks without
enforcing a specific matching policy.

In our implementation, we find that pairs offer sufficient
context for our analysis. However, this technique can easily
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be extended to collect the appropriate level of context as
needed by a particular analysis technique.

7. CASE STUDY

We have developed a tool CILDiff which operates on C#
bytecode and reports annotated byte differences. These dif-
ferences are queried by our tool CILQuery .

We have performed a case study to evaluate the efficacy
of our approach in supporting several classes of queries. In
particular, we examine the following two topics:

1. Detect code movement and restructuring
2. Categorize change according to participating types

There are two key categories in which the analysis of work
efforts in software development can be assisted. The first
category reduces the effects of code movements and renam-
ings. In general we would like to characterize the type of
coding activity to assist in understanding the change his-
tory. For example, process management would be improved
by tracking when refactoring efforts took place and seeing
what impact they had on the overall project. We will discuss
this category in Section 7.1.

The second category abstracts over changes and the as-
sociated features in a matter that developers and managers
can make use of. We will discuss this category in Section 7.2.

We examine two systems written in C#: Cecil [3] is a
library for inspecting C# bytecode. We study 579 revisions
of it which date back to 2005. Cecil has 280 classes, 2806
methods, and 216 unique system calls. ZedGraph [21] is a
library for charting in Windows applications. We study 29
revisions of it which date back to 2003. ZedGraph has 100
classes, 1656 methods, and 340 unique system calls.

7.1 Movement and Restructuring

Eventually, a developer realizes the need to refactor code.
The transformation of code results in several key proper-
ties. First, the names and locations of many artifacts will
no longer be the same. Second, the refactoring event acts as
a beacon. The refactored revision marks when errors might
have been introduced and provides evidence for when and
how often refactoring efforts have been made.

7.1.1 AnExample

In revision #77129 of Cecil, the log reads “one refactor-
ing a day can get you a long way.” We have good reason
to believe refactoring did occur in this revision, but what
semantic description can we provide to better measure this
refactoring?

We use this opportunity to illustrate how different tech-
niques would operate on this example and contrast the re-
sults with our analysis.

At the largest granularity, we know two files have changed:

Mono.Cecil.Binary/ImageReader.cs
Mono.Cecil.Metadata/MetadataReader.cs

Applying line differences we find 99 lines were deleted and
59 lines were added. Further, with lightweight parsing, we
can associate those additions and deletions to method loca-
tions.



+ private RVA ReadRVA Q);

+ private DataDirectory ReadDataDirectory ();
* public void VisitImportAddressTable( ... )
*

Two methods were added and nine methods were modi-
fied. To understand what changed in the methods, we apply
a token-based difference.

- Mono, Cecil, Binary
- new, RVA(), DataDirectory()
+ ReadRVA(), ReadDictionary()

The token approach eliminated some of the differences
caused by code formatting occurring across several lines. In

fact, the file MetadataReader. cs never semantically changed:

it only contained superficial formatting changes. The tokens:
Mono, Cecil, Binary occurred from the removal an unneces-
sary namespace qualification.

But more importantly, we now understand the modifica-
tion of the nine methods includes the addition of two meth-
ods and the removal of constructor calls.

Applying our technique, we derive a set of change pairs for
the methods. First, we examine change pairs that contain
anchored symbols. This means the pair is not completely
new or completely removed from the method body. The
pairs are stylized to display type information, symbol kinds,
and the relationship between the symbols.

DataDirectoriesHeader.Reserved = new DataDirectory()

+ DataDirectoriesHeader.Reserved = ReadDictionary())
- NTSpecificFieldsHeader.Base0fCode = new RVA()
+ NTSpecificFieldsHeader.BaseOfCode = ReadRVA()

We can confirm our suspicions that method call additions
replaced the constructor calls. A subtle difference still exists
in the source code:

header.HeaderSize = m_binaryReader.ReadUInt32();

The token-based difference did not notice the removal of
several ReadUInt32 calls. This function is still being used;
however, it is not longer used as an argument to the removed
constructors. This is observed by deleted change pairs that
are no longer anchored.

- ReadUInt32() -> new DataDirectory()
- ReadUInt32() -> new RVAQ)

Finally, a single change can be cataloged in the following
manner.

location: ImageReader.VisitCLIHeader(CLIHeader)
value: RVA
source: ImageReader.ReadRVA ()

destination: CLIHeader.Flags

Further analysis could summarize this information to gen-
eralize that the header’s properties previously were assigned
from a newly constructed DataDictionary object and now
are assigned from a private helper method.

7.1.2 Detection Rules

The challenge of detecting refactoring occurs when signa-
tures and content of methods no longer match. However, an
insight from origin analysis [23], focusing on the caller and
callee signatures, can be applied in a bottom-up manner.

A very simple and effective rule can be used to detect a
general refactoring substitution:
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Conservative Generalized Substitution.

before(X <-> anchor), after(S <-> anchor)
where locations(X) = locations(S) and
X is deleted, S is added.

The advantage of this rule is that its application can be
detected from just the set of change pairs produced by the
bytecode without examining the call hierarchy of the pro-
gram. This reduces the analysis burden.

Change Signature.

before(X <-> anchor and not parameter -> S),
after(S <-> anchor and parameter -> S)
where references(X) = references(S) and

X is deleted method, S is added method.

A change signature is marked when a new method is called
with a parameter value but a method referenced in the pre-
vious version did not have the same parameter flow to it.

Move Method.

before(X <-> anchor),

after (S <-> anchor)

where references(X) = references(S) and
X is deleted method, S is added method and
X.class != S.class

A move is marked when two symbols are referenced in the
same manner but belong to a different class.

Extract Method.

before(P)

after(P -> 3)
pairs(S) in before(pairs(P)) and
pairs(S) not in after(pairs(P))

An extract method is marked when a change pair now
exists in the new version, and the pairs of the new method
were in the previous version but not in the current version.

7.1.3 Results

We applied these techniques to evaluate the effectiveness
of locating refactorings.

In Cecil, several revisions of refactoring have occurred.
For example, there was one case in which seven method lo-
cations had been reported as changed and two methods as
added. Instead, we can report the following as two extract
methods with seven reference updates. This allows analysis
to focus on non-reference update changes and marks when
a refactoring has happened in the development history.

Overall, only seven revisions were labeled in the change log
as refactoring. However, we found 55 revisions with evidence
of refactoring shown in Table 4. Of the seven revisions, we
were able to identify six of the revisions as refactoring. In
the other revision, a group of methods where moved together
into another namespace. Because they moved together, but
also referenced each other, they were not properly found.
This result is consistent with origin analysis which also has
similar problems.



Refactoring Type # Revisions Total Number

Move 3 5

Rename 10 15
Parameter 13 32
Extraction 29 97

Table 4: Refactorings in Cecil.

7.2 Measuring Features

In this part of the case study, we want to understand how
our model of change context assists in studying features in
software. We do not automatically identify features or the
relationships to the program elements. Instead, we label
certain program methods, classes or system calls that are
strongly associated with a feature. For example, we asso-
ciate graphic calls for measuring strings with a font feature.
In another example, we use types beginning with the “Sys-
tem.IO” to be associated with the IO feature.

To measure feature activity, we count whenever a program
element belonging to a feature appears in a change context.
We look in the types, values, sources, and destinations of our
context model for this evidence. We discuss four questions
in particular:

1. How does the number of the change symbols compare
to the number of change locations?

2. Can we measure feature activity over time?

3. Can we study when features were worked on or used
by other features?

4. Can we detect when one feature is abstracted over by
another feature?

7.2.1 Number of Change Symbols

Sometimes a change may be in only one method but in-
volve many symbols. Other times a change is made across
many method locations but only concerns a few symbols.
We can measure the ratio between the number of method
locations and the number of symbols to better understand
the change task.

Figure 3 shows the trend of the number of method change
locations against the number of symbols. In this example
we restrict the symbol kinds associated with changes to be
methods, properties, types, system calls and system types.
In the figure, we see that sometimes the number of symbols
can be larger than the number of locations. In particular,
during these types of sessions, we notice a larger ratio of
system calls.

Other times, the change locations can be quite large but
the number of symbols is much smaller. During revisions
307 to 345, Cecil underwent one of the most extensive peri-
ods of activity in its revision history. Five of those revisions
had an extremely high number of method modifications. In-
terestingly, none of these five revisions added new methods.
This eliminates the possibility of renaming of methods or
move and extract method refactorings because they would
require new methods to have been added. Instead, some
activity occurred that touched at the definition of much of
the program. In Table 5, the change locations can be seen
in comparison to the symbols composed of properties, meth-
ods, types, and system calls. Figure 4 shows a similar trend
in ZedGraph'’s revision history.
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Figure 3: Several large code events occurred where
many parts of the system were touched. But only
a relatively small amount of symbols was used to
describe those changes in Cecil.

Revision # Change Locations Symbols

307 2480 558
312 2480 344
330 2529 570
344 2543 347
345 2543 573

Table 5: The number of change locations in compar-
ison to the number of symbols in Cecil.

7.2.2 Feature Activity

A large program has many features. Understanding which
features are actively used in development gives perspective
on which symbols are needed to program current tasks.

We identified several prominent features and their associ-
ation with user-defined types in ZedGraph. Figure 5 shows
the activity of these features over time.

Change Locations versus Symbols

—— Locations —— Symbols

1400
1200 1

1000 A
n I

A II
mEw

Count

12345673891

5}

111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29

Revision

Figure 4: In general, the number of change locations
is larger than the number of symbols associated with
the change for ZedGraph.
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Figure 5: The activity of various features over time.

7.2.3 Feature Stability

When examining the activity of a feature, we would like
to understand how stable it is. There are several benefits of
measuring stability. First, stability gives a baseline to com-
pare a feature against error rates. This baseline can be used
to judge the severity of the errors based on if the feature is
considered to be stable or not. Second, the stability measure
provides programmers feedback about how stable a concept
is when choosing a program abstraction. For example, a pro-
grammer might choose to delay working on a certain feature
if the programmer could see that another teammate had not
yet stabilized the feature.

There are two criteria we would like to use in measuring
stability: periods of development and periods of use. Over-
all, we would like to see the amount of development effort on
the feature decrease over time. Seeing periods of feature use
gives confidence that the feature has been integrated with
the system and is less likely to be changed.

In Figure 6, we compare the period when the Scale feature
was being implemented in ZedGraph versus when the feature
was used by other components in the system. From the
graph, we can conclude that the feature had fairly stabilized.
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Figure 6: The scale feature was used for several re-
visions before becoming limited, several revisions of
work followed, until the feature again stabilized and
use resumed.
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7.2.4 Feature Abstraction

The initial vocabulary that developers start with is the
language API and programming constructs. As a program
starts to share a common concern, a developer creates an
abstraction to describe those concerns. During the develop-
ment of the abstraction, the programmer is actively using
the language API to implement the abstraction. If success-
ful, the developer should have created appropriate abstrac-
tions over the system calls and the frequency of those calls
should decrease.

In Figure 7, the ZedGraph developer created a FontSpec
class to handle issues with fonts and font rendering. Initially,
the developer uses the library API to assist in the develop-
ment (e.g. System.Drawing.Graphics.MeasureString, and
System.Drawing.Font). But eventually, the development of
the FontSpec class no longer has to rely on using the system
calls. Instead, the usage of the FontSpec class increases,
and a successful abstraction is created. If there were prob-
lems with incompleteness of the abstraction, then we might
notice it if more system calls are introduced later on in de-
velopment, but we do not see any in this case.
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Figure 7: The class ZedGraph.FontSpec assisted
with handling fonts. System calls related to mea-
suring strings and fonts, are at first used, but use
eventually drops as the user-defined class is success-
ful in abstracting over the system class.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented techniques for improving the
richness of how we describe software changes. Approaches
deriving type information from source code text generally
face technical limitations that hinder industrial adoption.
We circumvent this problem by deriving type information
in a robust and lightweight manner from statements recon-
structed from bytecode. We identify which bytecode state-
ments have changed between revisions. For each statement
that has changed, we emit a set of symbol pairs and find
which pairs have been deleted and added between the revi-
sions. The symbols are annotated with the type information
and fully qualified source code location. This information
provides enough context to perform a range of interesting
analyses without needing to reconstruct the source code.

To demonstrate our approach, we performed a case study
on two software systems to show how our tools CILDiff and



CILQuery find and use change pairs. In our case study, we
show how instead of just focusing on the method locations
where changes occur, we can also extract the symbols that
developers use. By examining the symbols, we have a better
sense of the features and topics that the developers were fo-
cusing on. We show how to measure feature activity, feature
stability, and features abstracting over other features.

In this work, we are striving to simplify the process of
working with revision histories in a way that facilitates adop-
tion in every day software practice. For future work, we
anticipate that further analysis can take advantage of the
rich type information available with our tools. In particu-
lar, examining how change efforts relate in terms of object
collaboration and architectural patterns will offer powerful
ways of understanding and incorporating feedback into the
software development process.
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