
On the Relation of Refactoring and Software Defects

Jacek Ratzinger, Thomas Sigmund
Vienna University of Technology

Information Systems Institute
A-1040 Vienna, Austria

ratzinger@infosys.tuwien.ac.at

Harald C. Gall
University of Zurich

Department of Informatics
CH-8050 Zurich, Switzerland

gall@ifi.uzh.ch

ABSTRACT
This paper analyzes the influence of evolution activities such
as refactoring on software defects. In a case study of five
open source projects we used attributes of software evolu-
tion to predict defects in time periods of six months. We use
versioning and issue tracking systems to extract 110 data
mining features, which are separated into refactoring and
non-refactoring related features. These features are used
as input into classification algorithms that create prediction
models for software defects. We found out that refactoring
related features as well as non-refactoring related features
lead to high quality prediction models. Additionally, we
discovered that refactorings and defects have an inverse cor-
relation: The number of software defects decreases, if the
number of refactorings increased in the preceding time pe-
riod. As a result, refactoring should be a significant part
of both bug fixes and other evolutionary changes to reduce
software defects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Evolution—software defects, pre-
diction

General Terms
Software evolution, refactoring, mining software archives

1. INTRODUCTION
We investigate the influence of evolution activities such as

refactoring on bug fixes required in the future. Prediction
models can help us to find out characteristics of files (or
Java classes) with or without bug fixes in their history, es-
pecially in relation to refactoring. Information gained from
that models can support software developers to apply refac-
toring in a way that reduces error-proneness of software to-
gether with an optimization of efforts.

In this work we analyze data from versioning and issue
tracking systems of five open source projects: ArgoUML,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

JBoss Cache, Liferay Portal, the Spring framework, and
XDoclet. These projects are developed in Java, whereby
each class is usually placed in a separate file. We per-
form some preprocessing steps to derive non-refactoring and
refactoring attributes from that data. These attributes are
input into WEKA [11] that generates prediction models.

Our research hypotheses for our case study evaluation are
as follows:
H0: There is no relation between refactorings and the qual-
ity of defect prediction.
H1: Refactoring reduces the probability of software defects.
H2: Refactoring is more important than bug fixing for soft-
ware quality.

The remainder of the paper is organized as follows: Sec-
tion 2 briefly discusses related work with respect to our re-
search question. Then, we describe our prediction model
(Section 3), the used methodology (Section 4), and present
the results of the five case studies (Section 5). Finally, we
draw our conclusions and indicate future work (Section 6).

2. RELATED WORK
Previous works have addressed areas such as refactor-

ing analysis, change type analysis, software metrics, or bug
prediction. Some researchers have investigated refactorings
based on history information. For example, van Ryssel-
berghe has found methods to identify move and inheritance
change operations as well as refactorings [9].

The qualification of refactorings also has been addressed
in [10] where it was investigated whether or not refactor-
ings are less error-prone than other changes. In contrast to
our work, their approach did not use feature and prediction
models and did not come to a uniform conclusion for defect
prediction.

Fluri et al.developed an approach that investigates change
types between releases of software entities [3]. In a case
study of a medium-sized open source project more than 50%
of all change transactions turned out not to be significant
structural changes [2]. According to this ChangeDistilling
approach, we trace change couplings back to co-changed files
that correspond to a change transaction. But we do not
filter out change coupling groups that were not structurally
changed, e.g. changes to Javadoc.

Nagappan et al. [6] predict the pre-release defect density.
They revealed a strong positive correlation between the de-
fect density determined by static analysis and the pre-release
defect density gained from testing.

Kim et al. [5] screened the versioning history of several
open source projects to predict entities and files most fault-

35

prone. In contrast, we do not detect bug-introducing changes,
but use the number of bug fixes, detected in the respective
target period for our predictions. In line with [5] we iden-
tify bug fix revisions by analyzing log files from versioning
history.

Khoshgoftaar et al. [4] use classification trees to predict
fault-prone modules. The generated trees describe impor-
tant points of interest (e.g.characteristics of the software).
Fenton and Neil give a good review of several software met-
rics and a wide range of prediction models [1].

In previous work [8] we analyzed the versioning history
of ArgoUML and the Spring framework to predict refactor-
ing activities. There we used evolution measures extracted
from versioning systems as input into classification algo-
rithms to generate the prediction models. These models
enable to predict refactorings with high accuracy. Addition-
ally, refactoring-prone and non-refactoring-prone classes can
be identified accurately.

In addition to [8], in this paper we are interested in pre-
dicting software defects, and therefore we enhanced our evo-
lution measures with refactoring related features.

3. DATA AND PREDICTION MODELS
In this section we describe the formal modeling stage of

our data preparation and analysis.

3.1 Evolution Data
The model of the evolution data is composed of infor-

mation extracted from versioning systems in the following
way: Versioning systems such as CVS contain data about
files and the change attributes, e.g. change dates, authors
of changes, commit messages, and lines of code changed. In
a first step we have to reconstruct the change transactions
as described in [3]: Two entities (e.g. files) are change cou-
pled, if modifications of one entity usually also affect the
other entity. The intensity of change coupling between two
entities a, b can be determined by counting all change sets
where a and b are members of the same transaction Tn, i.e.
C = {〈a, b〉|a, b ∈ Tn} is the set of change coupling and |C|
is the intensity of the change coupling.

To compute our attribute targetBugs we search for changes
that have an issue attached of type ”bug fix.” Additionally,
we investigate the commit messages and add changes that
do not provide a reference to an issue but contain terms such
as ”bug”, ”fix”, ”solv”, etc. The details of the algorithm are
described in [8].

3.2 Time Periods and Features
We used two consecutive time periods for our prediction:

• Feature Period in which certain properties of software
evolution are accumulated into attributes (features) to
serve as input to our prediction. All source code mod-
ifications within this time period are used to compute
a condensed history of each file.

• Target Period as the time frame immediately follow-
ing the feature period, when we count the number of
bug fixes. This number defines the data mining target
attribute for our case studies.

3.3 Data Mining Features
From the evolution data we compute 110 features that

are used for data mining. We separate these features into

two groups: non-refactoring and refactoring related features.
For the purpose of creating a balanced prediction model, as
argued in [1], the features represent several domains such as
code measures, team and co-change aspects, or complexity
of implemented solution. For a detailed description of the
features we refer to [7].

3.4 Classifiers—Data Mining Algorithms
These classifiers separate entities into different groups such

as classes with or without bug fixes.

• C4.5 induces decision trees: it compares one of the in-
put attributes against a threshold value and partitions
the input space into distinctive sets.

• LMT is a data mining algorithm for building logistic
model trees, which are classification trees with logistic
regression functions at the leaves.

• Rip (Repeated Incremental Pruning) is a propositional
rule learner. It uses a growth phase, in which an-
tecedents are greedily added until the rule reaches 100%
accuracy. Then in the pruning phase, metrics are used
to prune rules until a defined length is reached.

• In NNge a nearest-neighbor algorithm is used to build
rules using non-nested generalized exemplars.

3.5 Evaluation of Prediction Models
In our analysis of prediction models for bug fixes we use

precision, recall, and F-measure as three essential markers
characterizing model performance. These evaluation mea-
sures are defined based on rates for true positives, false pos-
itives, true negatives, and false negatives [11].

4. METHODOLOGY

4.1 Identifying Refactoring
For generation of refactoring features we do not distin-

guish between different types of refactorings (e.g.extract class
or method, etc.). These features cover the fact that devel-
opers try to improve the quality of code.

Similar to our previous work [8] we start our identifica-
tion by searching for texts including ”refactor” and then we
exclude phrases such as ”needs refactoring” to improve the
results. For each project we developed between 10 and 20
SQL queries to mark modifications as refactorings. We used
a statistical evaluation to estimate the number of refactor-
ings that we correctly identified with our method. There-
fore, we took a random sample of 100 modifications for each
project and checked whether it was a refactoring or not.

Table 1 shows high rates of correct classifications for each
investigated project. As an example, in ArgoUML and Lif-
eray Portal all revisions labeled as “refactoring” actually
were refactorings.

4.2 Data Processing with Weka
Weka is a collection of machine learning algorithms for

data mining and is used to generate prediction models dis-
tinguishing between the class of files ”No bugs” and the
class ”One or more bugs.” Next we describe our two steps
of creating and analyzing the section models.

(1) In the first step we create section models: If two classes
(”No bugs” and ”One or more bugs”) do not have the same

36

Project Modifications Identified Refactorings Other Changes False Positives False Negatives
ArgoUML 100 12 88 0 2
JBoss Cache 100 22 78 1 3
Liferay Portal 100 10 90 0 1
Spring Framework 100 14 86 2 1
XDoclet 100 21 79 1 3

Table 1: Evaluation to Classify Modifications as Refactorings

size, the set containing more instances is subdivided into
sections that consist of the same number of instances as in
the small set. For example, Project Liferay Portal contains
1816 files that have been changed during the feature period.
1338 files exhibited no bug fixes and 478 files had one or
more bug fixes in the corresponding target period The set of
instances with no bug fixes is decomposed into three differ-
ent sections each holding 478 instances, where the last one
contains the remaining 382 instances. For the first evalua-
tion we use the first data set with the topmost 478 files of
class ”No bugs”, for the second we use the next 478 files,
and for the third we use the bottommost 478 files. As we
see, 96 files are used two times, for data set two and data
set three.

After the splitting three different models can be generated
based on those three sections. Such a model made up of the
same number of non-error-prone files (”Bug fixes=0”) and
error-prone files (”Bug fixes>=1”) is called section model.

(2) In the second step we analyze the section models: To
investigate our hypothesis we apply a statistic analysis on
the sections models. For hypothesis H0 we compare the
number of experiments where prediction models based only
on refactoring related features perform better than predic-
tion models based on non-refactoring features. Hypothesis
H1 is investigated based on a feature indicating the number
of refactorings compared to the overall number of changes.
For each class of files (”No bugs” and ”One or more bugs”)
we analyze the number of predicted instances where the
number of refactorings is above a threshold value. The ratio
between refactorings and bug fixes is finally used to address
hypothesis H2.

5. RESULTS
We analyzed three different time frames for each project.

Every time frame consisted of a feature period and a target
period and spanned one year.

5.1 Do refactoring and non-refactoring related
features lead to high quality prediction
models? (H0)

We decided to exemplary display the results for section
model 1 of one out of the three analyzed time periods per
investigated project, whereby classification algorithm C4.5
is used to generate the respective section models (Table 2).
Although this is only a small sample of the available predic-
tion models, the results are representative for all generated
models with respect to model quality.

The results of models generated from refactoring and non-
refactoring features are presented using two main columns
that are subdivided in a column for ”No bugs” and a col-
umn for ”One or more bugs”. Each line provides informa-
tion about model quality through the F-measure. All mod-
els show sufficient good prediction results to form a basis

for a further analysis. Especially, the balanced distribution
between both bins (files with and without bug fixes) is sat-
isfying. The project Liferay Portal exhibits extraordinary
good prediction results with a maximum F-measure of 0.925.
Next, the composition of the model trees can be examined
more closely, since concrete sequences of the decision rules
lead to promising prediction results. Thus we reject the null
hypothesis and conclude:

Both refactoring and non-refactoring related features lead
to high quality defect prediction models.

For H1 and H2 we investigated section models of all ana-
lyzed projects that contain the refactoring feature of interest
(H1: number refactoringChanges, H2: ratio bugfixRefactor-
ing) together with a respective threshold value.

5.2 Is refactoring related with the number of
future software defects? (H1)

The majority of model sequences using the feature refac-
toringChanges shows that instances holding a value equal
or below a certain threshold value are assigned to bin ”One
or more bugs” (71.7%), and instances above are assigned to
bin ”No bugs” (75.0%) (see Figure 1).

Figure 1: Distribution of non-defect-prone (green)
and defect-prone (red) instances in case of a low and
a high level of refactorings.

This is an essential result since refactoring can positively
influence the software quality by decreasing the occurrence
of bug fixes. Additionally, it seems to be generally good
when the number of total changes remains low with respect
to bug fix reduction. Thus we conclude:

The number of software defects in the target period de-
creases if the number of refactorings increases as overall
change type.

5.3 Does refactoring in contrast to bug fixing
reduce software defects? (H2)

Most of the model sequences, using feature bugfixRefactor-
ings (i.e. the ratio between bug fixes and refactorings) show
that files that have a value equal or below the threshold
are assigned to bin ”No bugs” (69.2%), and files above are
assigned to bin ”One or more bugs” (77.8%) (see Figure 2).

Again, refactoring helps to decrease bug fixes in the target
period. Furthermore the number of bug fixes in the feature
period directly correlates to the number of bug fixes in the

37

Project Refactoring Models Non-Refactoring Models
Bugfixes=0 Bugfixes>=1 Bugfixes=0 Bugfixes>=1

ArgoUML 0.718 0.716 0.725 0.718
JBoss Cache 0.747 0.745 0.758 0.742
Liferay Portal 0.925 0.925 0.916 0.918

Spring Framework 0.859 0.851 0.887 0.890
XDoclet 0.798 0.794 0.862 0.845

Table 2: Predicting non Bug fix prone vs Bug fix prone Classes for each project using C4.5

Figure 2: Distribution of non-defect-prone (green)
and defect-prone (red) instance in case of a low and
a high ratio between bug fixes and refactorings.

target period. This result is well known to the scientific
community since defect-prone files tend to stay defect-prone
in the course of time. A balanced fraction of refactoring
and bug fixes is necessary to support understandability and
maintainability of source code, as well as to solve actual or
upcoming problems.

Thus, we conclude: The number of software defects in
the target period decreases, if the number of refactorings in-
creases compared to bug fixes.

5.4 Threats to validity
As many of such studies also our study is undermined by

external and internal threats to validity ranging from the
case studies chosen to the prediction models computed. For
a detailed discussion of all features, classifiers, prediction
models and the threats to validity we refer to [7].

6. CONCLUSIONS AND FUTURE WORK
In this paper we investigated the interrelationship of evo-

lution activities such as refactoring to predict software de-
fects in the near future. Our study is based on five open
source projects originating from different domains to sup-
port some level of generality. Our work extends previous
work on refactoring qualification to evaluate the impact on
software defect prediction.

We use versioning and issue tracking data to extract 110
data mining features to predict medium-term defects. These
features are separated in refactoring and non-refactoring re-
lated features and cover software characteristics such as code
measures, team and co-change aspects, or complexity of im-
plemented solution.

We found that refactoring related features as well as non-
refactoring related features produce high quality prediction
models. These findings support our hypotheses that the
number of software defects in the target period decreases,
if more refactorings are applied and if these refactorings in-
crease compared to bug fixes. This means that an increase in
refactorings has a significant positive impact on the quality
of the software.

In our future work we will further integrate attributes

of software change such as severity levels and improve our
queries to further reduce false positives and false negatives
with respect to refactoring as well as bug fix detection.

Acknowledgements
We are grateful to the reviewers for their valuable com-
ments. This project was supported by the Hasler Founda-
tion Switzerland as part of the project “ProMedServices.”

7. REFERENCES
[1] N. E. Fenton and M. Neil. A critique of software

defect prediction models. IEEE Transactions on
Software Engineering, 25(5):675–689, September 1999.

[2] B. Fluri, H. C. Gall, and M. Pinzger. Fine-grained
analysis of change couplings. In Proceedings of the
Fifth IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM’05), 2005.

[3] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall.
Change distilling—tree differencing for fine-grained
source code change extraction. Transactions on
Software Engineering, 33(11):725–743, November 2007.

[4] T. M. Khoshgoftaar, X. Yuan, E. B. Allen, W. D.
Jones, and J. P. Hudepohl. Uncertain classification of
fault-prone software modules. Empirical Software
Engineering, 7(4):297–318, December 2002.

[5] S. Kim, T. Zimmermann, E. J. Whitehead, Jr., and
A. Zeller. Predicting faults from cached history. In
Proceedings of the International Conference on
Software Engineering, May 2007.

[6] N. Nagappan and T. Ball. Static analysis tools as
early indicators of pre-release defect density. In
Proceedings of the International Conference on
Software Engineering, May 2005.

[7] J. Ratzinger. sPACE – Software Project Assessment
in the Course of Evolution. PhD thesis, Vienna
University of Technology, Austria, October 2007.

[8] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall.
Mining software evolution to predict refactoring. In
Proceedings of the International Symposium on
Empirical Software Engineering and Measurement
(ESEM), September 2007.

[9] F. Van Rysselberghe. Studying Historic Change
Operations: Techniques and Observations. PhD thesis,
Universiteit Antwerpen, 2008.

[10] P. Weißgerber and S. Diehl. Are refactorings less
error-prone than other changes? In Proceedings of the
International Workshop on Mining Software
Repositories (MSR ’06). ACM, 2006.

[11] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, 2005.

38

