
32 February 2007 ACM QUEUE rants: feedback@acmqueue.com

RICHARD FORD, FLORIDA INSTITUTE OF TECHNOLOGY

 vs. Closed

SecurityFO
CU

S
There is no better way to start an argument

among a group of developers than pro-

claiming Operating System A to be “more

secure” than Operating System B. I know

this from first-hand experience, as previous

papers I have published on this topic have

ACM QUEUE February 2007 33 more queue: www.acmqueue.com

Which source is more secure?
 vs. Closed

led to reams of heated e-mails directed at

me—including some that were, quite liter-

ally, physically threatening. Despite the heat

(not light!) generated from attempting to

investigate the relative security of different

software projects, investigate we must.

34 February 2007 ACM QUEUE rants: feedback@acmqueue.com

Understanding why products are (and are not) secure is a
critical stepping stone toward building better software.

Before wading into these dangerous waters, we should
clarify the question. All too often when comparing open
and closed source approaches, the question is uncon-
sciously interpreted as Windows versus Linux. While
that’s a fantastic question to knock around, doing so is
a very narrow way of looking at the world, as it ignores
many other projects in both the open and closed source
worlds. Although it’s foolish to ignore the data points the
Windows/Linux world provides, they are simply examples
of the process. So, let us first strip away the misconcep-
tion that the question is about these particular platforms
and recognize its real breadth.

With this in mind, our answer requires three crucial
definitions in order to have meaning: “What is open
source?”; “What is closed source?”; and, surprisingly,
“What is security?” The first two we can deal with
quickly; the third is a lot subtler, however, so we shall
tackle it first.

WHAT IS SECURITY?
Traditionally, we tend to think of security as maintain-
ing the CIA (confidentiality, integrity, and availability) of
information. This is a useful taxonomy of security, and
because of this, it’s pervasive. One limitation of the CIA
approach is that it isn’t very helpful when we consider
how to measure security. What does it mean to say that
one product is more secure than another product? Is C
more important than A, and is A more important than I?
How does one rank these different aspects of security?

A literature review quickly shows that measuring secu-
rity is a tricky problem, which, as yet, we haven’t gotten
our arms around very well. That’s a pity, because if we
had, it would be tempting to run the simple experiment
of measuring the security of various open and closed
source projects and see if one methodology is consistently
more secure than the other. If closed source, for example,
were measurably better from a security perspective, we
would have the answer to our question.

There are two obvious ways to measure security:
• What are the chances of any member of the CIA triad

being violated?

• How many actual vulnerabilities are there in a product?
Let’s take a look at both of these approaches.
The problem is that the former is a combination of

the quality of the software under test, the number and
type of attackers targeting that software, and how the
box is configured, administered, and used. Thus, if “more
secure” simply means measuring the probability of com-
promise, it might be possible to conclude that MS-DOS
with a TCP/IP stack is more secure than a fully patched
Windows XP box, simply because the number of attackers
looking for MS-DOS machines is now vanishingly small.
While the measure is pragmatic, it tells us a lot about the
ubiquity of the system and the talent and number of its
attackers.

Discarding this approach leaves us with the latter
of our two approaches: counting vulnerabilities in the
code. Even here, it’s not obvious how to proceed, as we
don’t have direct measures of actual vulnerability counts;
we have information only about the number of vulner-
abilities that are publicly disclosed. Thus, like the first
approach, this one doesn’t provide an objective measure
of security; it also considers external factors (such as
attacker profile).

A variation of this approach is known as “days of risk,”
which is literally counting the elapsed time between
vulnerability disclosure and remediation. Defining reme-
diation is a difficult task. Does turning off a noncritical
service count as temporarily “fixing” the problem, or
does only a “sanctioned” patch supported by the vendor
constitute remediation? This would depend on the service
provided and the needs of the user. Even if we can agree
on remediation, the number of attackers plays a critical
role in determining the total days of risk. Despite this,
the approach is tremendously practical because it takes
into account the fact that actually exploiting a vulner-
ability is relatively rare until the vulnerability is publicly
known.1 It’s a practical measure, however, and as such,
doesn’t speak directly to inherent security properties, but
pragmatic ones. Note here that days of risk are tradition-
ally counted from the date the vulnerability is publicly
available, not the date an exploit is known. Although one
can argue that knowledge of the vulnerability is mean-
ingless in the absence of an exploit, it is often difficult

SecurityFO
CU

S

 vs. Closed

ACM QUEUE February 2007 35 more queue: www.acmqueue.com

to determine when an exploit became “public,” as many
members of the black-hat community keep such informa-
tion under close guard. Thus, vulnerability date is the
most objective—and therefore repeatable—measure (even
if it is not as desirable as the exploit date).

Even based on this short discussion, it’s clear that
accurately measuring security will mean different
things to different people. Thus, for the purposes of
this article, it’s reasonable to accept that we can’t (yet)
measure the inherent security outcomes of open/closed
source processes in an ordinal way. This means that our
“experimental” approach to determining which approach
leads to better security is off the table: until the science
matures, we will have to examine the pros and cons of
each approach independently and try to balance them
ourselves.

OPEN SOURCE, CLOSED SOURCE
Put simply, the open source process can be thought of as
an approach where the source code to products/execut-
ables is provided. In contrast, closed source approaches
restrict source-code access to just the developers of the
product and other chosen individuals (usually under
the constraints of a nondisclosure agreement). In both
worlds, many finer distinctions can be made. For exam-
ple, some open source projects restrict development to
a small cadre of programmers; others allow anyone to
contribute. Source code access, however, is the key dis-
tinction between the approaches. Note also that neither
case requires software to be free nor “for fee”—though
the open source world is generally friendlier in terms of
licensing.

Perhaps appropriately for the open source commu-
nity, a more precise definition of open source varies from
person to person. At its simplest, open source refers to the
practice of providing the source code for programs. Fur-
thermore, most proponents of the open source approach
would agree that the distributed source code should be
legally modifiable and redistributable (with some license
restrictions). Thus, users have the ability to inspect and
modify programs they use. (A far more complete defini-
tion is provided at http://www.opensource.org.)

In contrast, the closed source approach seals the pro-
gram code. As such, derivative works are usually legally
prohibited. Proponents of both camps may object to the
simplicity of my definitions: they do capture the essence
of both approaches but fail to capture the culture that sur-
rounds them.

Culturally, closed source represents traditional corpo-
rate software developers. When we think of open source,

however, we tend to think of volunteers working as a
collective, free software, and community projects. Open
source structures are fluid; closed ones rigid. While this is
something of a caricature, like all good sketches, it does
catch some of the “feel” of the movement.

INHERENT SECURITY PROPERTIES
Armed now with an understanding of the question, it is
time to examine the relative merits of the two approaches
from a security perspective. Clearly, others have under-
taken this process (for a slightly different perspective, for
example, see Ross Anderson2); however, there are many
issues that are not addressed completely. As such, we
begin by considering the most basic difference between
the development methodologies: one can examine the
source code of an open source project. Pragmatically, this
is of use to both the attacker and the defender.

From the attacker’s point of view, code availability
means that there is complete disclosure on how a par-
ticular feature is implemented. Furthermore, it means
that discussion of weaknesses and design decisions often
happens in the open (see the “Disclosure Models” section
later in this article). Thus, open source products allow the
attacker a white-box view of the product and, potentially,
associated problems. When a security patch is made avail-
able, it is trivial for the attacker to determine exactly what
was fixed.

From the perspective of the defender, open source
also has advantages. Perhaps most importantly, it allows
for code inspection. Thus, if the defender really wants
to know that a particular feature is secure, he or she can
simply examine the code—provided, of course, that the
defender has the necessary security knowledge to spot
a problem. Second, there is a sense that because many
people can review the code, the code is inherently higher
quality—as framed by Eric S. Raymond in his now-famous
quote, “Given enough eyeballs, all bugs are shallow.”3
Finally, features that are problematic in a particular
environment can be turned off by a sufficiently skilled
programmer. Thus, when a vulnerability is found, the
user doesn’t have to wait for a sanctioned patch: anyone
can make the requisite changes to the code base.

From an attacker’s perspective, closed source means
that only a small part of a given community has access to
the code. Thus, to understand the internals, the attacker
must reverse-engineer the binary; such a process is time
consuming and, in the case of software that has been
protected from such reverse engineering, nontrivial.

Furthermore, design mistakes may be harder to spot,
as grasping the entire form of a large application is quite

36 February 2007 ACM QUEUE rants: feedback@acmqueue.com

difficult when working only with compiled code.
Things are equally double-edged for the defender.

When using a closed source product, the user is left
entirely at the mercy of the code developer in terms of
functionality changes or security patches. Thus, when a
vulnerability is announced, the options for the defender
are limited. Once again, differences in disclosure models
help mitigate this somewhat, but ultimately, the user is
left trusting the vendor. Self-help is not a practical option;
code cannot be screened internally for structures that are
worrisome in particular environments. Of course, these
issues are compounded if the code to a closed source
product is leaked; then the attacker has many of the ben-
efits of the approach, with few of the downsides.

These fundamental properties are painted with a fairly
broad brush, but in essence they encapsulate the sys-
tematic differences between the techniques in terms of
attacker and defender. Space precludes a thorough exami-
nation of these differences, so we will turn our attention
to the two that seem to have the most impact: vulnerabil-
ity disclosure models and trust/validation.

DISCLOSURE MODELS
One key difference between open and closed source
processes is the vulnerability disclosure model that is typi-
cally shared within them. As open source’s nature is open-
ness, when vulnerabilities are repaired it is trivial for an
attacker to see exactly what was repaired and work back
to the vulnerability and (probably) a working exploit. In
the closed source world, it might not even be clear that a
vulnerability existed or was fixed.

Because of this, open source tends to do badly from
the perspective of “days of risk,” where one counts the
time between the disclosure of a vulnerability and an
“approved” fix. Some may find this unfair, but pragmati-
cally history shows that the window between the public
availability of a vulnerability/exploit and its patch is
a difficult and dangerous time. In addition, while it is
entirely possible (and practiced in several open source
communities) to embargo security bug disclosure until
a patch is available, the practice of no disclosure is still
rarer in the open source community than the closed
source community. In addition, the problem is com-

pounded by the many different Linux distributions
that contain open source components. If a component
is updated by its creators, it is impractical to wait until
all distributions that use it are ready to issue a validated
patch.

The difference in disclosure models is a difficult prob-
lem for open source processes to solve. While one can
argue that users can fix problems as they arise (thus, as
soon as the problem is disclosed, the user writes a patch
for his or her own use), this is a little far-fetched. Most
users aren’t programmers, and those who are usually
aren’t security experts. Thus, closed source benefits from
its “closed” nature in this aspect—its worldview centers
on keeping certain “secrets” secret.

Conversely, the open source world is based around
information exchange. Changing the open source world-
view on this matter with respect to security is really the
crux of the solution but is somewhat in contradiction to
the culture. Despite the solid progress several open source
projects are making in this area (bugs are increasingly
discussed in private, not in public forums), as soon as a
patch is released it is trivial to determine the exact details
of the patch. This makes developing an exploit for the
previous version much simpler.

TRUSTING TRUST
Ken Thompson’s paper “Reflections on Trusting Trust” is
as important today as it was when first penned in 1984.4
Thompson illustrated the trust assumptions we make
when deciding on security-related issues. Ultimately, he
argues, we’re trusting far more than we might realize.
The same argument holds when considering open/closed
source security.

Classically, security people tend to think of the
attacker as either a malicious insider or a third party. It’s
also possible, however, to think of the software vendor—
in its entirety—as untrustworthy (because one suspects
the vendor is either malicious or incompetent). What
then?

This change of focus in terms of trust can be a little
startling, but isn’t entirely far-fetched. It doesn’t even
require malfeasance on the part of the vendor. Consider
a well-meaning (but foolish) vendor who, during an

SecurityFO
CU

S

 vs. Closed

ACM QUEUE February 2007 37 more queue: www.acmqueue.com

install, disables a critical piece of security software, with
the intent of restoring it at the end of the install. Such
a vendor could be unwittingly placing the user at risk.
Incidents such as the Sony rootkit, used for DRM (digi-
tal rights management) purposes, also emphasize the
sometimes misplaced trust placed in vendors. In each
case, the closed source nature of the project put the user
in jeopardy because there was no way—aside from reverse
engineering—to determine the real functionality of the
software.

There is also the issue of unethical vendors deliberately
sneaking adware onto your computers under the guise
of a “utility.” Vendors aren’t inherently trustworthy, and
anyone who blindly makes the assumption that they are is
either in denial or naïve.

In the case of an untrustworthy vendor, open source
provides at least a mechanism by which a concerned
entity can verify (within reason—remember the implica-
tions of Thompson’s paper) that all is well. Going to the
trouble of auditing the entire code base for a project isn’t
justified in many cases, but I can provide an example that
is difficult to refute: voting software.

The idea of trusting a single vendor with the legiti-
macy of elections is, frankly, terrifying. With so much at
stake, voting software must be verified by source inspec-
tion—who would trust a black-box approach to voting?
Clearly, in the case of such software, an open source
approach provides at least a mechanism by which the
software’s veracity can be verified. Does one vote entered
tally up with one vote counted in all scenarios? Although
the process is nontrivial in an open source world, it’s
really very challenging in a closed source scenario where
one must resort to reverse-engineering the system. Thus,
in some cases, it seems the open source approach clearly
has the edge.

An interesting counterpoint can be found in secu-
rity software. Consider antivirus software. While much
antivirus software is signature-based, many different
incarnations of generic virus protection exist that attempt
to apply different techniques to stop new viruses. Such
software is important, as it provides a first line of defense
against rapid worms, which can become pandemic min-
utes after their initial release. Generally, such software is
not theoretically secure—it is heuristic in nature and can
be bypassed by an attacker with sufficient knowledge.
This being the case, an open source approach is prob-
ably less attractive than a closed source one. Let’s at least
make the life of the attacker a bit harder. If that sounds
like security through obscurity, hold on to your seat for a
moment: it is.

SECURITY THROUGH OBSCURITY?
The idea of “security through obscurity” has a horrible
reputation among software engineers. I can still remem-
ber mentors through the years drumming into my head
the idea that security by obscurity is no security at all (I
expect that some of those fine scientists will contact me
as they read this article to see where they went wrong in
my education), but my belief is that the entire argument
is highly contextual. For example, passwords are the per-
fect example of “acceptable” security through obscurity:
they are useful only if the attacker doesn’t know them.

Again, let me illustrate my position by using an
example: DRM software. Any time one is attempting to
protect software from unauthorized copying, one runs
into the idea of security through obscurity. Essentially, if
the computer can run the software, it’s almost certainly
going to be possible to copy it. Similarly, with a copy-
protected document, if all else fails, I can always take a
picture of my screen. Almost all DRM software is, at some
level, security through obscurity: the bar is set only so
high. The trick is making sure it is high enough to deter
most attackers. Similarly, the protection offered by Micro-
soft Windows Vista’s much-discussed Kernel Patch Protec-
tion is of far less value if the source code is available. This
would allow attackers to chart the fastest route around it.

A counterpoint once again highlights the context I’m
talking about: encryption. As computer scientists, we can
make encryption arbitrarily difficult to break given cur-
rently known technology. If breaking the code involves
factoring a very large number, I can make good predic-
tions of how much effort an attacker needs to spend, and
that time doesn’t really depend on the attacker’s knowl-
edge of my software or algorithm. For such software, the
best route to security is to publish the algorithm and let it
be independently verified. So, what’s the difference?

The difference between these cases is simple: determin-
ism. In the case of the encryption software, the outcome
is deterministic. Knowing everything about the mecha-
nism doesn’t compromise the security of the outcome.
In contrast, for antivirus software the system is heuristic.
As such, some things benefit from disclosure, and some
things don’t. In these two cases, it’s obvious. Unfortu-
nately, that’s the exception, not the rule. The problem is
that many systems contain aspects that are heuristic and
aspects that are deterministic.

For a word processor, the question is different. You
might like your word processor to work reliably, but the
truth is that it contains bugs, and, potentially, security
vulnerabilities. The closed source approach makes it
expensive for anyone other than the developer to find

38 February 2007 ACM QUEUE rants: feedback@acmqueue.com

those bugs. The open source approach means it’s easy for
anyone trained in secure coding practices to find weak-
nesses. Both of these properties are double-edged, and it’s
not clear which provides the best long-term outcome.

CONCLUSION
Part of the reason why this topic is interesting is because
it is difficult: there are arguments on both sides that are
compelling. By being able to understand the nuances of
the question better, different aspects begin to become
clear. Both development methodologies have intrinsic
properties: which set of properties most appropriately fits
for a particular application is contextual.

Unfortunately, the cases where one is clearly better
than the other are few and far between. Most software

sits somewhat uncomfortably between the two. In such
cases, the makeup, philosophy, and training of the team
behind the software are far more important than whether
the project is open or closed source. Both methods can be
done well, and both can be done badly.

Understanding where each method is strong and
where it is weak is the first step toward process improve-
ment. Instead of focusing on either/or decisions, perhaps
it is ultimately more fruitful to follow both, using each
where appropriate. Software engineering is a young disci-
pline; time will answer if we approach the question with
full knowledge of our assumptions and shortcomings. Q

REFERENCES
1. Arbaugh, W. A., Fithen, W. L., McHugh, J. 2000.

Windows of vulnerability: A case study analysis. IEEE
Computer 33 (December): 52-59.

2. Anderson, R. J. 2002. Security in open versus closed
systems—the Dance of Boltzmann, Coase and Moore.
Presented at Open Source Software Economics.

3. Raymond, E. S. 1999. The Cathedral and the Bazaar.
Sebastapol, CA: O’Reilly.

4. Thompson K. 1984. Reflections on trusting trust. Com-
munications of the ACM 27(8): 761-763.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

RICHARD FORD graduated from the University of Oxford
in 1992 with a D.Phil. in quantum physics. Since that time,
he has worked extensively in the area of computer security
and malicious mobile code prevention. Previous projects
include work on the Computer Virus Immune System at IBM
Research and development of the world’s largest Web host-
ing system while director of engineering for Verio. Ford is an
associate professor at Florida Institute of Technology, where
he is the director of the Center for Security Sciences. His
research interests include malicious mobile code, behavioral
worm prevention, security metrics, and computer forensics.
Ford is executive editor of Reed-Elsevier’s Computers and
Security, Virus Bulletin and co-editor of a column in IEEE Secu-
rity and Privacy.
© 2007 ACM 1542-7730/07/0200 $5.00

SecurityFO
CU

S

MORE
Related articles in ACM’s Digital Library:

Joshi, A., King, S. T., Dunlap, G. W., Chen, P. M.
2005. Detecting past and present intrusions through
vulnerability-specific predicates. In Proceedings of the
Twentieth ACM Symposium on Operating
Systems Principles, SOSP ’05 (October).

Mercuri, R. T. 2005. Security watch: Trusting in
transparency. Communications of the ACM 48(5).

Neumann, P. G. 1999. Inside risks: robust open-
source software. Communications of the ACM 42(2).

Viega, J. 2005. Security—problem solved? ACM
Queue 3(5).

 These articles will be available online at
 www.acmqueue.com for an eight-week
 period beginning Feb. 1. Want full access?
 Join ACM today at www.acm.org and
 sign up for the Digital Library.

 vs. Closed

