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ABSTRACT
In software engineering experiments, the description of bug reports
is typically treated as natural language text, although it often con-
tains stack traces, source code, and patches. Neglecting such struc-
tural elements is a loss of valuable information; structure usually
leads to a better performance of machine learning approaches. In
this paper, we present a tool called infoZilla that detects structural
elements from bug reports with near perfect accuracy and allows us
to extract them. We anticipate that infoZilla can be used to lever-
age data from bug reports at a different granularity level that can
facilitate interesting research in the future.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging—diagnostics; D.2.7 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement

General Terms: Management, Measurement

1. INTRODUCTION
Bug reports are vital for any software development. They allow
customers to inform developers of the problems encountered while
using a software. Bug reports typically contain a detailed descrip-
tion of the problem in natural language text, which is used by re-
searchers to automatically assign developers [1] and locations [4],
recognize bug duplicates [9], and predict correction effort [10].
Occasionally bug reports also hint at the location of the defect

in form of stack traces, source code fragments, and patches that
we together refer to as elements. Because such information is of-
ten embedded in the description, they are treated by all approaches
mentioned above as natural language, although they should not be.
In this paper, we present infoZilla, a tool that detects and extracts

such elements from bug reports (and the following discussions) to
enable more prudent use of such information sources in bug reports.
Having additional information such as stack traces and source code
separated from natural language yields several advantages for re-
search: it gives access to more and structured data, facilitates better
training of machine learners, and allows research based on specific
interests, e.g., only stack traces to automatically detect assignment
of bug reports.
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The paper begins with details about the implementation of in-
foZilla (Section 2) and then moves on to its evaluation that entailed
manual inspection of 800 ECLIPSE bug reports (Section 3). We
found that our tool comes with very high accuracy, precision, and
recall, all very close to perfect. Thereafter, potential research appli-
cations of the tool are discussed (Section 4) and lastly, we conclude
the paper with some threats to validity (Section 5) and our plans for
future work (Section 6).
To our knowledge there is only little related work: Bird et al. de-

scribe how to detect patches in mailing lists [7] and Dekhtyar et
al. discussed the opportunities and challenges for text mining [5].

2. METHODOLOGY
We implemented infoZilla, a tool that allows us to detect and ex-
tract a number of elements from bug reports and their discussions.
We implemented several filters to detect and extract these elements.
This section summarizes the filters and discusses some of the chal-
lenges we encountered while developing them.

2.1 Elements in Bug Reports
Bug reports often diverge in the quality and quantity of information
provided on the encountered problem. A report commonly contains
a detailed description of a failure. If the information given there is
not sufficient, to point to the location of the fault, developers have
the possibility to start a discussion on the report to resolve issues.
Elements that often provide hints at a problem’s cause, come in
form of technical entities like stack traces or patches. As we have
learned from previous work [2], developers are substantially inter-
ested in:

Patches. The common format of a patch is the uniform diff for-
mat. They represent a small piece of software designed to
update or fix problems with a computer program or its sup-
porting data.

Stack Traces. Reports of the active stack frames in the calling
stack upon execution of a program are widely used to aid
debugging by giving hints to the origin of problem.

Source Code. Small to medium sized code examples are used to
illustrate a problem, describe the environment in which a
problem occurred or even represent a sample fix to the prob-
lem described in the report.

Enumerations. They (and itemizations) are used to list items, de-
scribe a causality chain or a sequence of actions to take to
reproduce or fix a problem. They add structure to the text of
a report and ease reading and understanding it.
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Index: PrecisionRectangle.java

===================================================================

RCS file: /home/tools/org.eclipse.draw2d/src/org/.../PrecisionRectangle.java,v

retrieving revision 1.10

diff -u -r1.10 PrecisionRectangle.java

--- PrecisionRectangle.java 21 Jun 2004 19:57:55 -0000 1.10

+++ PrecisionRectangle.java 23 Jun 2004 20:27:25 -0000

@@ -182,6 +182,31 @@

 return this;

 }

 

+/**

+ * Unions the given PrecisionRectangle with this rectangle and returns ...

(a) Patch (ECLIPSE #68407)

java.lang.Exception

at java.lang.Throwable.<init>(Throwable.java)

at org.eclipse.ui.actions.DeleteResourceAction.delete

(DeleteResourceAction.java:325)

at org.eclipse.ui.actions.DeleteResourceAction.access$0

(DeleteResourceAction.java:305)

at org.eclipse.ui.actions.DeleteResourceAction$2.execute

(DeleteResourceAction.java:429)

at org.eclipse.ui.actions.WorkspaceModifyOperation$1.run

(WorkspaceModifyOperation.java:91)

at org.eclipse.core.internal.resources.Workspace.run

(Workspace.java:1673)

at org.eclipse.ui.actions.WorkspaceModifyOperation.run ...

(b) Stack Trace (ECLIPSE #68392)

When using tabs to format, they should be used only for leading indents and 

not to line up columns of parameters. For example:

public class SomeClass {

    public void someMethod() {

        System.out.println("This is a test"

                           + "of the formatter");

    }

}

In this code the second line of the println statement would be indented using 

two tabs and then 19 spaces. This would make sure that the code lines up no 

matter what users set their tabs to. This is a REALLY important thing for ...

(c) Source Code (ECLIPSE #68369)

I am testing the Performance Monitor in RCP.  Everything works except for one 

little thing.  It may well be a bug.  Here are the steps to recreate:

SETTING UP AND INSTALLING THE TESTCASE:

1. Start with a fresh install, unzipped to d:\eclipse-SDK-3.0RC3

2. Also unzip the RCP Runtime Binary to d:\eclipse-RCP-3.0RC3

3. Start Eclipse SDK from (1), load the four org.eclipse.perfmsr* plug-ins 

into your workspace (they are in the org.eclipse.sdk.tests-features project on 

dev.eclipse.org).  You must use the code currently in HEAD.

4. Unzip the attached code to your workspace, import it.  It is a "hello 

world" RCP application using the Performance Monitor.  It is 

called "helloworld.rcp".

(d) Enumeration (ECLIPSE #68361)

Figure 1: Samples of Elements in ECLIPSE reports.

2.2 Challenges
Several challenges pose themselves when detecting and extracting
structural elements from bug reports. These elements, when copied
into a bug reports, are often surrounded by comments, debug mes-
sages, annotations and similar natural language text. Furthermore,
copying and pasting these elements into reports leaves room for
many undesired consequences like accidental line breaks, prema-
ture ends or unanticipated edits. We identified and successfully
tackled two most severe problems when trying to extract the ele-
ments from the reports:

1. Line Breaks. Elements like enumerations, patches or stack
traces are closely knit in a line-wise design. Newline char-
acters other than at the end of a line may break their formats
and makes detection very difficult. We allowed for accidental
line breaks whenever this added to the robustness of our al-
gorithms without generating too many false positives. With-
out this enhancement, degenerated structural elements would
either fail to be recognized by a filter or only be partially de-
tected and extracted, causing a higher amount of false nega-
tives.

2. Unconfined Ends. For all elements, it is hard to detect where
the element ends and the remaining description starts again.
In patches there are context lines, in source code there are
comments, stack traces can contain natural language excep-
tion messages and enumerations can span across multiple
paragraphs. For each filter we hand-tuned heuristics that con-
sider paragraphs, line counts, whitespace and alike, to detect
the endings of the elements. Without this enhancement, most
filters would still be able detect specific elements, but cause
the extraction to be incorrect, at worst extracting the com-
plete remainder of the report.

2.3 Detailed Discussion of Filters

Patches Filter. Patches are an integral part of the software de-
velopment process. They are used to update or fix issues in the
software. Patches can either be binary, or text. Text patches are

based on the uniform diff format [6]. A typical patch, as shown
in Figure 1(a), has several well-defined parts:

• an optional patch index that identifies a patch.
• a description of the original file including date and time.
• a description of the modified file including date and time.
• at least one patch hunk, i.e., the section to be patched

Detecting and extracting patches is hence straight forward. We
implemented a parser that searches line-by-line for a possible start
of a patch, then parses every patch accounting for all parts. We im-
plemented a number of heuristics that handle early line breaks and
loose patch ends—two problems commonly observed with copied
and pasted patches in bug reports [3].

Stack Traces Filter. A stack trace is a record of the execution
of a software, showing the sequence of instructions executed up to
an occurred crash. Figure 1(b) shows an example of a stack trace.
Typically stack traces have several well-defined parts as well:

• the exception, error or assertion that has been violated.
• an optional exception- or error message.
• a calling stack.

Their well-defined composition can be leveraged for identification
by use of regular expressions. We abstract a template for stack
traces as follows:

( [MODIFIER]? [EXCEPTION] ) ([:] [MESSAGE])?
( [at] [METHOD] [(] [FILE] [:] [LINE] [)] )*

To successfully extract the stack traces, this template serves as a
good starting point to model regular expressions. From this model,
we derived a set of regular expressions, that identify parts of the
bug report that contain the stack traces. Further expressions are
then used to robustly split up the textual representation for extra
detail.
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PATCHES STACK TRACES SOURCE CODE ENUMERATIONS

package de.unisb.cs.st.infoZilla;
import java.util.List;
/**
 * This Filter class acts as an interface for 
the PatchParser class
 * that has to be instantiated before using 
it.
 * @author nicbet
 *
 */
public class FilterPatches implements IFilter 
{

private 
FilterTextRemover textRemover;

public 
FilterPatches() {

}
/**
 * Filter a list of 

{@link Patch}es from a text {@link s}
 * @param text the 

text we should look for patches inside
 * @return a List of 

{@link Patch}es.
 */
private List<Patch> 

getPatches(String text) {
// Setup Helper 

classes
textRemover = new 

FilterTextRemover(text);
PatchParser pp = new 

PatchParser();

// Find Patches
List<Patch> 

foundPatches = pp.parseForPatches(text);

// Filter them out
for (Patch patch : 

foundPatches) {

textRemover.markForDeletion(patch.getStartPosi
tion(), patch.getEndPosition());

}
return foundPatches;
}

public String 
getOutputText() {

return 
textRemover.doDelete();

}
public List<Patch> 

runFilter(String inputText) {
return 

getPatches(inputText);
}

} ECLIPSE
BUG

package de.unisb.cs.st.infoZilla;
import java.util.List;
/**
 * This Filter class acts as an interface for 
the PatchParser class
 * that has to be instantiated before using 
it.
 * @author nicbet
 *
 */
public class FilterPatches implements IFilter 
{

private 
FilterTextRemover textRemover;

public 
FilterPatches() {

}
/**
 * Filter a list of 

{@link Patch}es from a text {@link s}
 * @param text the 

text we should look for patches inside
 * @return a List of 

{@link Patch}es.
 */
private List<Patch> 

getPatches(String text) {
// Setup Helper 

classes
textRemover = new 

FilterTextRemover(text);
PatchParser pp = new 

PatchParser();

// Find Patches
List<Patch> 

foundPatches = pp.parseForPatches(text);

// Filter them out
for (Patch patch : 

foundPatches) {

textRemover.markForDeletion(patch.getStartPosi
tion(), patch.getEndPosition());

}
return foundPatches;
}

public String 
getOutputText() {

return 
textRemover.doDelete();

}
public List<Patch> 

runFilter(String inputText) {
return 

getPatches(inputText);
}

}PROCESSED
BUG

Figure 2: Chain of filters used for detection and extraction of structural elements.

Source Code Filter. Code fragments as shown in Figure 1(c),
also called “snippets”, are often used in bug reports to support the
information given on a problem. These code fragments are often
annotated or incomplete. They cannot be easily distinguished from
the surrounding text by traditional approaches because neither do
they conform to a parser’s grammar definition, nor can they be com-
piled.
We base our filter on an island parsing approach [8]: initially, the

complete input is treated as water. A fuzzy JAVA code parser then
looks for a set of JAVA language constructs like classes, functions,
conditional statements or assignments in the given input. These
serve as starting points, or islands. We then explore the surrounding
text of the islands and keep expanding the source code regions until
no more code regions can be found.
The challenge is to get a good recall in the fuzzy parser, while

minimizing false positives. Many JAVA language constructs resem-
ble the English language, which adds to the ambiguity that the
parser has to deal with. We overcome these issues by requiring
the most ambiguous statements, such as assignments or function
calls, to be the only content in the line.

Enumerations Filter. To detect and extract Enumerations, we
implemented a parser that looks for occurrences of enumerations
(1, 2, 3, . . . ), line-by-line, that start with letters or numbers. By al-
lowing additional symbols such as +, -, and *, we easily extended
the model to recognize itemizations.
Enumerations typically begin with numbers or symbols at the

start of the line. These are often delimited from the content by
stops (.) or brackets. Whenever a line confirming to this model
is found, we add the content of the corresponding segment to the
enumeration. This iteration continues until a symbol violates the
requirement of incrementing numbers, or a paragraph ends and no
more enumeration symbols are to be found.

Order of Filters. The order in which these filters are executed
is important since some structural elements interfere. To cope with
such interferences, we use the filter sequence presented in Figure 2:
we first extract patches and stack traces from the reports because
they are large but well-defined elements that can be extracted with
least ambiguity. Then, we detect and extract code fragments and
lastly, enumerations. This is because code snippets are often con-
tained in enumerations. The serialization of the filters described,
is necessary in our approach. Changing the application order of
our filters will result in a large amount of false positives and false
negatives. For examples enumerations and patches interfere with
each other: + or - mark the start of lines for both, patches and
enumerations.

3. EVALUATION OF THE TOOL
Next, we evaluate the performance of infoZilla on ECLIPSE bug
reports. The focus is to correctly identify the presence of enumera-
tions, patches, stack traces, and source code in bug reports. In this
section, we present the setup for evaluation, followed by results.

Table 1: Description of Terms used in Evaluation.

Term Short Description

True Positive TP A report correctly classified to P .
True Negative TN A report correctly classified to P .
False Positive FP A report wrongly classified to P .
False Negative FN A report wrongly classified to P .

3.1 Setup of Experiments
We parsed 161,500 ECLIPSE bug reports to evaluate infoZilla. For
each report, the tool verified the presence of the four elements; for
each element, it classified the report in one of two bins: has (P ) or
has not (P ). To evaluate classification accuracy, from each bin, we
randomly selected 100 bug reports to arrive at a total of 800 bug
reports. Then, we manually inspected these reports to verify if they
have been correctly classified, indicating the presence or absence
of the respective elements. This gives the number of true positives,
true negatives, false positives, and false negatives for each element
(see Table 1), values that we used to calculate accuracy, precision
and recall for the tool [11]. Thus, for every element, we calculate
the following performance measures:

Accuracy relates the number of correct classifications to the total
number of classifications.

Accuracy(x) =
(TPx + TNx)

(TPx + FPx + TNx + FNx)

Precision relates the number of true positives to the total number
of instances classified as positives.

Precision(x) =
(TPx)

(TPx + FPx)

Recall relates the number of true positives to the total number of
true positives and false negatives.

Recall(x) =
(TPx)

(TPx + FNx)

3.2 Results of Experiments
Table 2 shows the values for TN, FN, FN and FP values we recorded
during our evaluation for each element. We observe that all filters
performed with remarkable accuracy. We discuss each the results
for each element below:

1. Patches. infoZilla can detect Patches with perfect accuracy.
This is partly because the format of Patches is well defined
and hence, their beginnings and ends can be reliably traced.
In ECLIPSE, we found a total of 147 patches.

2. Stack Traces. Stack Traces were detected with an accuracy
of 98.5%. Unlike Patches, their formats are not so well-
defined and hence, regular expressions were put to use for
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Table 2: Results of Performance Measures.

Percentage

Element Accuracy Precision Recall

Patches 100,00 100,00 100,00
Stack Traces 98,50 97,08 100,00
Source Code 98,50 98,00 98,88
Enumerations 97,00 99,00 95,19

their detection. We found a total of 13,997 stack traces in
ECLIPSE. We did not find any false positives during the eval-
uation. False negatives resulted from bad formatting of the
stack frames or traces interwoven with natural language text.

3. Source Code. The accuracy of detecting Source Code is sim-
ilar to Stack Traces. We found a total of 19,229 instances of
sample code or code snippets. False positives and negatives
originated from the ambiguity of source code when trying to
be distinguished from natural language text. Our method is a
compromise between precision and recall.

4. Enumerations. They too were detected with a high accuracy
of 97%. While enumerations come in many flavors, most
often letters (a,b,c,...) or numbers (1,2,3,..) are used together
with delimiter such as stops (.) or braces. We found 29,967
enumerations in ECLIPSE. False positives and false negatives
originated from the fact that bug reporters are very creative
in enumerating items. In our approach, we tried to cover the
most conventional ones.

4. POTENTIAL APPLICATIONS
In the introduction, we claimed that infoZilla opens several avenues
for research based on the extracted elements from the bug reports.
To demonstrate this, we present three potential applications of the
tool—research already near completion by the authors.
First, results from infoZilla can assist directing research towards

special interest elements. One example is the patterns in crashing
of methods observable in stack traces. An analysis of the patterns
reveals the methods that crash most often and to which we must
spend more testing efforts on.
Second, we are currently investigating the value of duplicate bug

reports by examining the differences in their contents. The results
reflect will upon whether duplicate bug reports should be viewed
under favorable light by developers and be rather encouraged.
Lastly, we have developed a search facility better suited to bug

databases. Developers can use it to find specific information related
to bug reports, such as "Find me all patches and stack traces related
to Bug # 12345."

5. THREADS TO VALIDITY
We now briefly discuss possible threads to validity of our work. For
each element, we randomly sampled 200 reports out of 161,500 in
our database. This might not suffice to give a representative pic-
ture all possible failures that can occur while detecting elements.
Also, we had to inspect a random sample manually leaving some
room for human error. However, to reduce the likelihood of such
error, we developed and used a graphical user interface for eval-
uation. Another persistent threat is the difference in opinions on
what qualifies as structural element. For example, the presence of
references to method calls in the report may or may not qualify as
a code snippet.

6. CONCLUSION AND CONSEQUENCES
Bug reports typically comprise a problem description in natural
language text and often, structural elements such as patches, stack
traces and source code. Research to date using of bug reports have
treated all contents as natural language text, but research can po-
tentially benefit from treating such elements differently. We devel-
oped a tool, infoZilla, that extracts these elements from the reports
with near perfect accuracy, as demonstrated by our evaluation of
800 ECLIPSE bug reports. Access to such piecewise elements from
bug reports opens doors to several possibilities for research, for ex-
ample, assignment of bug reports to developers and detection of
duplicates, and more. Future work will focus on exploring several
such research topics based on the extracted elements.
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