
Branching and Merging in the Repository
Chadd Williams
Pacific University

2043 College Way
Forest Grove, OR 97116

+1 503-352-3041

chadd@pacificu.edu

Jaime Spacco
Colgate University

13 Oak Dr
Hamilton, NY 13346

+1 315-228-7650

jspacco@mail.colgate.edu

ABSTRACT
Two of the most complex operations version control software
allows a user to perform are branching and merging. Branching
provides the user the ability to create a copy of the source code to
allow changes to be stored in version control but outside of the
trunk. Merging provides the user the ability to copy changes from
a branch to the trunk. Performing a merge can be a tedious
operation and one that may be error prone. In this paper, we
compare file revisions found on branches with those found
on the trunk to determine when a change that is applied to a
branch is moved to the trunk. This will allow us to study how
developers use merges and to determine if merges are in fact more
error prone than other commits.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]: Version
control – Restructuring, reverse engineering, and reengineering.

General Terms
Management, Measurement, Documentation, Design.

Keywords
Repository, mining, Subversion, diff, change.

1. INTRODUCTION
Branching the source code and then merging changes applied to
the branch back to the trunk is a very difficult operation. The
developer must determine how changes from a branch interact
with a trunk that may have been heavily modified since the
branch was created. Given such a tedious task, we want to
determine if merges are especially error prone when compared to
other commits in the repository. Unfortunately this information is
not tracked by version control systems and developers are
inconsistent about marking merges in commit messages.

Branches may be used for many different purposes in the
repository but are typically used to shield the trunk from unstable

code. Some projects use branches to work on bug fixes, only
merging back changes once the bug is fixed. Other projects use
branches for adding new features, keeping unfinished code away
from the trunk. Still other projects use branches to represent a
release of the software which allows maintenance work to
continue without intrusion from the main line development.

The goal of the paper is to identify when and where merges take
place. Specifically, we are looking for parallel file revisions.
These are pairs of file revisions, one on a branch and one on the
trunk, where the content of the changes applied is the same. This
is useful for identifying places where some changes made to a
branch are applied to the trunk. This is the first step to identifying
merges in the repository.

The method presented here relies heavily on a deep syntactic
analysis of source code changes and on having a strong line
number mapping algorithm that allows us to track specific lines of
code. The syntactic change analysis allows us to determine that
the content of two file revisions is the same. The line number
mapping between versions allows us to ensure that changes are
applied to the same lines in each version of the file.

2. IDENTIFIYING SYNTACTIC CHANGES
The deep syntactic analysis we perform on the source code
changes is done using the DiffJ tool [9]. This is an open source
tool which will perform a Java-aware diff, as opposed to a textual
diff, between two source files. The set of changes produced by
DiffJ describe the changes made in terms of the Java syntax.
Samples of the set of changes DiffJ will identify are listed in
Table 1. In addition to line number information provided by
every DiffJ change type, certain DiffJ changes provide extra
context data as noted in the table.
We did modify the DiffJ tool to provide an API interface rather
than running it via the command line. Our changes also added
some additional context information to the changes.

Table 1: Sample of DiffJ Change Types

Change Type Context Data

importAdded Name of imported package

methodAdded Name of added method and class

parameterTypeChanged Old and new types

codeChange None

codeRemoved None

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MSR’08, May 10–11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05...$5.00.

19

3. LINE MAPPING
We use a line-mapping algorithm to track unique source lines as
they evolve across many revisions. Our work is based on the line
number matching scheme described by Spacco, et al., in [10] and
Canfora, et al. in [4].
The line number mapping is done on a per-method and per-class
basis. For this we use the normalized Levenshtein [8] edit
distance (true edit distance / maximum possible edit distance
between the two lines based on the length of each line) between
the lines of source code in the method or class in each version of
the file to provide weights for the edges of a bipartite graph. We
then find a minimum weight bipartite matching (using the Kuhn-
Munkres algorithm) to determine the best mapping between the
two versions of the code.
The Kuhn-Munkres algorithm finds the best mapping for all sets
of lines [7]. This means that it may map two significantly
different lines to each other when there is no better match
available. To combat this, we store the Levenshtein edit
difference for every pair of mapped lines. When using the line
mapping data we only consider mappings where the normalized
Levenshtein edit distance is sufficiently low (less than 0.4 as in
[4]).

4. FINDING SIMILAR FILE REVISIONS
Similar file revisions are defined as file revisions that have the
same, or nearly the same, types of changes at the same line
numbers in two different versions of the same file. It should be
noted that we are looking for similar file revisions, not similar
commits. A file revision is a change to a single file; a commit is a
set of file revisions made at the same time by the same author.
Figure 1 shows repository commits (C#) containing file revisions
to individual files (f#) on the trunk and branch.

4.1 Algorithm
The goal of this analysis is to identify pairs of file revisions, one
from a branch and one from the trunk, applied to a file that
contain the same, or nearly the same, set of changes. First the
change profile of each file revision is determined. The change
profile is simply the number of changes per type of syntactic
change in a file revision. Each file revision on each branch is then
compared with all file revisions to the same file on the trunk.
Pairs of file revisions with similar change profiles are further
inspected by comparing individual syntactic changes. Syntactic
changes are compared using contextual information (as described
in Table 1) when it is available, and through the line number
mapping if the contextual information is missing or ambiguous.

The change profiles for file f2 in commit C4 and C5 are shown in
Figure 2. All but one change, code changed in m3(), in C5 can be
matched (via their change type) with a change in C4. This

indicates that this pair of file revisions is a potential parallel file
revision and a deeper analysis is done. The details of the
comparison are described below.

4.1.1 Change Analysis
Consider Figure 3, where we see changes to file f1 with similar
profiles, in commit C6 on a branch and also C7 on the trunk.
Upon closer inspection of the context information provided by
DiffJ, we see that, while both C6 and C7 change some code in
method m1() and add a method, C6 adds method m2() while C7
adds method m3(). Additionally, C6 changes the return type of
method m4(). Thus these two revisions are unlikely to be parallel
file revisions.
There are situations where the context information returned by
DiffJ is insufficient to determine whether two change profiles are
the same; for example, parameterTypeChanged contains context
information that denotes the old and new type of the parameter
but does not specify the method or parameter involved. In these
situations, we use the line number mapping information to ensure
that two revisions actually touch the same lines of a file.

4.1.2 Line Number Mapping Analysis
Each contextually ambiguous change in the file revision on the
branch is compared with each similarly typed change from the file
revision on the trunk to determine if they are changes to the same
line(s) of source code. To do this checking, the line number
mapping information from section 3 is used. The lines involved
in the change on the branch are traced back through previous
versions until the line’s ancestor on the trunk is found. If the line
was created on the branch, its history will terminate before the
trunk is reached. In this case the change on the branch cannot
match to a change in the trunk file revision. Once the line’s
ancestor on the trunk is found, the line is traced forward on the
trunk until the file revision is question is reached. If the line is
deleted from the trunk (or altered as to become unrecognizable to
the line mapper) before the trunk file revision is reached the
change on the branch cannot match the change on the trunk. If
the line does have a history that extends to the file revision in

Figure 3: False Parallel File Revision

Figure 2: Parallel File Revision, Detail

Figure 1: Commits on the Trunk and Branch

20

question on the trunk, then the similarly typed changes in the
trunk file revision are checked to determine any of them contain
this line. If the line is found to be involved one of these changes,
then a match is made and the next change is investigated.

4.1.3 Metric
The result of this analysis is the Similarity metric. This calculation
is shown in Figure 4. This value represents the percent of the total
changes in the two file revisions that are matched successfully. This
gives a normalized value between 0 and 1.

4.2 Opaque Changes
Unlike ChangeDistiller [5], DiffJ does not perform any analysis
of the changes to the abstract syntax trees (ASTs) of method
bodies other than identifying places in the method where code
was added or changed, resulting in the opaque change types
codeChange and codeAdded. A change type is classified as
opaque if it does not provide enough syntactic data to determine if
two changes of that type contain the same change to the code.
The difficulty is that even if we can use the line-number mapping
information to infer that pairs of these opaque changes occur on
the same line, we still don’t have enough syntactic information to
determine if the same change is being applied to each line or if
two different changes are being applied. Figure 5 demonstrates
this problem. The two changed lines originate from the same
source line in they trunk. However, the line in the trunk has had
an extra change applied (C2). Even though the changes in C3 and
C4 are the same, the resulting lines are different and we cannot
easily determine that the changes are the same.
To compensate for this, a further metric is calculated, confidence.
The confidence metric takes into account the number of opaque
changes (codeChange or codeAdded) that are matched
successfully. The confidence metric is calculated in a similar
manner to Similarity, however all of the codeChanges and
codeAddeds are assumed to have not matched. This gives a worst
case confidence value. This calculation is shown in Figure 4.

A pair of file revisions containing opaque changes is shown in
Figure 2. Assume that the line numbers involved in all changes
match, except for the codeRemoved (which cannot possibly match
since it only happens in one file revision). The similarity for this
pair of file revisions is 0.91, as 10 of 11 changes match. The
confidence, however, is only 0.72, since we automatically assume
the two codeChanges do not match (8 of 11).

5. RESULTS
We performed our analysis on the ArgoUML repository [1]. We
converted the initial ArgoUML repository from CVS to
Subversion using the cvs2svn converter tool [2], which recovers
the atomic commits [11]. The developers of ArgoUML have
converted their CVS repository to Subversion using the same
cvs2svn converter. All new work in the ArgoUML project is
stored in this converted Subversion repository
The changes we have mined span from January 1998 to December
2005. In that time there were 9,284 commits made to the
repository which contained 54,510 file revisions. This repository
contained 70 branches plus the main trunk of development. Of
the 70 branches, 49 were branched from the trunk, 16 were
branched from other branches, and 6 were created as an artifact of
the CVS to Subversion conversion. Most of the branches contain
a small number of commits. Only 15 of the 70 branches contain
10 or more commits, however 45 branches contain 100 or more
file revisions and only 15 branches had 50 or fewer file revisions.

5.1 Parallel File Revisions
In the ArgoUML repository we found 386 pairs of file revisions
that have a confidence metric of 0.75 or higher. We will focus on
these file revisions which touch 24 commits on the trunk and 52
commits on a branch. All but one of these file revision pairs was
a change on a branch that was later applied to the trunk.
The average time between similar file revisions was found to be
7.4 days; the median time between similar file revisions was 6.1
days. Interestingly, the pair of file revisions with the largest gap,
123.3 days, appears to be a very similar file revision, both are
adding the method getContainer() to the same class. Each file
revision also appears to be the result of a bug report (issue 1722
and issue 2128, respectively).

5.2 Suspected Merges
We inspected all 23 trunk commits that matched with a commit
that was first made on a branch. Of these, 16 of the commits had
a commit message that reported the commit was the result of a
merge. Two of the commits had a commit message stating that
the changes fixed a particular issue number from the bug
database, where that issue number was used as the name of a
branch. One other commit claimed to be an upgrade of antlr
which appears to be a merge of branch devoted to antlr work.
We also identified a number of parallel file revisions with a
confidence of less than 0.75. These pairs of file revisions touched
34 commits on the trunk. We inspected these file revisions and
found that an additional 4 had commit messages that denoted a
merge and another 10 mentioned the fix of a particular issue
number from the database that had a branch named after it.

6. RELATED WORK
Canfora et al [4] describe an algorithm for tracking unique line
numbers across many versions of software. Their algorithm uses
Levenstein edit distance to compute similarity of lines and
matches “hunks” of changed code between two versions of code.
A similar approach to tracking lines was also described in [10].
Clone detection is similar to tracking unique lines in that both try
to identify segments of code where, although not exactly the
same, one code segment has evolved from the other. Kim et al
provide an excellent overview of the four basic approaches to

Figure 5: Opaque Change

Similarity = (totalChanges – unpairedChanges) /
totalChanges

Confidence = (totalChanges – unpairedChanges –
matchedOpaqueChanges) / totalChanges

Figure 4: Metrics

21

clone detection [6], all of which rely on the analysis of higher-
level language constructs than lines of source code, such as
program dependence graphs or abstract syntax trees.
Zimmerman et al [12] describe an algorithm for tracking source
lines across versions to discover lines that are frequently changed
together, changed by different authors, or changed most
frequently. Their approach does not use edit distance to try to
match individual lines of a modified chunk, but rather assumes
that any modified line in version one of a file can be matched
with any modified line in version two of a file. Large
modifications are ignored in order to make the analysis more
tractable.
Godfrey at al describe “origin analysis” [13], a general technique
for tracking entities across multiple revisions of a source code
base. The key idea behind origin analysis is to store inexpensively
computed and cheaply comparable “fingerprints” of interesting
software entities for each revision of a file. These fingerprints can
then be used first to identify areas of the code that are likely to
match before applying more expensive techniques for tracking an
entities, such as ASTbased clone detection techniques..

7. FUTURE WORK
We need to look further at inspecting the opaque changes
codedChanged and codeAdded at a deeper level. This will allow
our analysis to more accurately determine which file revisions
contain the same changes. This will also allow us to remove the
confidence metric and only use the Similarity measure. This may
mean moving to a tool that gives more fine-grained results than
DiffJ currently does.
The current analysis works only on the file revision level. This
identifies instances when a large revision is made on the branch
and a similar revision is made on the trunk. This, however, is not
the only expected merge behavior. It may be the case that the
branch contains many small revisions to a file and the sum of
those revisions is merged to the branch at once. If each of the
individual revisions to the branch are small, and there are many of
them causing the commit to the trunk to be large, either no
parallel file revision will be found for the trunk revision or the
confidence will be very low. To properly identify this case, we
need to look at the sum of the revisions on the branch and
compare that sum to the revision made on the trunk. In that
scenario, we would not be relying on the fact that the branch
contains a few large revisions that are easily matchable to the
trunk. The difficulty of determining the sum of changes to a
branch arises from the fact that the same line in a file may be
changed multiple times in a branch before the correct fix is found.
This will require a deeper analysis of the changes on the branch
rather than a simple summation.
The normalized nature of the Similarity and confidence metric
allows parallel file revisions of different sizes (different number
of changes) to be compared. However, this also has the effect of
making a pair of file revisions with a single matching change in
each file revision appear to be a very strong match (similarity of
1). We need to investigate further if file revisions with more
change types indicate a better match.
So far we have only applied this technique to one open source
project, ArgoUML. We will need to apply this technique to a
wide range of projects to gain a better understanding of how
branches and merges are used in the wild.

This analysis currently only looks at similar file revisions
between branches and the trunk. We also would like to study
similar file revisions between two branches. Software version
control packages allows branches to be created from the trunk or
other branches and so it will be instructive to how many similar
file revisions can be found on different branches.

8. ACKNOWLEDGMENTS
Our thanks to Jeff Pace for making DiffJ available and useful and
the reviewers for their helpful comments.

9. REFERENCES
[1] ArgoUML, http://argouml.tigris.org, 2007.

[2] CVS to Subversion Repository Converter,
http://cvs2svn.tigris.org 2007.

[3] T. Apiwattanapong, A. Orso, and M. J. Harrold. Jdiff: A
differencing technique and tool for object-oriented programs.
ASE Journal of Automated Software Engineering, (1):3–36,
March 2007.

[4] G. Canfora, L. Cerulo, and M. D. Penta. Identifying changed
source code lines from version repositories. In MSR ’07:
Proceedings of the Fourth International Workshop on Mining
Software Repositories, page 14, Washington, DC, USA, 2007.
IEEE Computer Society.

[5] B. Fluri and H. C. Gall. Classifying change types for qualifying
change couplings. In ICPC ’06: Proceedings of the 14th IEEE
International Conference on Program Comprehension
(ICPC’06), pages 35–45,Washington, DC, USA, 2006. IEEE
Computer Society

[6] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical
study of code clone genealogies. In ESEC/FSE-13: Proceedings
of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 187–196, New
York, NY, USA, 2005. ACM.

[7] Kuhn, H., "The Hungarian Method for the assignment problem",
Naval Research Logistics Quarterly, 2:83-97, 1955.

[8] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Cybernetics and Control Theory,
(10):707–710, 1966.

[9] J. Pace. A tool which compares java files based on content.
http://www.incava.org/projects/java/diffj, 2007.

[10] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect
warnings across versions. In MSR ’06: Proceedings of the 2006
international workshop on Mining software repositories, pages
133–136, New York, NY, USA, 2006. ACM.

[11] C. Williams and J. Hollingsworth. Automatic mining of source
code repositories to improve bug finding techniques. IEEE
Trans. Softw. Eng., 31:466–480.

[12] T. Zimmermann, S. Kim, A. Zeller, and J. E. James Whitehead.
Mining version archives for co-changed lines. In MSR ’06:
Proceedings of the 2006 international workshop on Mining
software repositories, pages 72–75, New York, NY, USA, 2006.
ACM.

[13] L. Zou. Using origin analysis to detect merging and splitting of
source code entities. IEEE Trans. SoftwEng., 31(2):166–181,
2005. Member-Michael W.Godfrey.

22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

