
Expertise Identification and Visualization from CVS

Omar Alonso Premkumar T. Devanbu
Dept. of Computer Science

University of California at Davis
 {oralonso, gertz, ptdevanbu}@ucdavis.edu

Michael Gertz

ABSTRACT
As software evolves over time, the identification of expertise
becomes an important problem. Component ownership and team
awareness of such ownership are signals of solid project.
Ownership and ownership awareness are also issues in open-
source software (OSS) projects. Indeed, the membership in OSS
projects is dynamic with team members arriving and leaving. In
large open source projects, specialists who know the system very
well are considered experts. How can one identify the experts in a
project by mining a particular repository like the source code?
Have they gotten help from other people?

We provide an approach using classification of the source code
tree as a path to derive the expertise of the committers. Because
committers may get help from other people, we also retrieve their
contributors. We also provide a visualization that helps to further
explore the repository via committers and categories. We present
a prototype implementation that describes our research using the
Apache HTTP Web server project as a case study.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics - Empirical, Open Source

General Terms: Design, Experimentation

Keywords
Classification, expertise identification, information visualization.

1. INTRODUCTION
A well-known question in software development is “who owns
X?” or “who are the experts for Y?” In the context of open
source, we define an expert as somebody who has contributed a
significant number of transactions over time. While only a
relatively small number of people are developers, who have
commit privileges, many others actually contribute to the source
code. We thus distinguish between developers and contributors.

In this paper, we present a mechanism for detecting expertise
using a rule-based classification approach. We also examine the
relationship of contributors to developers, and how much help the
contributors actually provide. To discover this information we

mine a CVS data source to find submissions and contributors per
transaction. We argue that with a CVS logfile and a good high
level description of the source code tree, it is possible to
automatically identify expertise. There are several ways of
identifying expertise in a particular domain given different
information sources. In this work, we would like to identify as
experts those developers who have a high number of transactions
over a period of time. The overall quality of those transactions
and their relationship with other sources like a bug database are
out of the scope of this paper.

Recently, exploratory search systems have emerged as a
specialization of information exploration to support serendipity,
learning, and investigation of large data sets [16]. In this paper,
we provide an exploratory tool that allows the examination of the
data about expertise and contribution to open-source projects in
more detail. By now, it has been well established (e.g., in the
Apache project) that there is a relatively small group of
developers who actually make those changes. This would indicate
that the structure is very similar to a traditional industrial
development team. But in fact, there are others who contribute
source code, bug fixes, patches etc. Their contributions play a
significant role in the success of these projects. Naturally, several
questions arise. Who are the experts? Are they in the hundreds?

Research in mining software repositories has been very active
lately with many projects working beyond just source code. Email
and CVS sources contain rich data for a wide range of analysis
[12], [13], [14]. The social aspect is also an important component
of the mining process like the identification of active participants,
owners in a project, and overall structure of a team [4], [6], and
[10]. There are a number of projects about CVS visualization and
developers evolution [5], [8], [9], [15]. A project that mixes
expertise identification via clustering and visualization in an
enterprise setting is presented in [3].

2. DATA PREPARATION
We use a database-driven approach framework for the analysis
and exploration of software repositories [1]. This framework
provides database and mining techniques for the integration,
processing, analysis, and management of different types of open
source repository data.

2.1 CVS characteristics
A CVS log file usually has a field where a developer is expected
to enter detailed information about the transaction, such as which
bug was fixed (if there is one open), who submitted the patch (if
there is a submission) and who has reviewed it. From the data
characteristic perspective, it is semi-structured data: good
structure for some items (like author, file name) and unstructured
for the messages and comments part, as shown in this example:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’08, May 10–11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05...$5.00.

125

<entry><date>2004-08-11</date>
<weekday>Wednesday</weekday>
<time>15:44</time><author>wrowe</author>
<file><name>modules/proxy/proxy_ajp.c</name>
<revision>1.6</revision></file>
<msg>Close only when needed.
Submitted by: jfclere</msg></entry>

In practice, developers do not always enter all the elements that
are expected; the mining tools must be robust in cases where data
is missing. However, when available, this is potentially very
useful information: the identity of the person who is credited for a
contribution to a particular commit. This data gives us useful
information about the relationship between contributors and
developers, and the effects of the contributor/committer
relationship on the productivity of the committer. We can ask
questions such as the following:

1. Given a CVS repository, can we automatically detect
expertise?

2. Is there a temporal evolution with committers? Are they
still active?

We provide answers to the above questions and present a
preliminary analysis of the data in this respect.

2.2 Information Extraction and Mining
Given the structure of a textual message in CVS, using regular
expressions we can identify some patterns and write simple
extraction tasks. As long as there is some sort of formatting
regularity, automated extraction is feasible [11]. Ideally, we
expect to find the following although in practice not all the data is
available.
 <msg>message
 PR:
 Obtained from:
 Submitted by:
 Reviewed by:
 </msg>

We can easily pull out names of contributors that provided fixes
for bugs (identified as “PR”) and populate parts of the database
schema for later mining. The schema contains information about
authors (developers), entries, files, bugs (PR), and contributors.

We obtained a dump of the CVS repository in XML that contains
15,589 entries between 1996 and 2004 for the Apache 2.0 release.
A second step was to manipulate XML using the parsed SAX
representation, to process the entire file and populate the database
schema. The advantage is that one can use SQL, XPath, regular
expressions or any combination of existing query languages to
perform information extraction. The following script is an
example of some rules for detecting a contributor in a message
text. The query illustrates the convenience of being able to refer
to relational and semi-structured data in a single query.
select extractValue(entry,'/entry/author') a,
 count(extractValue(entry,'/entry/msg')) sub
from cvs_table where regexp_like(
extractValue(entry,'/entry/msg'),'Submitted by:
[a-zA-Z]+')
group by extractValue(entry,'/entry/author')

The following table shows, as an illustration, a few records with
authors (developers who have a committer id), the number of

entries in the CVS log file (transactions) and of those transactions
how many have a “submitted by” comment.
AUTHOR ENTRY SUBMITTED
-------------------- ------ ---------
nd 1814 89
wrowe 1792 87
trawick 1634 30

With this information we can now retrieve all the names of
contributors for a given developer. The CVS log file shows that
there are 75 unique developers that account for 15,589 entries. In
terms of assistance from other people, we were able to extract
data regarding contributions for 75 developers who have entries in
the CVS. Out of these, 39 gave no credit in their commit logs to
contributors. The most credits were given by developer nd with
89 separate credits in total.

2.3 Source Code Directory Structure
In the case of Apache, the CVS repository has a clear directory
structure and there is a README file that describes the source
code layout in more detail. We can think of the layout as a
classification scheme, and it can be very useful for categorizing
the repository using a rule-based classifier. From the original
layout document, we can derive the following list of categories
and directory paths:

CATEGORY DIRECTORY
------------------------ ------------------------
Developer documentation docs/manual/developer/
FAQ docs/manual/faq/
How to documentation docs/manual/howto/
Images docs/manual/images/
Misc. documentation docs/manual/misc/
Modules documentation docs/manual/mod/
Platform documentation docs/manual/platform/
Programs documentation docs/manual/programs/
SSL Documentation docs/manual/ssl/
Vhosts documentation docs/manual/vhosts/
Authorization and auth modules/aaa/
File and data caching modules/cache/
WebDAV functionality modules/dav/
Code in the early stages modules/experimental/
General inline data fil modules/filters/
Data generation functions modules/generators/
Basic HTTP protocol impl modules/http/
Logging functions modules/loggers/
URL mapping and rewriting modules/mappers/
Header metadata modules/metadata/
Proxy module modules/proxy/
OpenSSL functionality modules/ssl/
Modules which test vari modules/test/
OS Unix os/unix/
OS Windows os/win32/
Server MPM server/mpm/
Perl Library srclib/pcre/
Rudimentary command line support/ab
Apache run-time Control support/apachectl
APache eXtenSion tool support/apxs

3. CLASSIFICATION
Classification is the task of assigning objects to one or more
classes or categories. A well-known approach is to manually
define topics or categories and then see if the documents’ content
matches them. In principle, this approach works well when the
number of categories is small. For large collections, manual
classification does not scale.

126

We are interested in deriving the categories that a developer has
committed based on the code layout. Since we know the category
for a directory path and each transaction has a directory path, it is
possible to classify each entry according to the human labeling,
like “Authorization and authentication” instead of “aaa”. For
such a classifier, what is needed is a category name
(Authorization and authentication) and a query or rule that
satisfies that category (location of aaa files in the source code
structure).
The next step is to create a rule-based classifier on the category
directories that we can use to classify transactions at the file name
level according to the categories defined above. For example, the
file modules/aaa/mod_authnz_ldap.c belongs to the category
“Authorization and authentication”. By classifying the file, we
can derive the committer as well. One can argue that a commit
does not necessary mean that a person is an expert. However, we
classify all transactions so a higher count on certain categories, is
a clear indication that the person is likely to be an expert.
The classifier was implemented using Oracle’s ctxrule index
that allows the creation of a rule-based classifier. Using the
category and directory information, a table is created with an
index on the rules (the directory structure). The classifier then
queries the table using the matches operator, passing the file
path as query and returns a label if there is a match. The following
code fragment illustrates the classifier in more detail.
select all authors from CVS
for each author get all the files names
 if there is a match(category, file name)
 store (author, category) in classify table
 end if;

This rule-based classifier has a limitation like the lack of learning
new categories and it behaves binary (yes/no classification). The
final outcome is then a table that contains the counts (number of
transactions) per year in each category. With this at hand, we can
now visually explore the experts over time. Note that we are
interested in detecting expertise (generalist, specialist) in areas,
not necessary code ownership as indicated in [9].

4. VISUALIZATION AND EXPLORATION
In the context of large data sets, information visualization can
help users navigate as well as provide new insights and
summaries of the data collection. We introduce the expertise
cloud visualization for exploring CVS.

4.1 Expertise cloud
We borrow the idea of a “tag cloud” from social websites to
present an interface that summarizes the activity of the committer
in a log file. A tag cloud is a visualization of user generated tags
that describe the content of a website. In this context a tag is a
relevant keyword or topic label that the user has entered. The
importance of a tag is proportional to its font size.
Instead of users labeling the content, we take advantage of the
data generated in the classification phase and define a tag as a
committer’s id/name or category label. We also can retrieve the
number of transactions per committer, which makes the
generation of the size font proportional to the overall transactions
in the logfile. Figure 1 shows the expertise cloud with names in
alphabetical order from left to right. A nice feature of the cloud is
that one can scan it visually very quickly.

Our visualization furthermore allows exploring a single
committer. The user can click on a name (say aaron) and the
cloud now presents all categories the user has made contributions
to. These are the expertise areas for a particular person (Figure 2).
Also, next to the user name we see a temporal history of
contributions over the years. Because involvement in a project
varies over time, we encode the time variable in the color, where
earlier activity is lighter blue and darker more recent. Our
expertise cloud is a bivariate map. In other words, dark blue
represents active committers, and color saturation decreases for
those who haven’t been active in a long time. This range is
computed automatically based on number of transactions in the
entire history of the logfile.

Figure 1. Cloud of committers

Figure 2. Areas of expertise by a committer

The visualization was implemented using a low-cost approach
that performs extremely well: HTML and CSS. There is no plug-
in required and it runs in every browser. Also, our visualization is
not source code oriented as most of the work on CVS
visualization.

5. DEMONSTRATION
Using the visualization tool for the analysis, we can see that a
small group of developers perform all commits to the project.
These people have been around for a number of years and are the
owners of significant portions of the code. For example, just to
name a few developers, fielding, trawick, nd, clar, rbb,
stoddard, slive, jerenkratz, and bnicholes account for the
bulk of transactions, and all of them have been working on the
project for several years. This is consistent with the project
meritocracy philosophy [7]. The visualization tool helps to get a

127

good idea of specialists and generalists. Figure 3 shows the
activity of a committer who has been working mainly on
documentation. On the other hand, as presented in Figure 4,
generalists that have a lot of transactions tend to work on several
pieces of the system. Still, they are main owners of certain pieces
(server MPM as seen at the bottom of the image).

Figure 3. An example of a specialist

Figure 4. An example of a generalist

As we can see by exploring and navigating the cloud, a small
group did over hundreds of transactions, while the rest has a very
low activity. This is consistent with similar findings about
individual author contributions on the Linux project reported in
[12]. The structure indicates a similarity with the onion-like
structure as proposed in [4]. Also, the time dimension (as
expressed in the color scale of the text) shows that people are
fairly active in the project. Finally, the tool provides a similar
description of contributors and expert as outlined in the official
Apache page [2]. This step was done by manually comparing the
experts against the expertise description on the Apache project
Web page.

6. CONCLUSIONS AND FUTURE WORK
Clearly, the CVS data source has rich information for discovering
contributors and activities in the Apache project. Using
information extraction and classification we were able to identify

expertise and contributors through developers, which give
important insight information about how the work is performed.

We presented an automated way for detecting expertise in a
development team using open source as an example. The areas of
expertise and the contributors who help are presented in a novel
visualization that allows exploration and discovery of patterns.
Future work includes using other classification and clustering
techniques, a complete evaluation in terms of accuracy, and
alternative visualization techniques for the same data set.

7. REFERENCES
[1] O. Alonso, P. Devanbu, and M. Gertz. “Database Techniques

for the Analysis and Exploration of Software Repositories”.
First MSR Workshop, ICSE (2004).

[2] Apache contributors, httpd.apache.org/contributors
[3] J. Brunnert, O. Alonso, and D. Riehle. “Expertise People and

Skill Discovery Using Tolerant Retrieval and Visualization”.
In Proc. Of 30th ECIR, (2007).

[4] K. Crowston and J. Howison. “The Social Structure of Free
and Open Source Software Development”. First Monday,
Vol. 10, No. 2 (February 2005).

[5] M. D'Ambros, M. Lanza, H. Gall. “Fractal Figures:
Visualizing Development Effort for CVS Entities”. In Proc.
of VISSOFT (2005).

[6] B. Dempsey et al. “Who Is An Open Source Software
Developer?” CACM, Vol. 45, No. 2, (February 2002).

[7] R. Fielding “Shared Leadership in the Apache Project”.
CACM, Vol 42, No. 4, (April 1999).

[8] E. Gilbert and K. Karahalios. “LifeSource: Two CVS
Visualizations”. CHI (2006).

[9] T. Gîrba et al. “How Developers Drive Software Evolution”.
IWPSE, (2005).

[10] S. Huang and K. Liu. “Mining Version Histories to Verify
the Learning Process of Legitimate Peripheral Participants”.
Second MSR Workshop, ICSE (2005).

[11] P. Jackson and I. Moulinier Natural Language Processing
for Online Applications: Text Retrieval, Extraction, and
Categorization. John Benjamins Publishing (2002).

[12] Y. Kidane and P. Gloor “Correlating Temporal
Communication Patterns of the Eclipse Open Source
Community with Performance and Creativity”. NAACSOS
(2005).

[13] L. Lopez J. Gonzalez-Barahona, and G. Robles. “Applying
Social Network Analysis to the Information in CVS
Repositories”. First MSR Workshop, ICSE (2004).

[14] A. Mockus, R. Fielding, and J. Herbsleb. “Two Case Studies
Of Open Source Software Development: Apache and
Mozilla”. ACM TOSEM, Vol. 11, No. 3, (2002).

[15] L. Voinea and A. Telea. “CVSgrab: Mining the History of
Large Software Projects”, Proc. Of EUROVIS (2006).

[16] R. White et al. “Supporting Exploratory Search”, CACM
Vol. 49, No. 4, (April 2006).

128

