
Expertise Identification and Visualization from CVS 
 

Omar Alonso  Premkumar T. Devanbu 
Dept. of Computer Science 

University of California at Davis 
       {oralonso, gertz, ptdevanbu}@ucdavis.edu 

 

Michael Gertz 
 
 

ABSTRACT 
As software evolves over time, the identification of expertise 
becomes an important problem. Component ownership and team 
awareness of such ownership are signals of solid project. 
Ownership and ownership awareness are also issues in open-
source software (OSS) projects. Indeed, the membership in OSS 
projects is dynamic with team members arriving and leaving. In 
large open source projects, specialists who know the system very 
well are considered experts. How can one identify the experts in a 
project by mining a particular repository like the source code? 
Have they gotten help from other people?  

We provide an approach using classification of the source code 
tree as a path to derive the expertise of the committers. Because 
committers may get help from other people, we also retrieve their 
contributors.  We also provide a visualization that helps to further 
explore the repository via committers and categories. We present 
a prototype implementation that describes our research using the 
Apache HTTP Web server project as a case study.   

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics - Empirical, Open Source 

General Terms: Design, Experimentation 

Keywords 
Classification, expertise identification, information visualization. 

1. INTRODUCTION 
A well-known question in software development is “who owns 
X?” or “who are the experts for Y?” In the context of open 
source, we define an expert as somebody who has contributed a 
significant number of transactions over time. While only a 
relatively small number of people are developers, who have 
commit privileges, many others actually contribute to the source 
code. We thus distinguish between developers and contributors.  

In this paper, we present a mechanism for detecting expertise 
using a rule-based classification approach. We also examine the 
relationship of contributors to developers, and how much help the 
contributors actually provide. To discover this information we 

mine a CVS data source to find submissions and contributors per 
transaction. We argue that with a CVS logfile and a good high 
level description of the source code tree, it is possible to 
automatically identify expertise. There are several ways of 
identifying expertise in a particular domain given different 
information sources. In this work, we would like to identify as 
experts those developers who have a high number of transactions 
over a period of time. The overall quality of those transactions 
and their relationship with other sources like a bug database are 
out of the scope of this paper. 

Recently, exploratory search systems have emerged as a 
specialization of information exploration to support serendipity, 
learning, and investigation of large data sets [16]. In this paper, 
we provide an exploratory tool that allows the examination of the 
data about expertise and contribution to open-source projects in 
more detail. By now, it has been well established (e.g., in the 
Apache project) that there is a relatively small group of 
developers who actually make those changes. This would indicate 
that the structure is very similar to a traditional industrial 
development team. But in fact, there are others who contribute 
source code, bug fixes, patches etc. Their contributions play a 
significant role in the success of these projects. Naturally, several 
questions arise. Who are the experts? Are they in the hundreds? 

Research in mining software repositories has been very active 
lately with many projects working beyond just source code. Email 
and CVS sources contain rich data for a wide range of analysis 
[12], [13], [14]. The social aspect is also an important component 
of the mining process like the identification of active participants, 
owners in a project, and overall structure of a team [4], [6], and 
[10]. There are a number of projects about CVS visualization and 
developers evolution [5], [8], [9], [15]. A project that mixes 
expertise identification via clustering and visualization in an 
enterprise setting is presented in [3].  

2. DATA PREPARATION  
We use a database-driven approach framework for the analysis 
and exploration of software repositories [1]. This framework 
provides database and mining techniques for the integration, 
processing, analysis, and management of different types of open 
source repository data.  

2.1 CVS characteristics 
A CVS log file usually has a field where a developer is expected 
to enter detailed information about the transaction, such as which 
bug was fixed (if there is one open), who submitted the patch (if 
there is a submission) and who has reviewed it. From the data 
characteristic perspective, it is semi-structured data: good 
structure for some items (like author, file name) and unstructured 
for the messages and comments part, as shown in this example: 
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<entry><date>2004-08-11</date> 
<weekday>Wednesday</weekday> 
<time>15:44</time><author>wrowe</author> 
<file><name>modules/proxy/proxy_ajp.c</name> 
<revision>1.6</revision></file> 
<msg>Close only when needed. 
Submitted by: jfclere</msg></entry> 
 
In practice, developers do not always enter all the elements that 
are expected; the mining tools must be robust in cases where data 
is missing. However, when available, this is potentially very 
useful information: the identity of the person who is credited for a 
contribution to a particular commit. This data gives us useful 
information about the relationship between contributors and 
developers, and the effects of the contributor/committer 
relationship on the productivity of the committer. We can ask 
questions such as the following:  

1. Given a CVS repository, can we automatically detect 
expertise? 

2. Is there a temporal evolution with committers? Are they 
still active? 

We provide answers to the above questions and present a 
preliminary analysis of the data in this respect.  

2.2 Information Extraction and Mining 
Given the structure of a textual message in CVS, using regular 
expressions we can identify some patterns and write simple 
extraction tasks. As long as there is some sort of formatting 
regularity, automated extraction is feasible [11].  Ideally, we 
expect to find the following although in practice not all the data is 
available. 
   <msg>message 
   PR: 
   Obtained from: 
   Submitted by: 
   Reviewed by: 
   </msg> 
 
We can easily pull out names of contributors that provided fixes 
for bugs (identified as “PR”) and populate parts of the database 
schema for later mining. The schema contains information about 
authors (developers), entries, files, bugs (PR), and contributors.  
 
We obtained a dump of the CVS repository in XML that contains 
15,589 entries between 1996 and 2004 for the Apache 2.0 release. 
A second step was to manipulate XML using the parsed SAX 
representation, to process the entire file and populate the database 
schema. The advantage is that one can use SQL, XPath, regular 
expressions or any combination of existing query languages to 
perform information extraction. The following script is an 
example of some rules for detecting a contributor in a message 
text.  The query illustrates the convenience of being able to refer 
to relational and semi-structured data in a single query.  
select extractValue(entry,'/entry/author') a, 
   count( extractValue(entry,'/entry/msg') ) sub 
from cvs_table where regexp_like( 
extractValue(entry,'/entry/msg'),'Submitted by: 
[a-zA-Z]+') 
group by extractValue(entry,'/entry/author') 
 
The following table shows, as an illustration, a few records with 
authors (developers who have a committer id), the number of 

entries in the CVS log file (transactions) and of those transactions 
how many have a “submitted by” comment.  
AUTHOR                ENTRY SUBMITTED 
-------------------- ------ --------- 
nd                     1814        89 
wrowe                  1792        87 
trawick                1634        30 
 
With this information we can now retrieve all the names of 
contributors for a given developer. The CVS log file shows that 
there are 75 unique developers that account for 15,589 entries. In 
terms of assistance from other people, we were able to extract 
data regarding contributions for 75 developers who have entries in 
the CVS. Out of these, 39 gave no credit in their commit logs to 
contributors. The most credits were given by developer nd with 
89 separate credits in total. 

2.3 Source Code Directory Structure 
In the case of Apache, the CVS repository has a clear directory 
structure and there is a README file that describes the source 
code layout in more detail. We can think of the layout as a 
classification scheme, and it can be very useful for categorizing 
the repository using a rule-based classifier. From the original 
layout document, we can derive the following list of categories 
and directory paths: 
 
CATEGORY                  DIRECTORY 
------------------------  ------------------------ 
Developer documentation   docs/manual/developer/ 
FAQ                       docs/manual/faq/ 
How to documentation      docs/manual/howto/ 
Images                    docs/manual/images/ 
Misc. documentation       docs/manual/misc/ 
Modules documentation     docs/manual/mod/ 
Platform documentation    docs/manual/platform/ 
Programs documentation    docs/manual/programs/ 
SSL Documentation         docs/manual/ssl/ 
Vhosts documentation      docs/manual/vhosts/ 
Authorization and auth    modules/aaa/ 
File and data caching     modules/cache/ 
WebDAV functionality      modules/dav/ 
Code in the early stages  modules/experimental/ 
General inline data fil   modules/filters/ 
Data generation functions modules/generators/ 
Basic HTTP protocol impl  modules/http/ 
Logging functions         modules/loggers/ 
URL mapping and rewriting modules/mappers/ 
Header metadata           modules/metadata/ 
Proxy module              modules/proxy/ 
OpenSSL functionality     modules/ssl/ 
Modules which test vari   modules/test/ 
OS Unix                   os/unix/ 
OS Windows                os/win32/ 
Server MPM                server/mpm/ 
Perl Library              srclib/pcre/ 
Rudimentary command line  support/ab 
Apache run-time Control   support/apachectl 
APache eXtenSion tool     support/apxs 

3. CLASSIFICATION 
Classification is the task of assigning objects to one or more 
classes or categories. A well-known approach is to manually 
define topics or categories and then see if the documents’ content 
matches them. In principle, this approach works well when the 
number of categories is small. For large collections, manual 
classification does not scale. 
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We are interested in deriving the categories that a developer has 
committed based on the code layout. Since we know the category 
for a directory path and each transaction has a directory path, it is 
possible to classify each entry according to the human labeling, 
like “Authorization and authentication” instead of “aaa”.  For 
such a classifier, what is needed is a category name 
(Authorization and authentication) and a query or rule that 
satisfies that category (location of aaa files in the source code 
structure). 
The next step is to create a rule-based classifier on the category 
directories that we can use to classify transactions at the file name 
level according to the categories defined above. For example, the 
file modules/aaa/mod_authnz_ldap.c belongs to the category 
“Authorization and authentication”. By classifying the file, we 
can derive the committer as well. One can argue that a commit 
does not necessary mean that a person is an expert. However, we 
classify all transactions so a higher count on certain categories, is 
a clear indication that the person is likely to be an expert. 
The classifier was implemented using Oracle’s ctxrule index 
that allows the creation of a rule-based classifier. Using the 
category and directory information, a table is created with an 
index on the rules (the directory structure). The classifier then 
queries the table using the matches operator, passing the file 
path as query and returns a label if there is a match. The following 
code fragment illustrates the classifier in more detail. 
select all authors from CVS 
for each author get all the files names 
  if there is a match(category, file name)  
     store (author, category) in classify table 
  end if; 
 
This rule-based classifier has a limitation like the lack of learning 
new categories and it behaves binary (yes/no classification). The 
final outcome is then a table that contains the counts (number of 
transactions) per year in each category. With this at hand, we can 
now visually explore the experts over time. Note that we are 
interested in detecting expertise (generalist, specialist) in areas, 
not necessary code ownership as indicated in [9].  

4. VISUALIZATION AND EXPLORATION 
In the context of large data sets, information visualization can 
help users navigate as well as provide new insights and 
summaries of the data collection. We introduce the expertise 
cloud visualization for exploring CVS. 

4.1 Expertise cloud 
We borrow the idea of a “tag cloud” from social websites to 
present an interface that summarizes the activity of the committer 
in a log file. A tag cloud is a visualization of user generated tags 
that describe the content of a website. In this context a tag is a 
relevant keyword or topic label that the user has entered. The 
importance of a tag is proportional to its font size. 
Instead of users labeling the content, we take advantage of the 
data generated in the classification phase and define a tag as a 
committer’s id/name or category label. We also can retrieve the 
number of transactions per committer, which makes the 
generation of the size font proportional to the overall transactions 
in the logfile. Figure 1 shows the expertise cloud with names in 
alphabetical order from left to right. A nice feature of the cloud is 
that one can scan it visually very quickly. 

Our visualization furthermore allows exploring a single 
committer. The user can click on a name (say aaron) and the 
cloud now presents all categories the user has made contributions 
to. These are the expertise areas for a particular person (Figure 2). 
Also, next to the user name we see a temporal history of 
contributions over the years. Because involvement in a project 
varies over time, we encode the time variable in the color, where 
earlier activity is lighter blue and darker more recent. Our 
expertise cloud is a bivariate map. In other words, dark blue 
represents active committers, and color saturation decreases for 
those who haven’t been active in a long time. This range is 
computed automatically based on number of transactions in the 
entire history of the logfile. 

 
Figure 1.  Cloud of committers 

 
Figure 2. Areas of expertise by a committer 

The visualization was implemented using a low-cost approach 
that performs extremely well: HTML and CSS. There is no plug-
in required and it runs in every browser. Also, our visualization is 
not source code oriented as most of the work on CVS 
visualization. 

5. DEMONSTRATION 
Using the visualization tool for the analysis, we can see that a 
small group of developers perform all commits to the project. 
These people have been around for a number of years and are the 
owners of significant portions of the code. For example, just to 
name a few developers, fielding, trawick, nd, clar, rbb, 
stoddard, slive, jerenkratz, and bnicholes account for the 
bulk of transactions, and all of them have been working on the 
project for several years. This is consistent with the project 
meritocracy philosophy [7]. The visualization tool helps to get a 
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good idea of specialists and generalists. Figure 3 shows the 
activity of a committer who has been working mainly on 
documentation. On the other hand, as presented in Figure 4, 
generalists that have a lot of transactions tend to work on several 
pieces of the system. Still, they are main owners of certain pieces 
(server MPM as seen at the bottom of the image).  

 
Figure 3. An example of a specialist 

 
Figure 4. An example of a generalist 

As we can see by exploring and navigating the cloud, a small 
group did over hundreds of transactions, while the rest has a very 
low activity. This is consistent with similar findings about 
individual author contributions on the Linux project reported in 
[12]. The structure indicates a similarity with the onion-like 
structure as proposed in [4]. Also, the time dimension (as 
expressed in the color scale of the text) shows that people are 
fairly active in the project. Finally, the tool provides a similar 
description of contributors and expert as outlined in the official 
Apache page [2]. This step was done by manually comparing the 
experts against the expertise description on the Apache project 
Web page. 

6. CONCLUSIONS AND FUTURE WORK 
Clearly, the CVS data source has rich information for discovering 
contributors and activities in the Apache project. Using 
information extraction and classification we were able to identify 

expertise and contributors through developers, which give 
important insight information about how the work is performed.   

We presented an automated way for detecting expertise in a 
development team using open source as an example. The areas of 
expertise and the contributors who help are presented in a novel 
visualization that allows exploration and discovery of patterns. 
Future work includes using other classification and clustering 
techniques, a complete evaluation in terms of accuracy, and 
alternative visualization techniques for the same data set. 
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