

Hackers on Forking

Linus Nyman
Hanken School of Economics

Arkadiankatu 22
00100 Helsinki
+358 9 431 331

linus.nyman(at)hanken.fi

ABSTRACT
All open source licenses allow the copying of an existing body of
code for use as the basis of a separate development project. This
practice is commonly known as forking the code. This paper
presents the results of a study in which 11 programmers were
interviewed about their opinions on the right to fork and the
impact of forking on open source software development.

The results show that there is a general consensus among
programmers’ views regarding both the favourable and
unfavourable aspects that stem from the right to fork.
Interestingly, while all programmers noted potential downsides to
the right to fork, it was seen by all as an integral component of
open source software, and a right that must not be infringed
regardless of circumstance or outcome.

Categories and Subject Descriptors
K.6.3 [Software management]: software development, software
maintenance

Keywords
Open source, free software, fork, code forking, code reuse

1. INTRODUCTION
All open source licenses permit the copying of an existing body of
code to use as the basis for a separate development project. This
practice is commonly known as code forking. The right to fork is
a topic that has long been debated among practitioners and
researchers [3] and the debate regarding the advantages and
disadvantages of forking began even before the term “fork” came
into popular use 1 . The practice of forking has been both
complimented and condemned, described as a “Good Thing” [9],

1 See Nelson’s (1993) discussion “Shattering – good or bad?”:

https://groups.google.com/forum/#!topic/gnu.misc.discuss/G7p
wuPhnbEM

a “Bad Thing”2, open source software’s “cardinal sin” [25], and a
vital part of open source software (e.g. [23]).

Code forking appears to be both loved and feared – the good, the
bad, and the ugly all in one. Despite the conflicting and often
strong views on forking, it is a topic that has seen little research.
Indeed, Gamalielsson and Lundell [4] note that “there is clearly a
need for increased knowledge about how OSS communities are
affected by a fork.”

Forking has the potential to affect open source software
development and governance on many levels, including the
software, community, and business ecosystem levels [14]. How
programmer communities are affected by a fork will depend in no
small part on how they view the fork. Thus, there would seem to
be merit in gaining a better overall picture of how programmers3
view forking. What do they view as the merits and drawbacks of
forking? What makes a fork acceptable or unacceptable to the
community? Given the strong opinions forking elicits, are there
any moral obligations or codes of conduct that must be followed
in order to gain community acceptance or favour when beginning
a fork?

The aim of the current study was to better understand developers’
views on forking, with an emphasis on what programmers
consider the benefits and drawbacks of the right to fork, and what
kinds of forks they consider favourable and unfavourable. How a
fork is viewed by the wider open source community will directly
affect its possibility of acquiring developers and attaining
sustainability.

The paper is structured as follows: first, we cover previous
discussions of, and research into, forking. Then we introduce the
research questions and methods. After this the results of the study
are presented. The paper concludes with a discussion of the
implications of this research along with its limitations and some
avenues for future research.

2. BACKGROUND
Code forking can be seen as healthy for the overall software
ecosystem, offering a kind of ‘survival of the fittest’ where only
the best code will survive [1, 23]. However, a fork is likely to be

2 See Jargon File: http://www.catb.org/jargon/html/F/forked.html
3 The terms “programmer”, “developer”, and “hacker” are used

interchangeably in this paper. The term hacker is thus not meant
to imply any negative connotations (relating to exploiting
weaknesses in a computer system or network, or indeed any
other negative connotations).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

OpenSym '14 , Aug 27-29 2014, Berlin, Germany
ACM 978-1-4503-3016-9/14/08.
http://dx.doi.org/10.1145/2641580.2641590

harmful for the individual project affected [1, 23]. The harm is not
due to the mere existence of a fork, but rather the loss of users,
duplication of effort among programmers (e.g. [1, 11, 18]), and
compatibility issues between forks ([21], see also [23]). A further
disincentive is the challenge of attracting a sufficient pool of
developers to aid in the further development of a fork, particularly
if the original already has a significant community [23]. Programs
under a copyleft license have further disincentives to forking: if a
program is forked and improved, developers working on the
original program may be able to incorporate those improvements,
thus creating a disincentive to forking from both a development
viewpoint (e.g. [9]), as well as a business-oriented viewpoint (e.g.
[24]).

Thus there is a strong social pressure to avoid forking (e.g. [8, 18,
25]). Previous research has categorized the avoidance of forking a
project as a community norm among open source software
developers [22], and it has been noted that developers require a
compelling reason to switch to a competing project [24].

Using a more restrictive definition of forking, it has previously
been noted to be avoided. However, the importance of the right to
fork is still underlined by many. The potential to fork a program
has been called “the indispensable ingredient that binds
developers together” [1], as since a fork is bad for everyone, the
more serious the threat of a fork, the more willing people are to
compromise in order to avoid it. Thus, the potential to fork is also
a significant element in the governance of open source programs
(e.g. [10, 23, 25]; see also [3, 4]), as no one has a “magical hold”
[1] over any project since anyone can fork any project at any time.
The right to fork can furthermore be seen as “a vital safety valve”
[9] in case existing developers stop working on the project, or
decide to stand in the way of progress. Similarly, regarding
corporate actions and acquisitions, should a company try to
“hijack” [6] the source code by making it proprietary, or
otherwise work against the best interests of the program and its
community, forking provides the community a way to protect
their own vision of the project [10, 12, 14, 16, 17].

While forking is discussed in a number of textbooks and academic
articles, there are few studies whose focus has been code forking
itself. A small group of papers examine forking on a conceptual
level, focusing on its relevance to the sustainability and
governance of open source software development [14, 16, 17].
This author and Mikkonen [15] analysed the developer-stated
motivations of forks hosted on the SourceForge repository, noting
that the majority of forks appear to be motivated by pragmatic
concerns, and to be of a non-competitive nature. Indeed, an in-
depth analysis of 220 forks showed that forking: occurs in every
software domain; has become more frequent in recent years; very
few forks merge with the original project; and that many forks are
of a “friendly” rather than competitive nature [20]. Competitive
forks do exist, and may be motivated by a concern for the future
wellbeing of the codebase under its present leadership [12].

Through the analysis of the 9 most forked JavaScript programs
hosted on GitHub, Fung, Aurum, and Tang [2] introduced the
concept of social forking. Social forking includes community,
software, as well as other artefacts taken from the original project
in the creation of the new. Gamalielsson and Lundell [3 and 4]
analysed the LibreOffice fork from OpenOffice, finding that it is
possible for a fork to prosper and achieve sustainability over time,
and for a software community to outlive open source software
projects.

While a fork has traditionally been defined as an instance in
which a group of developers split into competing groups that go
on to develop the program in different directions, Nyman [13]
notes that the definition of a fork has changed in recent years,
with several different interpretations in existence, but that still
maintain the common thread of taking an existing program and
modifying it. Furthermore, subsequent with the rise of popularity
of hosting and revision control services with a broader use of the
term4, ‘fork’ has come to be used in an increasingly broad fashion.
Indeed, in addition to being used by some as a synonym with
branch, fork may also now be seen used among developers to
indicate reusing existing code in the creation of a program that
may target a significantly different user group than the original,
developed by hackers with no affiliation with the original project.

3. RESEARCH QUESTIONS
The research questions focus on two broad areas of interest:
programmers’ views on the concept of forking in general and on
the practice of forking. These two broad areas of interest can be
divided into three topics:

1. What do programmers consider to be the benefits and
drawback related to the right to fork? (Research questions
1 and 2)

2. What constitutes an acceptable and unacceptable fork?
(Research questions 3 and 4)

3. How should forking be done, i.e., what, if any, are the
moral obligations and proper codes of conduct in regards
to forking? (Research questions 5 and 6)

3.1. What are the Benefits of the Right to
Fork?
Existing literature has noted benefits like keeping a community
more tightly knit, faster progress due to less divergent efforts, and
the ability for the community to take control of their own fork of a
project, should such a need arise. Are there any benefits
developers consider significant that have escaped mention in
previous literature?

3.2. What are the Drawbacks of the Right
to Fork?
Generally, there is more focus on the negative aspects of forking,
including issues such as redundancy of effort and confusion
among users regarding which version to use. What do
programmers see as the main drawbacks of the right to fork? Are
there any perceived drawbacks not noted in previous literature?

3.3. When is it Acceptable to Fork?
Open source licenses guarantee the right to fork. Perhaps not
surprising given its potential negative impact, several authors
have noted the social pressure not to fork. However, previous
research (e.g. [12, 15, 20]) has identified at least some
circumstances in which a fork is considered acceptable. What
kinds of circumstances are required for this social pressure not to
fork to be outweighed by the perceived benefits to fork? Given
that there are situations in which a community accepts or calls for
a fork, can we identify any common characteristics of these
situations?

4 See GitHub: https://help.github.com/articles/fork-a-repo.

3.4. When is it Not Acceptable to Fork?
While several challenging aspects of forking have been noted, can
one more precisely document what the conditions are under which
the social pressure not to fork would be particularly strong? Are
there any kinds of forks that are not considered acceptable under
any circumstances?

3.5. Are There any Moral Obligations
When Forking?
The large amount of forks documented in recent studies appears to
contradict the notion of an open source norm not to fork.
However, given the notion of the hacker ethic (e.g. [5, 7]; see also
[18, 19]), it seems plausible that some norms surrounding a
practice as pivotal as forking would exist, perhaps in the form of
some unwritten yet commonly held rules or guidelines as to what
obligations a programmer has, should they decide to fork a
program. Do such guidelines exist? And if so, what are they?

3.6. What is the Proper Code of Conduct
When Forking a Program?
Like the previous question, this question addresses a situation in
which one has already decided to fork a program. How should one
then proceed? Are there any undocumented rules or common
practices regarding such a situation? If programmers could decide
how other programmers went about forking, what kind of actions
or behaviour would they hope for or expect?

4. RESEARCH APPROACH
4.1. Data and Data Gathering
Before beginning the data acquisition, it was important to become
familiar with the writings and thoughts on forking found in
academic literature, practitioner texts, and other sources of
knowledge on forking (developer blogs, online news sites, etc.).
Based on this knowledge, an interview guide consisting of open-
ended questions was compiled. During the winter of 2012, a pilot
study was conducted consisting of 4 semi-structured interviews.
The interviewees all fulfilled the criteria that they all either were,
or had previously been involved in open source software
programming. During these interviews, the interview guide was
tested and modified. The interviews were conducted in person,
and were recorded and transcribed.

Eight additional interviews were conducted between 2013 and
2014. The interviewees were chosen using snowballing, with the
criteria that: 1) they needed to have been involved in at least one
open source software project; and 2) they needed to currently
make a living from programming, be studying programming, or
have at some point previously had made their living from
programming. The interviews were conducted in Finnish,
Swedish, and English, depending on the preference of the
interviewee. Roughly half of the interviews were conducted face-
to-face, the rest using Skype. The interviews were semi-
structured, allowing for additional questions as needed, as well as
giving the respondents the opportunity to express all thoughts and
insights they felt relevant. All of the interviews were recorded and
transcribed to aid in the data analysis. The shortest interview was
13 minutes and the longest was 41 minutes.

The extended time during which the interviews were conducted
allowed for long periods of reflection of the results. The focus of
the analysis was primarily to identify all unique opinions brought
up in regard to each research question. The secondary goal was to
examine these unique answers to see if they lent themselves to

grouping. Where it seemed helpful, the answers were grouped into
overarching themes. Upon completion of the first version of the
article, it was sent to a subset of interviewees. This was done both
to allow the interviewees to check their quotes, and to give them a
chance to voice their opinions on the points brought up by other
programmers.

A majority of the programmers were from Finland, the rest were
from Italy, Russia, and the Ukraine. The interviewees ranged in
age from their early twenties to their early fifties. One interviewee
was female, the rest were male. The programmer with the least
experience was involved in his first open source project at the
time of interview. The most experienced programmers had several
decades of experience, and included a developer who had worked
primarily on the Linux kernel, a developer employed by the
Apache Foundation, a developer who was a founding member of
both MySQL and MariaDB, and a Linux pioneer who has
furthermore both authored as well as contributed to numerous
other open source programs.

4.2. Unifying the Definitions of “Fork”
Due to the potential for differences among interviewees regarding
their views of what, exactly, the term fork entails [13], all
interviewees were first asked a number of questions regarding
their definition of the term fork and what it entailed. This was to
ensure that all interviewees would be discussing a similar
phenomena. Of all of the interviews, one programmer had a
definition of fork that was unique enough that the answers given
during that interview are not included in this study. Thus, the data
for the study originally consisted of 12 interviews, of which 11
were included in the study. For the purposes of this paper, the
definition of fork used is a somewhat broader version of Robles
and González-Barahona’s definition [20]. In this study a fork is
when one or more developers start an independent line of
development based on the source code of an existing project.
Projects that will or may attempt to submit their changes back to
the original are also included in the definition used herein.

5. FINDINGS
5.1. What are the Benefits of the Right to
Fork?
When asked about the benefits of the right to fork, programmers
commonly shared that forking is something more than a mere
right guaranteed by open source. Instead, they saw it as an integral
part of the very concept of open source software. As one
programmer noted, “I don’t know if one really could see open
source as open source without the right to fork.” Another
programmer stated that if developers can’t fork, “then first of all,
it isn’t free software, it isn’t open source anymore.” One
programmer discussed the topic in greater historical depth:

“At its root it is a large philosophical question: the whole idea of
open source takes as its starting point that you can take source
code and do whatever you want with it, entirely regardless of
what the original developer or current community wants to do
with the code. And in that sense it is one of the pillars of open
source, this possibility to fork.”

Thus, the first point to note is that the right to fork, regardless of
any specific benefits it offers, is commonly seen as a cornerstone
of open source.

Moving on to specific benefits brought up regarding the right to
fork, one developer, with several decades experience in open
source software development, noted that forking “is what makes it

possible to take a project in different directions or [to ensure] that
the product doesn’t die.” This developer also brought up a benefit
for companies: that they can use the right to fork to solve
problems through forking a program and then customizing it to
meet their specific needs. If broadly interpreted, the three main
points of taking a program in a different direction, keeping a
program alive, and benefits for corporations – or, indeed, non-
profits or any other interested party – cover the entire list of
benefits stated by all interviewees combined. However, to better
understand and convey the thoughts of the participants, it is useful
to divide the stated benefits into further categories. The benefits
brought up by the interviewees can thus be grouped into three
overarching categories: preservation, experimentation, and
customization.

Preservation

A rather clear-cut benefit is that forking makes it possible to
continue a project that has been abandoned5. As a developer from
the Ukraine noted, “Sometimes the original developers will just
give up, and if there’s no way to just continue – for example no
one has access to that repository – then you can just fork the
project and start a new [one] with a new set of developers.”

Experimentation

This category represents forking as the ability to try new things;
either with the intention of merging successful changes back with
the original, or simply as a personal exercise. A clear benefit of
experimenting on a personal fork is that one cannot cause any
unintentional harm to the original project. One developer noted
that, if one considers what is often called branches to be forks,
then “As a part of the workflow [a fork] is a vital part. That you
can work in peace on your own branch of the program until your
feature is ready to be shown to the others.”

A fork may also be necessary in case the project leaders do not
share one’s views regarding the feasibility of the proposed
changes. An experimental fork can then be used to create a proof
of concept. As an Italian developer noted:

“If you really don’t like something, or if you think that something
else has to be done, you always have the chance to try it yourself,
even if you are alone […] and everyone else is against you – why
not? You can always try it out and then if it happens that you were
right, you can always go back in. So I think it gives a lot of
freedom to try out something.”

Customization (including forking as a “safety valve”)

One central benefit is the possibility to customize a piece of
software to better suit one’s needs, i.e., to take a project in a new
direction. As one developer noted, without the right to fork,
“whoever started the project and defined its goals gets to specify
how and when it is used. And in my opinion that is kind of a bit
against the whole idea of open source.” Different motivations for
customizing a project were noted, among them personal and
corporate needs, and disagreements among developers – the kinds
of situations for which the right to fork has been called a “safety
valve” [9].

5 Indeed, studies by both Nyman and Mikkonen [15], and Robles

and González-Barahona [20] found several cases of such forks.

Personal and corporate needs were of a “scratch an itch” –type.
Something close to what was needed already existed, but some
modifications were required for it to meet the needs of the
developer, or the company they were working for. In discussing
such cases, many programmers noted that they commonly
involved small tweaks or additions to existing programs.
However, a large-scale, continuing development effort based on
an existing program was also a possibility, though commonly of a
kind covered in the third subcategory, discussed next.

The ability to use the right to fork as safety valve was noted to be
beneficial in several different circumstances. One possibility is
that a project, while not abandoned, may have stagnated
significantly enough that a fork can be perceived as beneficial. As
one developer noted:

“We have noticed several times that programs – when they reach
a certain age… there comes a certain inertia, and forking may
have offered the possibility for a new start. You can leave out the
old ballasts, and in that sense many projects that have started as
forks may in the end have turned out to work much better [than
the original].”

Furthermore, even with actively managed projects, a fork can be
beneficial. One example that was frequently brought up was if
there was significant disagreement among developers. Cases in
which developers disagree on the project’s direction, where the
difference in question was one of technical aspects relating to the
program, were commonly seen as an instance in which it is
positive that one can fork, with many explicitly noting that a fork
in such a situation may be an entirely favourable thing.

“If the community gets into arguments, or disagree on what
direction to take the project, then I think it’s fine that they go in
different directions [i.e. fork the program]. It might be in the
software’s best interest; that more is accomplished than [if] they
just focus on arguing.”

In addition to internal disputes that could lead to, or even
necessitate, a fork, programmers also noted its relevance in cases
in which an original developer is perceived to mismanage a
project. Two example quotes follow.

“First and foremost, [the right to fork] reduces tyranny. If I have
created a program and am king and ruler there, then the fact that
everyone can fork it means there’s a limit to what I can decide
about. […] A second aspect is that it gives power to those who
didn’t start the project, which is almost the same as the first
[point] but slightly different. It means you aren’t bound by what
someone else wants, which is a pretty central concept in open
source [and] free software.”

“I think there are a lot of good examples where a forge has been
forked and the forked version has just become a lot better than the
original. Like… if a project is maintained by somebody that is
very single-minded and doesn’t really take into account the
opinions of others, but the code that they have produced is, like, of
high value, I think a fork could be a very good asset there.”

5.2. What are the Drawbacks of the Right
to Fork?
Common themes brought up were the negative effects a fork
could have on users, developers, and the project itself; commonly,
the reasoning behind all three groups of answers was related to
problems of fragmentation.

Confusion among users

Developers reported that one drawback to forking was the
confusion and extra work required to keep abreast of new forks
that users experience. In this way, the programmers were both
discussing external users and themselves as users of a program.

“You create problems for the users regarding what they should
use. For users, a fork is never a good thing. Unless it is done to
keep the project alive.”

Similarly, even for developers, who one could assume are more
informed about software in general, multiple forks means extra
effort when researching a project of potential interest. One
developer described it thus:

“Well the main thing is of course this fragmentation, it’s kind of
obvious. I mean if you look at GitHub, some of the projects, you
start searching for some project and then you find ten instances of
that project and then you would like [wonder], which one do you
pick? Then you have to study all ten and see which one is well
maintained. Sometimes you want to pick the original because it
might have a bigger following. Sometimes the original might have
been abandoned, so that would be bad choice, so you actually
should pick one of the more recent forks. And it could be that
sometimes it was forked precisely because the original was
abandoned and no one could contribute to the original project.”

Duplicated work among developers

Developers also noted as a drawback the dividing of development
efforts resulting from multiple versions of a similar project
developed in tandem; something many noted to be the most
significant of the drawbacks. As one programmer noted, “I think
the only really big drawback from forking is that then people are
contributing to different projects.”

Similarly, discussing situations in which the fork occurs from
within a project, one developer noted the dividing of resources to
be a drawback, and added that a further “perhaps even more
important” drawback was arguments between the two groups.

“You can have several years of arguments between the projects,
and that can lead to the developers becoming unmotivated, and
the users giving up, and the press writing unpleasant things, and
things like that. That doesn’t usually lead to anything particularly
pleasant anymore, and everyone suffers.”

Compatibility concerns

A further point brought up was the impact of a fork regarding
compatibility. Even in cases where compatibility and co-operation
are strived for, over time it was said to be hard to accomplish,
with incompatibility, and the resulting duplication of efforts, an
unfortunate result. Furthermore, the challenge for third-party
software was brought up: cases where a programmer, or company,
wants to maintain versions of their program that are compatible
with both the original and the fork. The further the forks stray
from one another, the more time and resources would be required
to remain compatible with both.

Threatening to fork as a negotiation tactic

As forking may potentially have a strong negative impact on a
development project (e.g. through a loss of users and duplication
of development work), it was noted that the threat of forking can
be used as a negotiation tactic:

“Negative part [of forking] is that it’s a strain, in a way, to the
project. And in some cases it can also be used as a weapon: ‘If
you don’t do what I want…’. And that’s the point, especially in
companies. The company can always say that ‘Yeah, it’s open
source – do whatever you want. [But] if you don’t do what I want,
I will fork and take all my force with me’.”

Financial challenge

Few developers brought up financial challenges due to the right to
fork. This is perhaps not surprising, as the challenge of developing
software that is freely available is found in all open source
projects, and not exclusively related to forking. As one developer
described this challenge: “The drawback is that it is hard to
generate an income in a situation where you can take a copy. I try
to sell you an apple; you take a copy of it and eat [the copy].
Well… then you have to kind of think: where does the income
come from, then?”

5.3. When is it Acceptable to Fork?
One of the developers was of the opinion that it was acceptable to
fork “if the original developers weren’t doing their job”, offering
by way of example a case in which an open source and proprietary
program were being developed in tandem, and then the developers
had ceased development of the open source version, focusing their
efforts entirely on the proprietary version instead. The
programmer commented on such a fork, noting: “I think it’s
entirely OK to do that. It keeps the software as free software.”

All of the other programmers interviewed were of the opinion that
it is always acceptable to fork. This was surprising considering
that they were asked not when it was allowed, or legal, to fork, but
rather when it was acceptable to do so. While they could all give
examples of problematic aspects related to forking, as well as
examples of forks that they felt were unnecessary or would result
in problems for the parties involved, they all nonetheless noted
that a fork was always acceptable. One Italian developer put it
well, “it’s always acceptable. Whether I like it or not.” Another
developer raised the question: “Why would you make it open
source if you were against forking?”

In order to clarify their answers, follow-up questions were asked
regarding the kinds of situations under which the developers
would consider forking a program they were involved in, and
what kinds of forks they would hope could be avoided. This was
done to better understand their opinions on what kinds of
motivations they considered valid, or even positive, reasons for
forking. A basic notion was that there should be a clear point, or
reason, to the fork.

“If there is a clear point why people should be contributing to
multiple projects then I think it’s the only valid reason for forking
a project. If there’s no real reason why it should diverge from the
original, I don’t think there is really much point or benefit to be
had from forking.”

While the developers shared a number of clear justifications, the
common thread among them was that they were all situations in
which the developers felt that a fork would lead to a better
program. As one developer put it: “I always see the end user as
the point, so… If you see that [by forking] we have the chance to
do something good, you should.”

Another common notion was that any fork that is significantly
different from the original is a sensible motivation.

“If you believe that the new version will get both users and
developers, then of course it’s sensible [to fork]. […] The idea is,
the point of the fork is, that through it you are actually doing
something new, and that it has some meaningful difference.”

A situation in which a developer is hindered from making changes
they consider meaningful due to divergent views of project goals,
or an unresponsive leader, were also commonly brought up.
Example quotes from three separate developers follow.

“If the project is for example big – they have a lot of users – they
have their own priorities in terms of what to change there. So if
you send in your changes there and they wouldn’t accept these
changes, then you just have to have your own kind of version;
your own fork of the project, where you have your own changes.”

“Well, if the program doesn't solve the original problem and you
can’t convince the group working on it that it should be taken in
that direction, then you don’t have any other choice than to either
fork or to choose another program. And in such a situation a fork
could be useful.”

“If there’s a significant difference, or differences in views on in
which direction the project should be going, I think that’s a good
reason why one should be forking a project. Because if the project
maintainer doesn't take into account a majority of the projects or
the users’ of the project’s views on in which direction the project
should be going, I think it’s a good case where somebody should
fork it and start directing the project in a way where others could
be benefiting more from it.”

As one Finnish developer sought to highlight, forking is always
acceptable but not always beneficial or practical.

“In the short run forking might be easy – you accomplish a lot in
a short time. But in the long run, you lose all the benefits of
participating in the activities of a larger community. So in that
sense it isn’t so much a moral as a practical question.”

5.4. When is it Not Acceptable to Fork?
Naturally, the answers to this question closely mirrored those of
the previous question. All but one of the programmers noted that
it is always acceptable to fork. However, as one Finnish
programmer noted, “That one has the right to fork doesn’t
exclude there from being situations in which a fork would be
problematic”. Through follow-up questions I attempted to
determine what makes a fork undesirable or problematic.

Again, the views closely tracked those in the previous question.
Where any fork that is in the best interest of the program was
considered a valid motivation, any fork that was not in the best
interest of the code was viewed unfavourably. The examples
given can be broadly categorized under three headings: in breach
of an agreement, personal differences, and malicious forks.

In breach of an agreement

An example of a type of fork one programmer noted to be
unfavourably viewed had to do with a situation in which a group
of actors would have agreed not to fork. The programmer noted
that it would “perhaps not be that acceptable […] if one had –
through either cooperation, common standardization, or some
other common endeavour – decided that some specific open
source program should be governed by a non-profit organization,
in the interest of keeping it neutral.”

A somewhat related answer by another programmer was regarding
not when it was acceptable to fork, but rather what kind of fork a
license allows, and that one shouldn’t breach license stipulations.

“What isn’t ethical is if the licensor decides that this [software]
must be kept free, [and] it’s modifications must be kept free, and
then you fork it and make it closed.”

Personal differences

Most developers stated that they viewed forks that were motivated
by personal conflict unfavourably. Two examples from the
interviews follow.

”In my opinion forks that are based on personal dynamics aren’t
really that sensible; they kind of weaken the community.”

“Many times [a fork is] about people colliding and not features
colliding, and that shouldn’t be, but… we are human.”

Malicious forks

A number of developers brought up the theoretical problem of
starting a fork with no other agenda but to compete with the
original. That is to say, a fork that did not seek to modify or
improve the program in any way, but only sought to create
competition. However, most developers also noted that they
couldn’t think of any examples of when such a fork had actually
happened.

“Well of course it’s bad if, like, the original project would be
good and then someone just goes and forks it to compete with it.
But, to be honest, I can’t recall seeing that sort of thing
happening, where it wouldn’t have been justified to fork and, like,
diverge from the master. So I mean if that would actually happen I
think that would be a bad case but as I personally haven’t seen a
case like that I don’t know if it even exists. I mean do people fork
just to compete if the original is a good project? I don’t know…”

“Maybe you could come up with some nasty reasons, like
someone wants to sabotage the project and just creates extra forks
for confusion, or just out of spite, and just draw away some parts
of the community towards another project, but… I don’t know if
that happens. […] It basically depends on the purpose: if the
purpose is OK then forking is OK.”

Another example quote emphasizes the imperative among
developers to state that forks, while potentially problematic, are
always allowed:

“If there is some form of ill will [towards the original] at the base
of the fork then I would say it starts being problematic. But even
then I think that it, from a legal perspective, is clear that they
have every right to [fork] it.”

One developer discussed such malicious forks as “sabotage
attempts”, offering by way of example that he had seen a few
instances of single individuals forking a popular operating system
and attempting to start an argument among the community which
would cause the developers to spend their time arguing rather than
coding. However, he noted that such attempts “maybe succeed for
a week or so, but then [the developers] go back to doing what
they do.” The developer also discussed what he considered a more
serious form of sabotage fork, one that would most likely be
linked to financial interests and set in motion by a commercial
company with a competing product.

“The first thing is that you achieve a situation in which everyone
knows that there is a fork, and you stir up an argument so that

everyone knows that there is something… some problem with the
original project, even if there isn’t. This is a tactic I expect some
large company at some point will use.”

One developer’s answer offered insight into why so few forks are
viewed in a negative light despite the potential downsides to
forking: “Most of the forks – from the outside, it looks like: ‘Why?
Why don’t they all join together and be friends?’ From the
outside. But when you read up about the reasons and the
discussion on the forums, it becomes clear. […] I can’t remember
any example when I really looked into [a fork] and it would be
just… completely senseless.”

5.5. Are There any Moral Obligations
When Forking?
Contrary to expected, in all cases but one these interviews did not
yield explicit lists of issues programmers considered significant to
either remember or consider when forking. In fact, one developer
began his answer by noting that he needed some time to consider
the question, as he had never before given it any thought. In light
of the insights gained from previous answers, particularly that of
programmers’ strong feelings of the right to fork as integral to
open source, it is perhaps not surprising that no such unwritten yet
widely adopted “moral obligations rulebook” exists6.

However, there was one issue that all hackers brought up:
crediting the original contributors. This seemed a self-evident
point. Indeed, the aforementioned programmer who noted that he
hadn’t pondered what moral obligations one may have, noted that
one should credit previous contributors, but added that the point
was “kind of obvious.” Some connected the obligation to give
credit with the stipulations of the license, others with a moral
obligation to do so. Example answers included:

“Just what the license says. They need to credit the author if the
license requires it but I think that’s it.”

“What is important is to give credit to the original project, and
meticulously document what has come from whom – who has
contributed these different parts. To give credit where credit is
due.”

As mentioned previously, there was one notable exception. This
was from a developer who began his answer by noting that the
answer “depends entirely on how one views the freedom of the
program. I am what you would call a free software person rather
than an open source person.” The programmer then went on to
note that:

“From a free software perspective, one has the moral
responsibility to see to it that those who use the program aren’t
hurt. So for instance that one maintains the fork as free software,
and sees to it that, if possible, one keeps both versions compatible
with one another […] so that, if possible, one cooperates with the
original project. […] If one can do these kinds of things, then I
think one has the moral imperative to do them. But the important

6 There are, however, indications that even among those without

an explicit list, an implicit list may still exist. Further research
would be needed to confirm this, but it could include themes
like: thou shalt not infringe on the right to fork; agreements
shall be binding; personal differences shall be moot; and, don’t
start a fork out of spite.

[thing] is to make sure that the users – not the developers, the
users – don’t suffer.”

5.6. Is There a Proper Code of Conduct if
One Wants to Fork a Program?
Only one of the developers, the one who noted he was a free
software person rather than an open source person, noted a
number of particular actions that he felt should be taken regarding
the actual process of starting a fork. He began by stating: “One
should be honest and clear about why one is doing a fork. That
means that the big Internet – they won’t have to guess, and find
scandals where they don’t exist.” He continued by noting that the
fork should be done “in such a way that the original does not
suffer unnecessarily.” This included practical issues aimed at
avoiding confusion and problems among developers and users,
with examples being setting up a new mailing list, website, server
to host the code, and choosing a new name for the project. “By
and large,” he concluded, “one should behave like a human
being.”

While other hackers didn’t offer views regarding a code of
conduct when forking, something that was brought up by several
programmers was what to do before one decides to fork: to ensure
that a fork is absolutely necessary. This point was brought up by
both developers who had forked programs as well as those who
had not. Examples from the interviews follow.

“Well, usually you start by seeing if you can avoid the fork: talk to
the developers and say ‘we would like to do this’. And then, if you
can’t agree, then you say ‘OK, we’ll fork’.”

“My feeling would be that, if the project is active and has a
community, it makes sense to talk to them to see if your version
would really be different. Because if you don’t do that, then it
might… there are these drawbacks – that it creates this, kind of,
incompatibility and, it kind of makes the whole landscape more
complex. So you have to make sure that it’s worth it. So it makes
sense to talk to the original developers and see that, ‘Can’t we
cooperate?’”

A further point that was brought up by several programmers was
the importance of maintaining some form of communication with
the original so that one can, as one interviewee put it, “Share the
parts of the program that can be shared”. Indeed, one
programmer, in discussing a fork that had been made from a
project that he had spent the better part of a decade working on,
noted that, for many years they were able to share code. In
discussing the fork, he only bemoaned a decision made by the
fork project’s leader many years after originally forking, to
resolve a technical issue in such a way that they would no longer
be able to share code with one another.

Regarding communication before a fork, one developer offered a
significantly different viewpoint, light-heartedly noting that “I
would personally dislike it if every person that would want to fork
some project [of mine] would be contacting me. Just a lot of
spam. I would have to set up some email account that would auto-
reply ‘yes’ and… there wouldn’t be much value to be had from
that”.

While this position may seem to contradict earlier points, it seems
likely that the approach programmers’ would consider favourable
could be relative to the proximity of the goals of the original and
the fork: the less planned overlap there is between the two, the
less important it is to initiate and maintain significant contact with
one another.

6. CONCLUSIONS: SUMMARY OF
RESULTS
What is good/bad about the right to fork?

First and foremost, developers consider the right to fork to be
integral to the very concept of open source software. Beyond the
general view of the right to fork as an important open source
cornerstone, the right to fork is considered positive for several
reasons. Among them are the possibilities it offers to: preserve
abandoned programs; to experiment with and customize existing
programs; and to both minimize tyranny and resolve disputes
regarding development efforts through giving the involved parties
the opportunity to develop their own versions of the contested
program.

While considered vital, the right to fork can still be problematic.
Examples of related concerns are confusion among users, and
extra work among developers, including both duplication of
efforts and increased work if attempting to maintain compatibility.
Furthermore, particularly if the fork is from within the project, the
resulting decrease in developers is a concern. The right to fork
also has a significant effect on the ability to generate income for a
project.

What kinds of forks are viewed favourably/unfavourably?

The kinds of forks viewed favourably are those where there is a
reason to believe the fork will lead to a better program. Examples
given of such scenarios included: that the program better serves
(all or some) users, that the original is no longer being developed
or development has stagnated, and that disagreements among
developers significantly hamper or halt its development.

The kinds of forks that hackers would prefer to be avoided are
forks that are based on personal issues (e.g. rather than differences
of opinion regarding which direction to take a development in),
and forks that are not so significantly different that they couldn’t
have remained one single program. Purely malicious forks,
created merely to sabotage or confuse, are also frowned upon as a
concept, but such forks seem exceedingly rare.

How should one go about forking? Are there any moral
obligations or is there an (unwritten) code of conduct?

The sole rule that seems to guide forking overall is that one must
give credit to those that have worked on the program previously
(something also stipulated by license). However, the value of
being in contact with the original developers before one decides to
fork, to see if the fork is in fact a necessity, was underlined by
several developers. This may lead to avoiding the fork and thus
keeping more developers working on the same project. In cases in
which forking is nonetheless necessary, the projects may still be
able to benefit from one another’s efforts by sharing code.

7. DISCUSSION, LIMITATIONS, AND
FUTURE WORK
While not all programmers gave answers that were identical in
content, no programmer’s answers were counter to views
expressed by the others. No kinds of forks were viewed as
positive by some yet negative by others; no issues about forking
were viewed as positive by some and negative by others. Thus,
there was a general consensus among all of the programmers
interviewed.

The findings of this study largely support what can be found in
practitioner literature and earlier studies. Gamalielsson and

Lundell’s [3, 4] findings, that a fork can be sustainable over time
and that an open source software community can outlive a project,
fit seamlessly with the interview answers gathered for this paper.
Particularly in the event of a program’s governing body being
perceived as acting against the interests of the community at large,
a fork not only seems likely, but it may generate more wide-
spread support among developers than is enjoyed by the original
development.

The data also offers further support for the findings of this
author’s earlier paper [12], that a fork is considered valid in cases
where there is the possibility of a decrease in openness of a
program, either through changes in licensing or through the
community’s hampered ability to contribute. The views expressed
by the interviewees also corroborate earlier conclusions drawn by
this author and Mikkonen [15], that programmers principally fork
code in order to achieve pragmatic, development-related goals,
rather than in order to compete with existing communities.

The interviewees’ permitting stance overall towards any fork may
seem to contradict existing literature about the social pressure to
avoid forking. However, this discrepancy seems likely to find its
explanation in the broad scope of extant interpretations of the term
fork. In popular use the term has grown to encompass a greater
breadth of actions than only competitive forks, yet existing
literature commonly uses a much more narrow interpretation, that
of an internal split among developers due to irreconcilable
differences [13]. Thus, these findings do not so much contradict
earlier statements regarding programmers’ avoidance of forking
as they do highlight the evolving interpretation of the meaning of
the word fork. Illustrating this point, one of the developers
interviewed, having read an early version of this paper, noted that
on GitHub the number of times a project has been forked is used
as one measure to rank its popularity. Furthermore, he noted that
developers actively encourage others to fork their programs.

Very early on in conducting the interviews it became clear that
more interviews would likely garner new ways of expressing
similar points rather than new viewpoints. While I initially
suspected that this similarity among answers may have something
to do with a common “hacker ethic”, based on the data gathered,
the imperative to avoid a fork seems to be less an extrinsic
community pressure and more an intrinsic sense of pragmatism
shared by all developers.

A final interesting point to note is that the more strict views with
regards to what is acceptable and not acceptable in regards to
forking were offered by a developer with an affinity for free
software, rather than open source software. Though the
differences in views were not great, where they did exist the main
emphasis of those differences, perhaps not surprisingly, was on
the maintained freedom of the code.

7.1. Limitations and Future Work
There were no interview questions that focused specifically on
what developers think about variations in open source licenses.
Thus, no data was gathered specifically on forks from open source
projects that are later made proprietary. Arguably, if developers
had strong opinions about such forks, they would have voiced
them even given the questions not specifically noting them, as
was the case with one of the interviewees. Furthermore, several
developers discussed the benefits for companies in that they can
fork and modify existing programs. Nonetheless, future work
could more specifically address developers’ views on proprietary
forks of open source software programs.

A further limitation of the study relates to the pool of interviewees
and its limit in scope. It would be interesting to include more
developers representing a wider distribution of nationalities.
However, given the homogenous nature of the interviewees’
answers despite them coming from four countries, it is uncertain
that a modest increase in interview subjects or backgrounds would
have had a significant effect on the outcome. Future work could
broaden the sample, including a wider mix of countries and
backgrounds. The similarity of the opinions among interviewees
in this study makes it challenging to suggest where differences of
opinion might exist, or be particularly pronounced; which is
something that further study could also reveal. However, the data
does seem to indicate that a deeper analysis of the potential
differences of opinion between free software versus open source
software enthusiasts might offer at least one further interesting
avenue of research.

The current study does not attempt to classify opinions relative to
their importance. A quantitative, survey-based analysis, based on
the information gained here, could uncover information about
such issues. Such a study could also shed light on what variables
may correlate with certain opinions: do programmers of a certain
age, background, or work-history have more similar views than
those from other groups? What about programmers who consider
themselves more aligned with either the term free software or
open source software? While the data from this article suggests
that identifying significant differences of opinion is not a
certainty, it would be interesting if such differences were
uncovered.

8. REFERENCES
1. Fogel, K. 2006. Producing Open Source Software. O’Reilly,

Sebastopol, CA.

2. Fung, K.H., Aybuke, A., and Tang, D. 2012. Social Forking
in Open Source Software: An Empirical Study. In
Proceedings of the CAiSE'12 Forum at the 24th International
Conference on Advanced Information Systems Engineering
(CAiSE) (Gdańsk, Poland, June 28, 2012).

3. Gamalielsson, J. and Lundell, B. 2012. Long-Term
Sustainability of Open Source Software Communities
beyond a Fork: A Case Study of LibreOffice. In:
Proceedings of the 8th IFIP WG 2.13 International
Conference, OSS 2012 (Hammamet, Tunisia, 2012).

4. Gamalielsson, J. and Lundell, B. 2014. Sustainability of
Open Source software communities beyond a fork: How and
why has the LibreOffice project evolved? Journal of Systems
and Software 89: 128-145

5. Himanen, P. 2001. The hacker ethic, and the spirit of the
information age. Random House, New York, NY.

6. Lerner, J. and Tirole, J. 2002. Some Simple Economics of
Open Source. The Journal of Industrial Economics, Vol. 50,
No. 2, pp. 197-234.

7. Levy, S. 1974. Hackers. O’Reilly, Sebastopol, CA.

8. Meeker, H. 2008. The Open Source Alternative. John Wiley
& Sons, Inc. Hoboken, NJ.

9. Moen, R. 1999. Fear of Forking essay. Available at:
http://linuxmafia.com/faq/Licensing_and_Law/forking.html

10. Moody, G. 2009. Who Owns Commercial Open Source –
and Can Forks Work? Linux Journal, 23 April, 2009.

11. Moody, G. 2011. The Deeper Significance of LibreOffice
3.3. Computerworld UK, 28 January, 2011.

12. Nyman, L. 2013. Freedom and forking in open source
software. Proceedings of the Nordic Academy of
Management Conference (Reykjavik, Iceland, 2013).

13. Nyman, L. 2014. When is a Fork a Fork? On the
Definition(s) of Code Forking. Forthcoming.

14. Nyman, L. and Lindman, J. 2013. Code Forking,
Governance, and Sustainability in Open Source Software.
Technology Innovation Management Review, January, pp. 7-
12.

15. Nyman, L. and Mikkonen, T. 2011. To Fork or Not to Fork:
Fork Motivations in Sourceforge Projects. In: Hissam, S.
(Ed.), IFIP Advances in Information and Communication
Technology, vol. 365. Springer, Heidelberg. pp. 259-268.

16. Nyman, L., Mikkonen, T., Lindman, J., and Fougère, M.
2011. Forking: the invisible hand of sustainability. In:
Proceedings of the OSS 2011: Towards Sustainable Open
Source, Sustainability workshop (Salvador, Brazil, 5
October, 2011).

17. Nyman, L., Mikkonen, T., Lindman, J., and Fougère, M.
2012 Perspectives on Code Forking and Sustainability in
Open Source Software. In: Hammouda, I. (Ed.), IFIP
Advances in Information and Communication Technology,
vol. 378. Springer, Heidelberg. pp. 274-279.

18. Raymond, E. 1999. The Cathedral and the Bazaar. O’Reilly
Media, Inc., Sebastopol, CA.

19. Raymond, E. 2001. How to Become a Hacker. Available at:
http://www.catb.org/esr/faqs/hacker-howto.html

20. Robles, G. and González-Barahona, J.M. 2012. A
Comprehensive Study of Software Forks: Dates, Reasons,
and Outcomes. In: Hammouda, I. (Ed.), IFIP Advances in
Information and Communication Technology, vol. 378.
Springer, Heidelberg. pp. 1-14.

21. St. Lauren, A. 2004. Open Source & Free Software
Licensing. O’Reilly, Sebastopol, CA.

22. Stewart, K.J. and Gosain, S. 2006. The Impact of Ideology
on Effectiveness in Open Source Software Development
Teams. MIS Quarterly, Vol. 30 No. 2, pp. 291-314. June
2006.

23. Weber, S. 2004. The Success of Open Source. Harvard
University Press, Cambridge, MA.

24. Wheeler, D. 2007. Why Open Source Software / Free
Software (OSS/FS, FLOSS, or FOSS)? Look at the Numbers!
Available at: http://www.dwheeler.com/oss_fs_why.html

25. Ågerfalk, P.J. and Fitzgerald, B. 2008. Outsourcing to an
Unknown Workforce: Exploring Opensourcing as a Global
Sourcing Strategy. MIS Quarterly Vol. 32 No. 2, pp. 385-
409/June 2008.

Appendix 1. Interview questions
The interviews were semi-structured, allowing for follow-up
questions when needed. Examples of follow-up questions are
given as bullet points. The interview began with three control
questions, each with possible follow-up questions. The first
question was about how they got into programming, followed by a
question about their open source background. These questions
were both to confirm that the interviewees met the criteria
established for interviewees, as well as to establish some further
details of their level of experience with programming in general
and open source in particular. The third question was about their
definition of a fork.

The questions were as follows:

1. When, in your opinion, is it appropriate to use the term
“fork”?

• Does it matter to the definition whether I plan to
merge the program back with the original?

• Does it matter to the definition whether I plan to
modify the program?

• Is it a fork if a functionality has been reused as part
of the new program, but it is buried/invisible inside
it, or at least not prominent?

o What if the functionality is the entire
forked program vs. only part of it?

• Does the term require community involvement? Is
it a fork if I take code for a personal program that I
never intend to share with anyone else?

2. What are the benefits of the existence of forking as a
practice?

3. What are the drawbacks of the existence of forking as a
practice?

4. When, or under which circumstances, is it
acceptable/OK to fork a program?

• Have you ever forked a program, or been
involved in a forked program?

• Under what kinds of circumstances would you
yourself consider forking a program in which
you were participating?

• Can you think of any examples of forking
where you felt it was good that a fork had
happened?

5. When is it not acceptable/OK to fork a program?

• Under what kind of circumstances would you
consider it a bad thing that a fork happened?

• What kinds of forks do you hope could be
avoided?

• Can you think of any instances of forking
which you felt it was a bad thing that a fork
had happened?

6. When someone forks a program, are there any moral
obligations towards anyone? The original developers?
The community? Others?

7. Is there a proper code of conduct when one wants to
fork a program, and if so, what is it?

