
76

In the network: Distributed control in Gentoo Linux

Thomas Østerlie
Department of computer and information science
Norwegian University of Science and Technology

thomas.osterlie@idi.ntnu.no

Abstract

This position paper reports on the findings of an
empirical pilot study of Gentoo Linux. Gentoo Linux is an
open source Linux distribution developed by a
geographically distributed community of volunteers. The
reported findings are based on the analysis of a specific
episode using actor network theory. With basis in the
analysis, it is argued that control in this specific episode
can be interpreted as both distributed and local at the
same time. Control here being the power to define a
problem and make the decision about the appropriate
solution to the problem defined. Control, it is argued, is
distributed in that it is the function of reciprocal influence
among several human and non-human actors.
Furthermore, it is argued that control can be interpreted
as not inherent in organizational structures or
hierarchies, but locally embedded among actors in the
decision making process.

1. Introduction

Geographical distribution is one of the distinct
characteristics of open source software development.
Open source software development has been connected
with teams of geographically distributed developers ever
since Raymond�’s first description of the bazaar [1].
Despite the geographical distribution of developers,
Raymond describes control in the bazaar as centralized,
headed by the �’benign dictator�’. Using open source
software development as an example of computer-
supported distributed work, Moon and Sproull [2] argue
that an enabling condition for the success of the Linux
kernel are the "capabilities a single leader brings to a
project". They argue that the "clear locus of decision-
making, singular vision, and consistent voice" are
important in controlling this kind of collaborative effort.
This supports Raymond�’s notion of the �’benign dictator�’.
Control in these two works is therefore understood as
centralized.

Mockus and Herbsleb [3] describe the Apache open
source web server community in two contradictory ways.

On the one hand there is a formal organizational structure
for making decisions about code integration. On the other
hand, they report that work is not assigned but that
individual developers choose what to do themselves. "The
choices are constrained, however, by various motivations
that are not fully understood." Understanding control as
the power to define problems and their appropriate
solutions, and thereby making decisions about what tasks
to prioritize, Mockus and Herbsleb�’s description points to
a tension between centralized and distributed control.

Picking up on Mockus and Herbsleb�’s observation,
this paper raises the question whether control always is
centralized in open source software development? How
can we understand the tension between distributed and
centralized control?

The paper is organized as follows. Section 2 presents
the empirical findings. The section contains a short
presentation of the Gentoo Linux case, details of the
method employed, and a detailed presentation of the
reported episode itself. Section 3 discuses how control
can be interpreted in the reported episode. The conclusion
draws implications of the discussion, and formulates
directions for future work.

2. The case

This section presents the empirical findings. For
context, an overview Gentoo Linux is presented first.
Then the methods of data collection and analysis that
form the basis for this position paper are described. The
reported episode is described afterwards, after which the
episode is analysed in terms of the mechanics of framing
the problem to be solved and what actors take active part
in framing the problem.

Gentoo Linux is an open source Linux distribution
developed by a geographically distributed community of
volunteers. Aiming for advanced users, the distribution is
a mix between Linux from scratch and a regular Linux
distribution. Gentoo Linux provides the minimum of
support for installing a bare bones Linux system. In this
way the user can build an installation from the bottom up,
tuning it to his exact needs; be it a workstation

77

installation, a secure server, or a gaming system. That is
why Gentoo Linux is also called a meta distribution.

Portage, Gentoo Linux�’ software distribution system,
is the technology that makes this possible. Portage keeps
track of the third party software, also called packages,
available for Gentoo Linux at any one time. At the time of
writing there are over 6000 packages available. Portage
also keeps track of which packages have been installed on
the local system. Information about installed packages is
stored in a database. For each installed package this
database contains information such as the absolute path
for every files installed by the package, the compiler flags
the package was built with, and the package�’s license.

When installing new packages, Portage compiles the
software on the local system. The user can therefore fine-
tune such things as compilation flags and additional
software support. This information is stored in a set of
configuration files.

2.1. Method

The episode reported in this position paper is part of
the empirical evidence collected during a pilot study of
Gentoo Linux. Data for this pilot study was collected with
a number of methods. Archival data was collected from
the Gentoo web site at http://www.gentoo.org,
and from the Gentoo mailing list archives accessed
through the news.gmane.org service. The IRC logs
that form the basis of the analysis which this position
paper is based on, were downloaded from Gentoo�’s home
pages. In addition, the pilot investigation involved
participatory observations with a software consultant
using Gentoo Linux as development platform, and a semi-
structured interview with one of the Gentoo Linux
developers. The interview was performed according to
the guidelines laid down in [4]. Ethnographic field notes
[5] were taken in connection during the participatory
observation and later written out as a full field report

The episode reported in this position paper is primarily
based on the IRC log of the Gentoo managers�’ meeting
from December 15 2003. Using actor network theory, an
analysis was performed on basis of the log supplemented
by the interview. Actor network theory is a method for
analysing the relationship between the technological and
the social [6,7]. Unlike traditional software engineering
methods that teaches us to categorizes entities into classes
such as roles, instances, technical artefacts, organizational
artefacts, just to mention a few, actor network theory
attributes symmetry to all entities in the network by
promoting them to actors. This reflects the basic
assumption that all entities in the network are capable of
acting upon each other.

Central to actor network analysis is identifying the
actors and associations between them. Thinking of actors
as nodes and associations as connections between the

nodes, the network appears. The network is composed of
heterogeneous nodes�—technical and non-technical,
human and non-human, etc.�—that are associated for a
period of time. However, the actor network is reducible
neither to an actor alone, nor to a network. In addition,
the network is seen as constantly shifting, and not as a
representation of the original or final state.

In actor network theory the network is an analytical
structure constructed by the analyst. Instead of thinking of
the actor network as a representation of things out there, it
is a conceptual frame, a perspective to interpret social and
technological processes. The episode reported in sections
2.2, 2.3, and 2.4 is related as interpreted through the
perspective of actor network theory.

2.2. The episode

The Gentoo managers�’ meeting is a biweekly meeting
for Gentoo developers to coordinate activities. The
managers�’ meeting is arranged over the Internet, using
IRC. During the Gentoo manager�’s meeting December 15
2003 [8], the issue of third party utilities operating on
Portage�’s database and configuration files is discussed.
Some of these utilities mangle the configuration files,
while other utilities no longer work because the Portage
database format has changed. One of these utilities,
qpkg, a utility for querying Portage�’s database, has
accumulated over 20 unresolved bug reports in Gentoo
Linux�’ bug tracking system. The source of all these
problems is identified to be code that is out of
synchronization with the rest of the system. This kind of
problem has been resolved before by introducing the
maintainer role. The maintainer is responsible for keeping
specific parts of code in synchronization with the rest of
the system. The conclusion is that the code in question is
outdated because it has not been assigned a maintainer.

An additional response to the problem is to introduce
an abstraction layer, an API, on top of Portage�’s database
and configuration files. All utilities accessing the
configuration files and database must do so through this
API. Two Gentoo developers are assigned to develop and
maintain this API.

There is dissent among the participants at the meeting
about priorities. Gentoo Linux�’ chief architect proposes to
base the API on Portage�’s own code. The two developers
in charge of the API, while agreeing that this would be a
good idea, argue that there are other factors that are more
important to take into account when resolving the
problem. Especially the issue of missing maintainers for
utilities accessing the Portage database and configuration
files. The qpkg utility is used as an example of these
difficulties. The utility was included in the distribution by
a developer who later left the project. qpkg implements
its own code for accessing Portage�’s database.
Responsibility for the utility was handed over to someone

78

else when the original developer left Gentoo Linux. This
second developer went on leave, and qpkg was left un-
maintained. The problem, while technical in symptoms, is
something more and something else. It is also
symptomatic for the problems to be addressed by the API
developers, in that qpkg, like the other utilities,
implement its own code for accessing Portage�’s database
and configuration files directly. Without any guarantee
for how long the developers for these utilities will stick
around Gentoo Linux, the situation that the API is to
address is to keep the way utilities access Portage�’s
database and configuration files synchronized even after
the original developers leave.

2.3. Framing the problem

The decision to introduce an API on top of Portage�’s
database and configuration files is an answer to a problem
the Gentoo developers want to solve. Thinking in terms
of actor networks, the problem can in fact be
conceptualized as an actor. However, it is not an actor
that exists before the meeting starts. It is actually a
constructed actor. The problem is "a list of ... trials ...
hooked to a name of a thing and to a substance" [7,
p.122]. The way the problem is given substance, its
framing, is the topic of this section.

In the transcript from the Gentoo manager meeting
December 15 2003, one of the developers participating in
the meeting states that there are a "slew of util[itie]s lying
about". He associates these with mangled Portage
configuration files, in that the utilities "hack, slash and
mutilate the ... config[uration] files". Then he associates
the Portage database with the "util[itie]s lying about", as
"these util[itie]s misreads /var/db [the Portage database,
author�’s comment], so as not to be consistent with
[P]ortage". Another problem with the "util[itie]s lying
about" is that they have overlapping functionality, and
none do their tasks particularly well:

"we don�’t need five half-working use flag editors. we
need one really good one"

The problem is framed by the developer associating
different actors, framing a problem in such a way that the
other developers understand it as their problem, too.
Figure 1 illustrates how the different actors are associated
in framing the problem.

Having framed the problem as a shared problem, its
cause is established. The cause of the problem is that the
utilities lying about have not been properly updated, as "a
few of the existing tools [the same as the utilities lying
about, author�’s comment] don�’t work with portage 2-0.50
due to API changes [in Portage, author�’s comment]". That
is also why the qpkg utility does not work any longer,
since there are "20+ bugs [reports] about qpkg" that
remain unresolved in the bug tracking system. The

technical cause of the problem is outdated code, but this
is more a representation of the larger problem:

"now I have 20+ bugs about qpkg assigned to me, it�’s
a mess, and nobody wants to touch it. Who is responsible
to maintain it now?"

Figure 1 The problem framed

The symptom is that the utilities lying about have not
been updated, but this is caused by the fact that there are
no one maintaining the "slew of util[itie]s lying about". In
this way, the maintainer replaces the problem in the actor
network, providing a solution to the situation.

Control is exercised in deciding what activities are to
be undertaken, how and when. There are hundreds of
unresolved bug reports in Gentoo Linux�’ bug tracking
system. In making the decision about which of these bug
reports are to be resolved, decisions about what activities
to prioritize are made. Framing the problem can therefore
be understood as the power to determine the activities to
be undertaken. From this follows that the task of
identifying who is in power in the episode above, is the
task of identifying who has the power to frame problems.

2.4. Who frames the problem?

At first glance, the problem facing the developers
seems to be framed by one of the developers participating
in Gentoo manager meeting. As a response to the problem
the maintainer role is introduced. The maintainer role, as
an actor decoupled from a person, was once constructed
to resolve similar situations. In framing the problem at
hand in this particular way, the answer to introduce a
maintainer becomes a given. Following this line of
thinking, one can go as far as saying that the maintainer
role participates in shaping the problem. If you have a
hammer, all you see are nails. The knowledge among
discussion participants that this role exists can be
considered constitutive to the problem framing. Looking
at the episode this way, the maintainer role is turned from
passive to active in framing the problem.

79

It is highly unlikely that every bug experienced by
Gentoo Linux users is reported in the bug tracking
system. However, the bugs that are used to frame the
problem are those reported in the bug tracking system.
Bugs are given priority, severity, status, and assigned to a
given person or group of persons for resolution. A bug is
resolved when it is fixed or labelled invalid. As long as a
bug remains unresolved but assigned to a developer, the
bug is a reminder to the assignee. In this sense, bug
reports are also active in framing the problem.

Framing the problem is not a function of a single
developer or a closed group of developers. Instead, it can
be interpreted as the function of a number of actors, both
human and non-human. Neither is the power to frame the
problem one-sided in that one actor forces other actors to
do something they do not want to. Instead, framing is a
reciprocal relationship between the Gentoo developers,
the maintainer role, and the bug reports.

3. Discussion

This discusses how control can be interpreted in the
above episode above. Three aspects of control are
discussed. First the implication of the episode in terms of
control and organizational hierarchies is discussed. Then
we discuss how control can be interpreted as distributed
among human and non-human actors. Finally, it is argued
that actor network theory makes the interpretation of
control as reciprocal among actors likely.

3.1. Relation of control and organizational hierarchy

Gentoo Linux is split into projects and sub-projects.
Herds consisting of maintainers are responsible for
keeping a set of packages up to date. This is how the
Gentoo developers describe their organization in terms of
hierarchies and distribution of roles. However, by
conceptualizing the way the Gentoo developers talk about
the organization during the Gentoo Managers�’ meeting as
an actor network, another view appears. In framing the
problem that the API resolves, the maintainer is
introduced as an actor in the network. In contrast Gentoo
Linux�’ chief architect does not get through his idea to
base the API directly off Portage.

Looking at the organizational hierarchy, the architect
is placed farther up than the developer. If control and
organizational hierarchies were related, the chief architect
would have the power to make his view the prevailing. In
the episode above, this does not happen, though. Why
not?

Control can be understood as local in the way actors
enrol other actors and are enrolled themselves in the
immediate actor network. If control was inherent in the
hierarchy, the chief-architect should have gotten his view
through. That he does not get his view through can be

explained by him never enrolling the chief architect role,
considered an actor in an actor network analysis, in the
immediate actor network.

The implication of the above interpretation is that there
need not be an inseparable relation between
organizational hierarchy and control. Control can be
locally embedded among actors in the immediate
network. The actors brought together by the hierarchy
have no essential relation to each other, but can instead be
understood as dispersed actors temporarily brought
together through the hierarchical ordering. By viewing of
actors as inherently dispersed, thinking of the
organization as an actor network shows that the
hierarchical description of organization is just that: a
hierarchical description of organization, an abstraction.
As such organizational hierarchy need not be inherently
connected with control.

3.2. Control is distributed and heterogeneous

In saying that a corrupted configuration file is the
same as a missing maintainer, technical (the corrupted
configuration file) and organizational (the maintainer)
actors are treated as equals. By treating all actors
symmetrically this way at the same level of analysis,
control can be interpreted as the mutual relationship
between heterogeneous actors. Control is not the
relationship between action and structures of
signification, legitimization and domination [9], but in the
direct relationship between actors in the network. A
possible implication of this interpretation is that control is
no longer purely social, but a function of human and non-
human actors, of technological and non-technological
actors, of organizational and non-organizational actors.
Control becomes orthogonal. It is a function between all
actors in the network, regardless of classification
schemes. Actors are no longer higher or lower in the
organizational hierarchy, technical or non-technical,
human or non-human; they are all and the same: actors in
the network.

3.3. Control as reciprocal

In saying that control can be understood as local to the
immediate network of actors, control becomes both the
actors�’ ability to frame problems, and the ability to limit
other actors�’ framing activities. Control can therefore be
understood as more than the traditional control relation
within a set of actors

A B
C D
D B
A E
but as a relationship where actors reciprocally control

each other, understood as the relation of

80

(A, B, C, D, E)
 In the latter relationship lies the argument that control

is distributed. Control can�’t be reduced to an actor A�’s
ability to overcome actor B�’s and thereby exert control
over B, as implied in the relationship A B. It is not one-
sided, but distributed. A must not only overcome B�’s
resistance, but the resistance of the other actors in the
immediate network. In this sense, in exerting control over
B, A exposes itself to the controlling power from the
other actors.

4. Conclusion

This paper has argued that traditional notions of
control may be inadequate in describing distributed
control in Gentoo Linux. Control, it is claimed, need not
be limited to the people who seem to be making
decisions. Rather, control can be interpreted as distributed
among both human and non-human actors. In reported
episode, control is distributed among a number of Gentoo
developers, the maintainer role, and bug reports. In this
sense, control is not distributed in terms of geographical
distribution, but distributed as in shared among a handful
of human and non-human actors.

While Gentoo Linux is geographically distributed, the
interpretation of distributed control is not connected with
the geographical distribution. It is, rather, connected with
the distribution of elements within an actor network. The
key points of distributed control are:
a) that control need not be inherent in the organizational

hierarchy, but can be interpreted as embedded in the
immediate actor network

b) that control need not be inherent in structures, but
can be distributed among actors,

c) that control can�’t always be reduced to a function of
human agency, but may at times be understood as the
function of all actors in the network such as tools and
organizational roles

d) that control can be a reciprocal relationship between
a set of actors

Thinking of distribution this way, similar analysis of
distributed control could therefore be equally applicable
in geographically co-located software development
efforts, too. Distribution is not geographically, but instead
understood as distributed among actors.

In arguing that control is distributed in Gentoo Linux,
this position paper addresses only the mechanics of
control through following the construction of networks
through enrolling. The rules of this construction are left
untouched. How is it that some actors in the network
inscribe stronger behaviour than others? What are the
rules for enrolling actors, and what are the rules for
excluding actors as valid to be enrolled? These issues
need to be addressed in future studies.

The decision to do an API on top of the Portage
database and configuration files were only a month and a
half old when this pre-study was done. At the time of
writing, the API has still to be integrated in a large scale.
It is available in Gentoo Linux, but very few utilities
actually use the API. A point of future study is to follow
up how the implementation of the API and its integration
with utilities goes. How is access through the API
enforced? How are bugs connected with not using the
API handled? What are the effects of introducing the
API? Does it lead to lesser problems for utilities
integrating with Portage�’s database and configuration
files?

7. References

[1] E.S Raymond, The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary, O�’Reilly, Sebastapol, 1999.

[2] J.Y. Moon, and L. Sproull, "Essence of Distributed
Work: The Case of the Linux Kernel", First Monday,
5:11, 2000.

[3]A. Mockus, and J.D. Herbsleb, "Why Not Improve
Coordination in Distributed Development by Stealing
Good Ideas from Open Source?", Proceedings of the 2nd
Workshop on Open Source Software Engineering, IEEE,
2002.

[4] S. Kvale, InterViews: An Introduction to Qualitative
Research Interviewing, SAGE Publications, New York,
1996.

[5] R.M. Emerson, R.I. Fretz, L.L. Shaw, Writing
Ethnographic Fieldnotes, University of Chicago Press,
Chicago, 1995.

[6] M. Callon, "Some elements in a sociology of
translation: domestication of the scallops and fishermen
of St. Brieuc Bay". Power, Action and Belief, Routledge,
London, 1986.

[7] B. Latour, "Technology is society made durable", A
Sociology of Monsters. Essays on Power, Technology and
Domination, Routledge, London, 1991.

[8] Gentoo Managers�’ Meeting Log,
http://www.gentoo.org/proj/en/devrel/m
anager-meetings/logs/2003/20031215.txt,
last accessed March 1 2004.

81

[9] A. Giddens, The Constitution of Society: Outline of
the Theory of Structuration, Polity Press, Cambridge,
1984.

