

On the Need for OSS
Patch Contribution Tools

Bhuricha Deen Sethanandha1, Bart Massey1, and William Jones2
1 Department of Computer Science, Portland State University

1900 SW 4th Avenue, Portland, OR 97201, USA
{bhuricha, bart}@cs.pdx.edu

2 The Information School, University of Washington
Mary Gates Hall, Ste 370, Seattle, WA 98195, USA

williamj@uw.edu

Abstract. Open Source Software (OSS) projects and systems have become
significant parts of the software economy. The sustainability of an OSS project
depends largely on community contributions. The patch contribution process is
important to OSS projects. Nevertheless, there are several issues negatively
impacting patch contribution in mature OSS projects. These issues can be
addressed by improving tools to support the patch contribution process.

1 Introduction

The number of Open Source Software (OSS) projects and the size of OSS systems
have been growing at an exponential rate [1], yet the majority of them do not have
enough members to become sustainable [2]. The sustainability of OSS projects
depends largely on community contributions [3]. However, it takes a significant
amount of time and effort for external developers to contribute to OSS projects [4].
This is especially true for patch (source code and document change) contributions. It
takes a significant amount of time to learn the technical and social aspects of the
project, and even more time to gain trust by demonstrating skills and accumulating
reputation, [4]. Moreover, in order to contribute changes, external contributors have
to go through a patch contribution process that has a number of potential barriers.

The OSS patch contribution process (PCP) [5] is important for the sustainability
of OSS projects because it enables learning and knowledge transfer in software
projects [6] and provides an opportunity for recruiting potential developers into OSS
projects [7]. By improving the OSS PCP, more patch contributors can be processed
in a timely manner and more contributors can be motivated to contribute more. In
this paper, we analyze key issues with the PCP. We conclude by providing
suggestions for improved PCP tools that address these issues.

2 Bhuricha Deen Sethanandha1, Bart Massey1, and William Jones2

2 Key Patch Contribution Process Issues

Despite the long history of open source the PCP remains somewhat immature and,
until recently, poorly studied. Using the data collected from ten OSS projects [5], we
analyze common issues among them and identify and explain how existing tools
contribute to these issues. In this section, we focus on identifying problems causes by
the tools that are used to support patch review and discovery activities.

Patch contribution is time-consuming and slow

The PCP is time consuming and slow because it consists of several activities:
creation, publication, discovery, review and application. Many of these activities
involve several people including patch contributors, reviewers, peer developers and
committers [5]. Moreover, this process is performed asynchronously. Any process
of many steps that is executed serially and cooperatively is likely to be difficult and
take a long time; the PCP is no exception.

The amount of time that it takes to complete the process depends on many factors
such as contributor experience, the capability of tools and the quality of patches.
Processing a patch inevitably takes hours and often takes weeks [7, 8, 9]. Although
patch review is an important defect detection mechanism, in some projects only
patches created by new contributors are required to be reviewed prior to being
committed; a policy intended to reduce the delay and complexity for experienced
contributors [8]. Literature has identified the slow nature of the PCP as an issue, but
studies have yet to address how current patch review tools address this issue.

The PCP can also be time consuming because it requires contributors and
reviewers to access information from various sources in order to complete the
process. These sources may include email, project web pages, revision control
systems and bug tracking systems. It is difficult to get all the information needed to
learn about the process and culture because the information is scattered across
sources. For example, to find the potential reviewers, newcomers may have to look
up the project web pages, bug database and revision log to determine who should be
included in patch requests. There is a need for a tool that provides social information
as newcomers learn about the technical aspects of the OSS projects.

Patches can be reviewed using email, the issue tracking system or a dedicated
patch review system. Information needed in order to review patches effectively is
also found in many places. Reviewing patches in email requires both fresh
knowledge of the code affected by patches and also guidelines such as coding
standards. Patches in email usually describe specific changes to a section of code, but
do not provide context in the form of a full source file. This approach works
reasonably well for experienced developers who know a lot about the area where the
code patch applies and are fluent in reading patches, but less well for inexperienced
reviewers. The approach thus limits the possibility that peer developers can
participate in patch review. Advanced patch-review skills require a lot of time and
experience to acquire. Recently, web-based patch review systems such as Review

Patch Contribution Tools 3

Board1 and Gerrit2 have been developed to address problems introduced by patch
review using email. These tools have many nice capabilities such as side-by-side
code comparison, inline comments, and integration with revision control systems.
However, neither of these tools is widely adopted by OSS projects, and there is as
yet no evidence that these tools are better than mailing lists. Nevertheless, they
represent a potentially important step toward an improved PCP.

More in-depth analysis of the existing patch review tools are needed in order to
improve the patch review tools. A better patch review tool can provide information
needed when reviewers review patches, thus reducing the time required to complete
the task.

Patches are often lost or ignored, and under-reviewed

Although OSS projects encourage patch contribution, they have problems handling
the amount of patches they receive. The Apache project, where a peer review process
is mandatory, 23% of submitted patches are ignored and 8% of the commits are un-
reviewed [8]. In many projects, a significant number of patches did not receive
responses [10]. Patches might be ignored unintentionally when the reviewers are too
busy with other OSS development tasks. Sometimes they can be ignored because of
the poor quality of the submitted patches [6]. Moreover, in many OSS projects, only
a small group of people participate in patch review [6, 8]. The average number of
reviewer responses per patch posting is less than two and the majority of the patches
are reviewed by one person [8, 10].

Mailing lists (ML) and issue tracking systems (ITS) are the most commonly used
tools for publishing patches. As the volume of email or issues increases, it becomes
harder to keep track of patches, which may then be lost or ignored. Mailing lists have
the potential to deliver patches to more potential reviewers, but in fact only active
members who constantly monitor the list may discover them. Patch tracking systems
such as Patchwork3 and CommitFest4, have recently been developed to make it easier
for patch contributors and reviewers to track the status of patches reviewed over a
mailing list. Yet, we observe a long list of unattended patches on the Linux Kernel
patch list. Many OSS projects require patch contributors to publish patches to their
ITS, which is not designed to support the PCP. Therefore, it is difficult to find un-
reviewed patches and to track the process of patches. This is a challenge for projects,
such as Mozilla and Eclipse, that use ITSs. Due to the search limitations of the ITSs,
reviewers also have difficulty discovering patches that are not assigned to them.
Hence, these OSS projects rely on patch contributors to specify potential reviewers.
Contributors must spend time learning about the projects in order to find the
reviewers. Although the Drupal project has an ITS that provides the list of
unattended patches, they still have problems getting reviewers to review them. None
of the PTSs or ITSs we reviewed provides an effective way for reviewers to discover

1 The Review Board project http://www.reviewboard.org/
2 Gerrit Code Review http://code.google.com/p/gerrit/
3 Patchwork – Web-based patch tracking system http://ozlabs.org/~jk/projects/patchwork/
4 PostgreSQL CommitFest https://commitfest.postgresql.org/

4 Bhuricha Deen Sethanandha1, Bart Massey1, and William Jones2

patches that were not assigned to them. Consequently, the majority of patches are
ignored or under-reviewed. Better support for patch discovery and awareness is
needed to solve these problems. Making patches easily discoverable should increase
the number of peer developers reviewing patches, which will reduce the number of
ignored patches and increase the number of reviewers per patch.

Improving Tool Support for OSS Patch Contribution Process

The PCP often involves many tools that patch contributors and reviewers are
required to switch between in order to complete the process. Integrated development
environments (IDEs) are integrated with issue tracking systems, web browser, and
revision control systems in order to support software development tasks. However,
they do not yet support the PCP. The cost of context switching can be largely
eliminated by changing the IDE to support PCP related tasks, which will increase the
productivity of patch contributors and reviewers. For example, to publish a patch, the
IDE can automatically create a patch from the changes to the code modified by the
contributor, and then automatically analyze the patch based on OSS project coding
standards. It can also guide the contributor through the patch publication procedure
for the target OSS project without leaving the IDE. Reviewers receive notification on
their task list within the IDE that a new patch needs to be reviewed. Reviewers can
then perform the review task within the IDE and provide feedback. Once the patch is
approved, it is automatically committed to the code repository by the IDE.

In order to improve tools that support patch review, the ideal tool has the
following features:

· Provides recommendations for relevant information that reviewers need to
complete the review. For example, it should provide a link to the source
files modified by the patch, a link to the coding standard, and a checklist
describing what reviewers should look for. This should reduce the amount
of time that reviewers need to review patches.

· Provides different feedback options. Most patch review tools require the
reviewer to provide textual feedback, which is time-consuming for
reviewers. A feedback system that lets reviewers go through a set of
questions or a simple rating scale may make providing feedback easier and
faster, which may encourage more peer developer to review.

· Provides instant feedback for issues that can be recognized automatically.
Trivial errors, such as incorrect coding style, can then be handled without
requiring reviewer feedback. If the tool can handle most of the preventable
reasons for revision, it can reduce the number of resubmissions and allow
reviewers to focus on implementation and design issues. This should reduce
the amount of time that takes to resolve patches, and increase the quality of
patches.

In order to improve tools that support patch discovery, the ideal tool has the
following features:

· Provides a better view to represent patch status. Kanban board visualization
and a cumulative flow diagram can help increase project visibility and let

Patch Contribution Tools 5

the team visually track progress and identify bottlenecks [11]. A Kanban
board is a board that is divided into different columns representing the
status of tasks. Task cards are placed in these columns based on their status.
Patches can be displayed as tasks with their status displayed: need review,
reviewing, reviewed, rejected, etc. The Kanban board lets reviewers and
contributors detect the number of patches that are queued under each status,
and work together to reduce the bottleneck.

· Provides an ability to tie patches to a specific location in the code base. There
are many benefits to using this information. This capability enables
developers and reviewers to discover patches and easily search for patches
related to the code they are working on. For reviewers, they are likely to
review patches related to the code they have experience with. The ideal
person would be the person who wrote the code modified by a patch.
Newcomers need to be aware of patches related to patches they are working
on, which is hard to do using existing tools. The following capabilities can
be developed using location tag information:

o Web-based code browsers can provide patch information in addition
to source code information.

o A recommendation system that is part of IDEs can provide
information about patches based on the part of code developers are
working on.

Conclusion

The PCP is important to sustainable OSS projects. Although there are many issues
that become barriers to contributions, they can be addressed by improving the
existing tools. We propose several tool improvements: incorporating patch review
and notification in an IDE, a patch-aware code browser, and Kanban board
visualization. Further study is required in order to design and implement such tools
in order to increase process efficiency and patch discoverability.

References

[1] A. Deshpande and D. Riehle, “The Total Growth of Open Source,” Open
Source Development, Communities and Quality, 2008, pp. 197-209.

[2] K. Crowston, J. Howison, and H. Annabi, “Information systems success in free
and open source software development: theory and measures,” Software
Process: Improvement and Practice, vol. 11, 2006, pp. 123-148.

[3] C. Wu, J.H. Gerlach, and C.E. Young, “An empirical analysis of open source
software developers' motivations and continuance intentions,” Information &
Management, vol. 44, Apr. 2007, pp. 253-262.

[4] G. von Krogh, S. Spaeth, and K.R. Lakhani, “Community, joining, and
specialization in open source software innovation: a case study,” Research

6 Bhuricha Deen Sethanandha1, Bart Massey1, and William Jones2

Policy, vol. 32, Jul. 2003, pp. 1217-1241.
[5] B.D. Sethanandha, B. Massey, and W. Jones, “Managing Open Source

Contributions For Software Project Sustainability,” Management of
Engineering & Technology, 2010. PICMET 2010. Portland International
Conference on, Bangkok, Thailand: 2010. (to appear)

[6] M. Nurolahzade, S.M. Nasehi, S.H. Khandkar, and S. Rawal, “The role of
patch review in software evolution: an analysis of the mozilla firefox,”
Proceedings of the joint international and annual ERCIM workshops on
Principles of software evolution (IWPSE) and software evolution (Evol)
workshops, Amsterdam, The Netherlands: ACM, 2009, pp. 9-18.

[7] C. Jensen and W. Scacchi, “Role Migration and Advancement Processes in
OSSD Projects: A Comparative Case Study,” Proceedings of the 29th
international conference on Software Engineering, IEEE Computer Society,
2007, pp. 364-374.

[8] P.C. Rigby, D.M. German, and M. Storey, “Open source software peer review
practices: a case study of the apache server,” Proceedings of the 30th
international conference on Software engineering, Leipzig, Germany: ACM,
2008, pp. 541-550.

[9] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!,” Proceedings of
the 2008 international working conference on Mining software repositories,
Leipzig, Germany: ACM, 2008, pp. 67-76.

[10] J. Asundi and R. Jayant, “Patch Review Processes in Open Source Software
Development Communities: A Comparative Case Study,” Proceedings of the
40th Annual Hawaii International Conference on System Sciences, IEEE
Computer Society, 2007, p. 166c.

[11] M. Poppendieck and T. Poppendieck, Lean software development : an agile
toolkit, Boston: Addison-Wesley, 2003, p. 76.

