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ABSTRACT
Online work projects, from open source to wikipedia, have
emerged as an important phenomenon. These communities
offer exciting opportunities to investigate social processes
because they leave traces of their activity over time. Un-
like traditional work teams, the participants in these com-
munities are widely dispersed and work without centralized
management. The question arises, then, as to the extent to
which these are in fact communities: is the group simply the
sum of the individuals that make it up, or does the group
function as a social unit? We explore this question in the
temporal domain.

We argue that the rapid visibility of others’ work afforded
by the information systems used by these projects reaches
out and attracts the attention of others who are peripherally
aware of the group’s online space, prompting them to begin
or intensify their participation, binding separate individual
streams of activity into a social entity.

Previous work has suggested that for certain types of
bursty social behavior (e.g. email), the frequency of the
behavior is not homogeneously distributed but rather can
be divided into two generative mechanisms: active sessions
and passive background participation. We extend this work
for the case of multiple conditionally independent streams
of behavior, where each stream is generated by these two
generative mechanisms. Our model can characterized by a
double-chain hidden markov model, allowing efficient infer-
ence using expectation-maximization. We apply this model
to visible work communities by modeling each participant as
a single stream of behavior, assessing transition probabilities
between active sessions of different participants. This allows
us to examine the extent to which the various members of
the community are influenced by the active participation of
others. Our results indicate that an active session by a par-
ticipant at least triples the likelihood of another participant
beginning an active session.
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1. INTRODUCTION
Novel information technologies have given rise to new or-

ganizational forms, such as open source and Wikipedia. Un-
derstanding these organizations is an important challenge
both because they are increasingly important in the world
and for the lessons they might provide about human behav-
ior generally. In addition better understandings may help
these projects as they seek to sustain their success.

They are interesting to study, in part, because their suc-
cess is a puzzle. It is a puzzle because they work in con-
ditions expected to be problematic for collaboration: they
are high distributed, they have little control over their po-
tential participants and they work in complex domains of
work. These organizational forms are diverse, but share two
distinguishing characteristics of particular interest for this
paper: their participants are largely volunteers and, as such,
have to be attracted to work on the projects. Secondly, their
work is made public through information technologies.

Volunteer participation immediately raises the question of
motivation, which has been extensively studied [13, 14, 8, 7,
23, 4, 10]. This work cites motivations like a) the prod-
uct itself, b) learning by doing, c) intellectual stimulation,
d) self-efficacy, e) building reputations and f) learning from
others. This work speaks of motivations in a very general
form and is almost always based on surveys or interviews
[5]. The motivations share the characteristic that they are
all very rational explanations of behavior and we believe that
the possibility exists that these explanations are influenced
by post-hoc justifications of the time spent on these projects.
In any case they don’t explain an interesting question: why
do participants choose to participate at a particular time,
and what might that tell us about the interesting success of
these new organizational forms?

Four years of participant observation in an open source
project, reported in [9], illuminated two as yet under-explored
aspects of participation in these projects. The first, at risk of
some obviousness, is that it occurs in and around one’s real
life context. Participation is only possible when one is awake
and at one’s networked computer. Even at one’s computer,
participation occurs in and around other activities, such as
paid work, school work, socializing, web browsing, internet
banking and so on. In addition, the material environment
is quite noisy, with potential participants frequently shifting
between applications and peripherally attending to multiple
communication channels, such as open email clients, IRC
chat sessions, Facebook notifications and so on. This dy-
namic environment means that the project is competing for



attention with these other things: a potential participant’s
broad motivations must be converted into specific contribu-
tion actions undertaken at a specific time.

A potential participant’s attention can be drawn to the
project and its work in different ways. A first is that they
may wish to accomplish something in particular and intend
to focus their attention primarily on the project’s work. A
second is that their attention may be drawn by intersection
with the project as an incidental consequence of other activ-
ities, such as when one is using a reference manager to write
a paper and finds an annoyance, or when one is researching
a city for a trip and reads a Wikipedia page.

These two mechanisms appear to relate to the temporal
patterns of work in these communities. We observe (and pro-
vide evidence below) that there are two main such patterns
of work: small numbers of events sporadically dispersed in
time and short periods of high intensity, where many events
come quickly, which we call active sessions. Sporadic par-
ticipation seems likely to result from attention being drawn
to the project, but not held for a substantial period of time,
instead returning to other competing activities, such as fir-
ing off a quick bug-report while writing an academic paper.
Active sessions, on the other hand might be generated by
intentional, focused work, where participants are pursuing
specific goals.

Both these mechanisms, however, are driven by individual
causes, meaning that participants incidental participation
and active sessions would not respond to other participants.
The project would, in effect, be an accretion of individual
work, simply a place for individuals to work, rather than a
social entity or a collective project.

Careful consideration of the attentional environment of
potential participants suggests a third attentional mecha-
nism: that of visible work. By this we mean that the work
of other participants becomes visible to a potential partic-
ipant, drawing their attention towards the project. If the
changes were only visible if the potential participant were
to specifically visit the project pages (pull), then this would
not be an attention drawing mechanism on its own. How-
ever many systems have channels which push visible activity
by others directly to participants (push), such as email lists,
IRC channels, RSS feeds and watchlists, which inform poten-
tial participants when changes are made to project venues.
Thus work by others “reaches out” quickly to potential par-
ticipants and has the ability to attract their attention to the
project.

We argue that this socio-technical characteristic of visible
work systems means that participants are likely to synchro-
nize their attention to the project. Not only does such visible
work attract attention but it also signals that other partici-
pants are awake, online and paying attention to the project
(This point has been made in the “social presence” litera-
ture, particularly in the context of distance learning, e.g.
[11, 20, 19]). This seems likely to create a particularly likely
time for a participant to turn their primary attention to the
project, taking them out of their incidental work pattern
and into an active session. Once multiple participants are
actively working, they may continue to prompt each other to
continue to work, through obvious mechanisms like directly
talking, asking and answering questions, solving problems
which would otherwise have blocked work and seen a partic-
ipant turn their attention to other non-project work. Other,
less obvious, mechanisms might also operate, such as being

annoyed by another participant’s work (see Figure 1) and
working to correct it, or working to demonstrate to another
who has answered a question that their effort was worth-
while, thereby demonstrating your competence. In short,
the mechanism of visible work, might operate to move a
project from a collection of individuals towards a social en-
tity, where the individual’s work patterns are affected by
and relate to those of others.

Figure 1: “Duty Calls” XKCD provides a hu-
morous look at social attention extracting more
time than potential participants might otherwise
have contributed. Reprinted with permission, see
http://xkcd.com/about/

Such a mechanism might help to explain the interesting
success of these new organizational forms, who seem able to
attract participants more effectively than offline volunteer
work, which has historically struggled. Prior to the infor-
mation technologies that make visible work possible, volun-
tary work tended to require participants to be sufficiently
motivated that they would plan and set aside specific time
to volunteer. Since the volunteer needed to be physically
present this tended to require long periods of contiguous
time. Visible work systems mean not only that small peri-
ods of “free” time can be harnessed, but that projects can
actively attract time away from planned activities, bringing
participants to contribute more than they might rationally
have planned for. Lest this sound too sinister, it is worth
noting that many participants report finding work in these
communities a welcome relief from other activities. In the
words of a participant in an open source project to partici-
pant who had just asked a question,

No problem. I was grappling with authentication
and welcomed the distraction ;-)1

Motivated by this theory, this paper builds a model to
analyze temporal data from Wikipedia a leading example
of a visible work community. The overall intention of the
model is to explore the proposition that participant’s tem-
poral work patterns are responsive to one another. We first
examine the issues in modeling human behavior in the tem-
poral domain, identifying an existing model as a base and
extending it to match our domain more closely. Our exten-
sions are described in detail. We then turn to our dataset,

1http://tech.groups.yahoo.com/group/jena-
dev/message/42760

http://xkcd.com/about/


providing relevant contextual background on Wikipedia and
descriptive statistics on temporal patterns overall and for
individual participants. We then present the results of the
model and discuss their interpretation and limitations in the
context of the theory above. Finally we conclude and discuss
appropriate future work, both for improving our exploration
of this theory and alternative applications of the new model
introduced in this paper.

2. MODELING TEMPORAL BEHAVIOR
A large body of work suggests that many human behaviors

are heavy-tailed and bursty in the temporal domain [2, 21,
17, 1, 6, 18, 22, 15]. They disagree, however, in their expla-
nation of these properties. Some propose a priority-queue
where individuals choose high priority tasks over low priority
tasks [2, 21], similar to preferential attachment in network
evolution [3]. Although these models reproduce several of
the aforementioned heavy-tail and burstiness of human tem-
poral behavior, they are inconsistent with several important
properties of real world human behavior, notably circadian
rhythyms and infrequent “sessions” of high activity [17, 1].
Recently, certain nonhomogeneous Poisson processes were
shown to be able to replicate the same heavy-tail and bursti-
ness [17]. The nature of these cascading Poisson processes
allow researchers to include mechanisms like “session” and
circadian rhythm directly in the model.

Our work is heavily influenced by the model proposed
by Malmgren and colleagues [17], which they subsequently
simplified [16]. They propose a Markov mixture of Pois-
son processes cast as a double-chain hidden Markov model.
Specifically, they use a mixture of two Poisson processes,
represented by the hidden states in their double-chain hid-
den Markov model. When in the active state, events are
generated by a homogeneous Poisson process with rate ρa.
In the passive state, events are generated by a nonhomoge-
neous Poisson process with rate ρp(t) that depends on the
current time. The passive state is intended to represent a
simple version of circadian rhythyms and is defined by two
square pulse distributions pd, pw and a rate parameter ρ0.

ρp(t) = ρp0Wpd(t|τd0, τd1, εd)pw(t|τw0, τw1, εw) (1)

Where the square pulse distribution with period τ is defined
as

p(t|~τ, ε) =

(
w (t modulo τ) ∈ [τ0, τ1)

εw otherwise
(2)

w = (ετ + (1− ε)(τ1 − τ0))−1 (3)

such that probability density between τ0 and τ1 is elevated
relative to rest (ε < 1). In order to represent circadian
rhythyms, pd represents the activity during the hours of the
day with τd = 24 and pw represents elevated activity during
some portion of the week(τw = 7).

The EM algorithm is used to jointly estimate the hidden
states and the parameters, θ = {ε, ρa, ρp0, τp0, τp1, εd, τw0, τw1, εw}.
The complexity of these nonhomogeneous Poisson processes
means that direct update formulas for the M-step are not
available. However, because the likelihoods are convex with
respect to the parameters, Powell’s method can be used to
obtain maximum likelihood estimates for the parameters.

3. MODEL

Figure 2: A single activity stream is characterized
by two states: Active and Passive

We extend the work of [16] to model multiple streams
of activity. The goal is to model interactions between these
streams while preserving the computational properties of the
DCHMM. We assume that these K streams are not inde-
pendent but are conditionally independent given their state
information. We use the two-state DCHMM but repeat that
chain for each activity stream such that each stream is con-
ditionally independent of all other streams given its current
state.

Tk⊥Tj |Zk (4)

For each stream k we also repeat the distributions over emis-
sion probabilities, with Zk = 1 indicating that stream k is
in an active session and Zk = 0 indicating that the stream
is latent.

Tk|Zk = 1 ∼ Poisson(ρka) (5)

Tk|Zk = 0 ∼ Poisson(ρkp(t)) (6)

Again, the rate, ρkp(t) for each latent nonhomogeneous Pois-
son process is governed by the square pulse distributions.

pk(t|~τk, εk) =

(
wk (t modulo τ) ∈ [τk0, τk1)

εwk otherwise
(7)

wk = (εkτ + (1− εk)(τk1 − τk0))−1 (8)

Because Poisson processes are memoryless (equation 10),
we can easily construct likelihoods for each observation in
the K streams. For an observation, on occuring at time tn
in activity stream sn, the likelihood of the system being in
each state is shown in equation 11.

T ∼ Poisson(λ) (9)

P (T = t) = P (T < t0)P (T = (t− t0)) ∀t0 < t (10)

P (on|Z∗n = k) = P (Tsn = tn|Z∗n)
Y

l 6=sn

P (Tl > tn) (11)

In general, this leads to an explosion in the state space of
the overall system, with 2K states. This is compounded by
the needed to learn transition probabilities between these
states. We choose instead to limit configurations of the sys-
tem to those where at most one of the K streams is active.
This leads to K + 1 states for the system Z∗, with the total

number of parameters |~θ| growing with square of the num-
ber of activity streams. This limits the model to scenarios
where only one activity stream can be active at each event.
We discuss limitations deriving from this decision below.

Zk =

(
1 Z∗ = k

0 else
(12)



(a) State transitions

(b) Double-chain Hidden Markov Model

Figure 3: An example of the proposed model for two
streams of events showing 3(a)the event-generating
states and 3(b)the DCHMM that can represent this
model.

4. DATA
We applied this model to a WikiProject in Wikipedia.

A WikiProject is a group of Wikipedians who work to im-
prove a section of Wikipedia. Projects include topics such
as Music, Sports and Geographical regions. The Project
identifies Articles which are considered “in scope” and tags
them as associated with the WikiProject. We assume that
participants are observing portions of these pages in their
Watchlists, and discussions of work done for the WikiPro-
ject in the Project’s collaboration pages. For this reason we
argue that it is reasonable to believe that participants are
aware of when others are actively working, making this an
example of visible online work.

We chose to study a geographical WikiProject, Project
Oregon, since that gives some confidence that participants
are in the same time-zone. The Project Oregon “About Us”
page states that it was founded in March 2005 and “experi-
enced a lot of growth in late 2007 and 2008.”

We accessed a March 12, 2008 dump of English Wikipedia
and downloaded all revisions to Articles, and their associ-
ated Talk pages, marked as in scope for the Project. A dat-
apoint consists of a user-id and a timestamp; we do not use
data about which specific page was edited, since we wanted
to capture the idea that participants could also be moti-
vated to work on nearby pages, or indeed anywhere else in
the Project’s scope.

Overall the dataset consists of 354,793 revision events by
25,780 different users and 5622 articles. Because we seek to
model interactions within a community, we limit ourselves
to those we define as community members. In this case,
we consider a participant to be a member of WikiProject

Oregon if over the history of the project they engage in Talk
activities and Edit activities at least 100 times. This reduced
the dataset to 55,104 (15% of the total) revisions and 24
users (0.09%) (a typical skew in contribution is typical). We
broke the dataset down by year, in part to minimize the
impact of annual cycles (see above) and in part to assess
change within the Project. Table 1 shows some aggregate
information regarding the 3 periods studied.

Year Total Revisions Total Active Users

2006 12,126 17
2007 34,181 23
2008 (partial) 7,700 21

Table 1: Aggregate statistics for the years examined

The collected data supports the observations made above
regarding temporal patterns in human behavior. Figre 4
shows the distribution of interevent times for some of the
users in log-log scale. Although it is by no means scale-free,
most users have heavy-tailed inter-event distributions, often
going for long periods of time between edits. The inter-
event distribution suggests, and qualitative examination of
the user event streams (shown in Figure 5) confirms that
there is substantial periodicity in the temporal patterns of
edit behavior. This further motivates the cascading nonho-
mogeneous Poisson process used in the model.
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Figure 4: Distribution(Log-Log scaled) of inter-
event times for some representative users

5. RESULTS
We apply our model to the WikiProject Oregon data de-

scribed previously. The outputs of the model are parameters
associated with the temporal distribution of revisions and a
transition matrix, showing the likelihood estimates for tran-
sitions between the state of the system.

Figures 5-8 shows the parameters learned for temporal
distribution of revisions across the three years. Most of the
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Figure 5: Temporal periodicity in selected users dur-
ing November and December of 2006

revision parameters are quite stable across the three years.
This is consistent with the results of Malmgren [16] which
found consistent temporal patterns in emails. Worth noting
is that the user population generally begins their WikiPro-
ject “wiki-week” on Thursday and works over the weekend.

The transition matrix shows transition probabilities be-
tween the states of the model; there are K + 1 states, one
indicating an active session for each participant and one in-
dicating that no participant is currently in an active state
(system passivity). For each event (i.e. a revision) the model
estimates the probability that the system is in each state.

Two types of transitions are are particularly relevant to
the social theory motivating this study: the first is the prob-
ability of a transition to system passivity, given an active ses-
sion (by any participant), informally written as P(Active|No
Active). The second is the probability of a transition to an
active session of any participant, given an active session by a
different participant, informally written as P(Active|Active).
A t-test comparing these transition probabilities, (means
shown in Table 2), indicates that in all years P(Active|Active)
is significantly greater than P(Active|No Active).

We can also construct a network based on the state tran-
sition matrix. Using the probability of any user sponta-
neously becoming active we dichotomize the state transition
network, removing all transitions that have a probability
less than twice the baseline P(Active|No Active). Using the
2007 parameters, this results in the sparse network shown
in Figure 5.

Figure 6: Active(ρa) and Passve(ρp) rate per hour



(a) Begin Day(τd0)

(b) Day Length(τd1)

Figure 7: Elevated activity “wiki-day”

(a) Begin Week(τw0)

(b) Week Length(τw1)

Figure 8: Elevated activity “wiki-week”
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Figure 9: Potential influence network for 2007

Year P(Active|Active) P(Active|No Active)

2006 0.0195 0.004
2007 0.0385 0.012
2008 0.0271 0.002

Table 2: The conditional probabilities learned for
each year

6. DISCUSSION
The central question of this paper is the extent to which

participants’ temporal work patterns are responsive to one
another. Table 2 and the associated hypothesis test give
confidence that transitions between active sessions of differ-
ent participants are significantly more likely than transitions
to an active session when no one is active. These results also
indicate a substantial effect size, suggesting that an active
session at least triples the likelihood of another user begin-
ning an active session. We interpret this as evidence that
visible activity by WikiProject members increases the prob-
ability that other members will begin an active session of
work. The magnitude of this effect appears to be stronger
in 2007 and 2008 than in 2006; this matches the statement
on the WikiProject homepage that they became more active
and organized beginning in 2007.

There is also evidence that some participants are more
likely to active sessions in others. Figure 5 can be inter-
preted as an implied influence network. Node 23 has an
outdegree of 7, meaning that their visible work may cap-
ture the attention of others and motivate their transition
into active participation. Nodes 1 and 3 have high indegree
meaning that their active sessions tend to follow those of the
most others, suggesting that they attend to the visible work
of a large number of WikiProject Oregon participants.

7. LIMITATIONS

There are two key limitations of this study, one relating to
the model, one relating to our interpretation of the results.

The model constrains the system such that only one ac-
tivity stream can be active at each event, restricting its abil-
ity to model simultaneous bursty work. In situations where
multiple activity streams are in fact in simultaneous sessions,
this model will instead identify numerous transitions back
and forth between the active sessions. This will be reflected
in increased stream transitions probabilities for overlapping
periods. This means that the model cannot distinguish be-
tween multiple simultaneous activity sessions and a sequence
of non-overlapping activity sessions. We do not believe that
this threatens the overall result of the paper, since both pat-
terns are signs of responsiveness between participants.

Furthermore, the Markov assumption in this limited state
space means that transitions are now effectively conditioned
on the single activity stream that was in an active session
(or the latent state) rather than the set of previous session
information. For relatively dense streams of activity, this
may be problematic. If stream A undergoes an active session
which leads to an active session in B, but a third irrelevant
stream, C, is active in the time between when A stops and
when B begins, the relationship between A and B will not
be correctly inferred. Given the asynchronous capabilities of
the information system this means we are unable to capture
all sources of responsiveness, just those that are immediate
and direct.

We have interpreted the social synchronization of partici-
pants indicated by the transition probabilities to indicate the
operation of the attention effect theorized in the introduc-
tion to this paper; that is endogenously to the social system.
However it is possible that attention is drawn to the project
exogenously, through events occurring in the world and be-
ing reported on in the news or blogs. Such events are known
to produces bursts of activity in traditional media [12] and
so seem particularly likely to affect articles about entities
currently in the news. This effect is particularly seen in bi-
ographies of living persons, where Wikipedia has most often
had to institute temporary locks on article editing, due to a
flood of participants attracted by the currency of the articles
topic. There is no reason to believe that Project Oregon’s
scope would be particularly susceptible to this effect, but it
would be great to extend the modeling framework to identify
effects from periodic newsworthy events.

8. CONCLUSIONS AND FUTURE WORK
This paper argues that one of the sources of the surpris-

ing success for novel socio-technical organizational forms like
open source software development and Wikipedia, is their
ability to successfully compete for potential participant’s
moment-to-moment attention, and one of the reasons that
they are able to do so is the social pull resulting from the
visibility of other’s work. This mechanism might explain
why the experience of work in these projects is social, and
the projects described as social communities, rather than
simply aggregations of individual work.

Throughout the paper we have presented this effect as
attracting more participation and suggested that is a reason
for the surprising success of visible work communities. It
is clear, however, that that having too many participants
descend on a page at once is likely to lead to coordination
problems. In Wikipedia social responsiveness has a negative
side too, as participant’s attention can be drawn by opposing



perspectives, descending into edit wars. It may be that the
mechanism of motivation and attracting investigated in this
paper has an inflection point, above which its effects become
negative, prompting system administrators to dampen its
effects by instituting temporary edit locks, slowing down
the stream of attention grabbing edits.

The model developed in this paper should have usefulness
beyond the application presented in this paper. In particular
it seems well suited to investigating situations where the
system is constrained to be in a single state. An example
of where this might prove useful is in modeling individual’s
attention flows throughout the day, perhaps making use of
data collecting by agents on people’s computers.
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