
Will they like this? Evaluating Code Contributions
With Language Models

Vincent J. Hellendoorn,1 Premkumar T. Devanbu,2 Alberto Bacchelli1
1: SORCERERS @ Software Engineering Research Group, Delft University of Technology, The Netherlands

2: Department of Computer Science, University of California, Davis, CA. USA

Abstract—Popular open-source software projects receive and

review contributions from a diverse array of developers, many

of whom have little to no prior involvement with the project. A

recent survey reported that reviewers consider conformance to

the project’s code style to be one of the top priorities when evalu-

ating code contributions on Github. We propose to quantitatively

evaluate the existence and effects of this phenomenon. To this aim

we use language models, which were shown to accurately capture

stylistic aspects of code. We find that rejected changesets do

contain code significantly less similar to the project than accepted

ones; furthermore, the less similar changesets are more likely

to be subject to thorough review. Armed with these results we

further investigate whether new contributors learn to conform to

the project style and find that experience is positively correlated

with conformance to the project’s code style.

I. INTRODUCTION

Code review is the manual assessment of source code by
human reviewers. Most open source software (OSS) projects,
which often heavily rely on contributions of disparate devel-
opers, consider code review a best practice both to foster a
productive development community [13] and to ensure high
code quality [6]. Nowadays code reviews are often mediated
by tools (e.g., [14], [15], [26], [20]), which record information
that can be mined to better understand the factors influencing
the code review process and the acceptability of contributions.

Prior research (in both commercial and OSS settings) has
investigated meta-properties stored in code review data, such
as size, number of commits, and time to review, and prop-
erties of the files that were changed (e.g., [16], [22], [5]).
Other research investigated review information to explore the
influence of social aspects on software development in OSS
communities [5], [11], in particular on the actions of a reviewer
when faced with a new contribution [21]. Rigby et al. used
code review recorded data to triangulate an investigation on
the influence of personal aspects of the reviewer, such as ex-
perience and efficiency on the code review process [29]. This
research has led to valuable insights on how the reviewer’s
attitude towards the (potentially unknown) contributor affects
the process and outcome of code review.

Little is known, yet, of what properties of the submitted code
influence the review of a changeset and its acceptability. The
earliest and most significant insights in this area are those by
Gousios et al., who conducted a qualitative study with review-
ers of proposed code changes in GitHub [17]. Gousios et al.
reported that integrators consider style conformance the top
factor when evaluating quality of submitted code. Code quality

and code style were reported as the top two factors influencing
the decision to accept a contribution.

Our goal is to extend these qualitative insights by quan-
titatively evaluating the influence of stylistic properties of
submitted code on both the process and the outcome of code
review. To achieve this, we make use of language models
constructed on source code [18], which were proven to be
well-suited to capture stylistic properties of code in the context
of a project [1]. Hence, we use this tool to measure how well
submitted code fits in with the project’s code as a whole and
analyze how this influences code review.

We conduct our evaluation on projects that use GitHub, the
popular social coding platform at the basis of the study by
Gousios et al. GitHub offers built-in capability for code review
by implementing the pull-based development model [16]. In
this model, contributors do not have access to the main repos-
itory, rather they fork it, make their changes independently,
and create a pull request with their proposed changes to
be merged in the main repository. The project’s core team
is then responsible for reviewing and (if found acceptable)
eventually merging the changes on the main development line.
We consider 22 popular and independent projects on GitHub
and analyze a total of 1.4M lines of submitted code, across
6,000 pull requests.

The results of our evaluation show that accepted changesets
are significantly more similar to the project at the time
of submission than rejected pull requests, supporting that
conformance to the code style is a factor that influences
code review. We further show that contributions that were
subject to more extensive reviews, such as debate regarding a
changeset, were substantially less similar to the project’s code
style. Further investigation supports our finding that highly
dissimilar contributions are isolated by project maintainers and
receive substantially different treatment during code review.
Finally, we show that contributions by novel contributors show
a substantial increase in similarity to the project’s code as the
contributor gains experience.
Structure of the paper. In Section II, we describe the tech-
nical background, particularly in the field of natural language
processing (NLP) related to language models applied to source
code. In Section III, we introduce our research questions and
detail the research method we follow. We present our findings
in Section IV, and discuss them in Section V. In Section VI
we identify a number of threats to the validity of our study.
We conclude in Section VII.

II. BACKGROUND

This work builds on literature on code reviews, both in in-
dustrial settings and, more recently, in OSS projects (e.g., [4],
[6], [29]), and on recent discoveries in the application of
language models to source code [18], [35], [2].

A. Code Reviews
Modern Code Review, as described by Bacchelli & Bird,

has gained popularity in several large software development
companies as well as in OSS projects and is of increasing
interest in recent research [4]. In OSS projects in particular,
code review is primarily done by a core group of project
maintainers who receive independent contributions from a
wide variety of contributors [23]. Bacchelli & Bird find that
understanding of the code and the reason for a change is the
most important factor in the quality of code reviews [4].

Dabbish et al. also study code review in OSS settings,
and find that reviewers make a rich set of inferences about
contributors based on their activity [11]. Marlow et al. find
that some of these inferences influence both the nature of the
review, and the likelihood of the code being accepted [21].
These works study familiarity and social issues in code review,
and are complementary to ours. Tsay et al. further expand
on this line of work by studying Pull Requests on Github in
particular and studying both social and technical aspects of
code review from the perspective of project maintainers [34].

Successive papers by Rigby et al. study the use of code
review in OSS settings, as well as the influence of a number
of meta-properties on the efficacy of a code review [28],
[30], [29]. They statistically model the relationship of meta-
properties on code review outcomes (e.g., interval, efficiency).
Inter alia, they study how reviewer’s expertise in re submitted
code influences the promptness of the review. Our focus on the
properties of the submitted code per se complements theirs.

In this paper we focus on code-reviews using the pull-
based software development model, which is offered by widely
used platforms, such as Github and BitBucket. The pull-based
software development model is gaining huge popularity [16],
with more than half a million projects adopting it on GitHub
alone. Our work uses language models to evaluate the stylistic
content of the code in pull requests and to compare it with the
code already existing in the project.

B. Language Models
Hindle et al. show that source code has regularities that

can be captured with statistical models developed for natural
language [18]. They find that the local regularity arises pri-
marily from repetitiveness within a project rather than patterns
belonging to the programming language. This intra-project
regularity suggests that language models could quantify the
extent to which new code fits in an existing code base. They
evaluate the practical potential of the high regularity that
language models found in source code by building a code
completion tool and showing that it can significantly improve
the default suggestions given by the Eclipse IDE.1

1https://www.eclipse.org/

Subsequent work investigates the potential of these models
in a number of settings, such as their applicability to mining
repositories at massive scale [2], and the influence factors
such as semantic information [24] and local context [35] on
code completion performance. In particular, Allamanis et al.
investigate whether coding conventions can be extracted au-
tomatically from OSS projects using language models [1].
In this sense their work is closely related to ours, as our
results suggest the presence of implicit conventions and coding
standards in OSS projects. In similar work, Allamanis et al.
investigate the possibility of mining code ‘idioms’; general-
ized, non-trivial patterns of code that occur frequently across
a project [3]. They show a number of examples of such
idioms that can be mined using language models, which reveal
promise for future work that investigates how new contributors
can be supported in writing acceptable code.

1) Computing Language Models: To judge the similarity
of a sequence of tokens with respect to a corpus, a lan-
guage model assigns it a probability by counting the relative
frequency of the sequence of tokens in the corpus [32]. In
the natural language setting, these models are used for tasks
such as speech recognition, machine translation, and spelling
correction [10], [7], [8].

We can write the probability of a sequential language
fragment s of N tokens w1 . . . wN as:

p(s) = p(w1) · p(w2|w1) · · · p(wN |w1 · · ·wN�1)

=

NY

i=1

p(wi|w1 · · ·wi�1)

Each p(wi|w1 · · ·wi�1) can then be estimated as:

p(wi|w1 · · ·wi�1) =
c(w1 · · ·wi)

c(w1 · · ·wi�1)
(1)

where c means ‘count’.
However, as the context (or history) of a token lengthens, it

becomes increasingly less likely that the sequence has been
observed in the training data, which is detrimental to the
performance of the model. N -gram models approach this
problem by approximating the probability of each token based
on a context of the last n tokens only:

p(s) =

NY

i=1

p(wi|w1 · · ·wi�1) ⇡
NY

i=1

p(wi|wi�n+1 · · ·wi�1)

Intuitively, this approximation states that a token is only
influenced by the preceding n tokens (formally assuming a
Markovian property of language). Estimating the probabilities
in an n-gram model is analogous to Equation (1), with the
counts only considering the last n words. The choice of n
is important: Short contexts are observed often but hold little
information, whereas longer contexts hold more information
but are rarely seen. Good smoothing methods make use of
these qualities by combining models of different length [10].
Smoothing methods are used to guarantee that unseen token

sequences are not assigned zero probability, which would be
destructive in applications such as speech recognition.

Although research in the Natural Language Processing
(NLP) community has shown that this approximation discards
a significant amount of information [31], [9], [12], n-gram
models are widely used as they can be easily generated from
the training data while providing powerful models [25].

2) Models on Source Code: Hindle et al. were the first to
show that these models capture regularity in source code, and
showed that source code is even more predictable than typical
natural language corpora [18]. They define a ‘sentence’ as a
program, composed of allowable program tokens.

3) Measuring Performance: The geometric mean of the
probabilities assigned to each token in a sentence is at the core
of the most common metrics used in NLP. It is well suited to
deal with the widely varying range of probabilities that are
typically assigned by a language model. Given a sentence s
of length N and the probabilities for each word in s: p(wi|h)
(where h denotes a context of some length), the geometric
mean is computed as follows:2

N

vuut
NY

i=1

p(wi|h) = 2

1

N

NX

i=1

log2(p(wi|h))
(2)

In NLP, the most commonly used metrics to measure the
performance of a language models p are cross-entropy (Hp,
measured in bits/token) and perplexity (PPp):

Hp(s) = � 1

N

NX

i=1

log2(p(wi|h))

PPp(s) = 2

Hp(s)

The perplexity of a string is the inverse of the geometric
mean of the probabilities of its tokens. The cross-entropy (also
entropy) is the binary log of the perplexity; it was found to
have a strong, negative correlation with predictive quality in
NLP applications (e.g., in speech recognition) [10]. Previous
work in the application of NLP techniques to source code has
consistently reported cross-entropy (lower results imply higher
predictive quality) and we follow this example.

III. METHODOLOGY

The main goal of this research is to quantitatively evaluate
the influence of stylistic similarity of submitted code (to
existing code) on both the code review process and outcome.
In prior work, we have shown that language models capture
similarity within projects and differences across projects
[17]; we have also found coarser differences (across/within
application domains) and finer ones (between files within
the same project) [33]. In this paper, we study the value
of language models to gauge the relation between the

2The right-hand (equivalent) form in Equation (2) avoids rounding problems
that typically arise with a product over many probabilities.

acceptability of submitted code and its naturalness: its
similarity to a project’s code. Therefore, we structure our goal
around the following research questions, which we iteratively
refined while analyzing our results:

RQ1: Are rejected PRs less natural than accepted ones?
RQ2: Are more debated PRs less natural?
RQ3: Does reviewing affect the entropy of debated PRs?
RQ4: Does contributions’ naturalness grow with experi-

ence?
In the first place, we seek to answer whether the outcome

of code review is correlated with statistical properties of the
submitted source code. Then, we study correlations with the
process of the code review by looking at submissions that
were subject to debate before being decided. In particular, we
contrast these with submissions that were accepted with little
feedback. Finally, we use the found correlations to investigate
other properties that influence code reviews, such as author
experience and goal of the contributions.

A. Experimental Setup

We focus our research on pull requests (PRs) submitted to
Github projects. This has several advantages: Github data is
readily accessible, both via an API3 and through the git
command-line tool.4 In particular, this allows us to revert a
copy of a project to its exact state at the time of any code
review, which is necessary for our model to work. Future work
may study the existence of similar patterns in industrial code
bases and other OSS projects.

Our approach works in three steps. (i) For each project
we extract the lines added by each pull request, as well as the
lines added by each commit contained within that pull request.
These lines constitute the test set. (ii) For each PR, we extract
the training set from a copy of the project that is reverted to
the project’s state when the PR was submitted. (iii) We train a
language model on all .java files in the training set and test
it on the lines of java code in the test set. The output of the
language model is an entropy score, reflecting the similarity
of the pull request to the code base at the time of submission.

Additionally, we used the Github API to extract a number of
properties for each pull request, such as author, commit mes-
sage and number of (review) comments. With this information
we analyze factors that influence the results and discover less
obvious correlations with entropy. In the following, we detail
the approach used in selecting and collecting the data, the
procedure used to extract our training corpus and test set, and
finally the criteria by which we processed the data.

B. Project selection

We use two criteria for selecting the projects: (1) The
project must primarily contain java code, and (2) the project
must make active use of pull requests. The first requirement
is a matter of choice: the language models described in

3http://api.github.com/
4http://git-scm.com/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 >=5

Fr
ac

tio
n

of
 P

ul
l R

eq
ue

st
s

Number of Commits

Accepted

Rejected

Figure 1. Distribution of commits over pull requests (accepted and rejected)
in the selected projects.

section II-B are fairly agnostic w.r.t. the language and we
discuss extensions to other languages in Section V. The second
requirement relates to the findings by Gousios et al. [16], who
reported that only a small fraction of projects on Github make
active use of pull requests. Among these projects, most have
used no more than 20 pull requests in total (25 among projects
with more than one contributor [19]). They also found that a
few projects account for a very large number of pull requests.

In light of the diverse usage of the pull-based software
development model across Github, we define ‘making active
use of pull request’ according to three criteria. Primarily, we
looked for projects that had 26 or more closed pull requests.
This guarantees that we consider only projects belonging to the
5% most active users of the pull-based model. Secondly, we
omitted projects in which the majority of contributions were
made outside the pull-based model. In most of the resulting
projects, 80% or more of all commits were part of a pull
request. Finally, we omitted projects in which no rejected
PRs were found that qualified as debated, as described in
section III-E.

The projects were selected based on these three criteria from
among the Java projects that are currently popular, as re-
ported by Github’s ‘Trending Repositories’ feature. Following
these criteria, we totaled 22 projects, containing approximately
10,000 pull requests and over 20,000 commits. We then filtered
out the PRs that did not include Java code and PRs that
contained an inordinate number of additions (a fair number of
PRs submitted several thousands of lines, typically either by
mistake or by merging two branches), which left a little over
7,500 PRs and 13,500 commits. Of these, 1,634 PRs received
no comments of any kind before being closed, typically by
the original author. As we are concerned with code that is
reviewed, we omit these from our final dataset in all results
except in the evaluation of RQ1, to avoid a potential confound.
Figure 1 shows the distribution of the number of commits in
accepted and rejected PRs. The majority of PRs, accepted or
rejected, consist of a single commit, but the distribution is
skewed in that a small number of PRs contain a large number
of commits. The largest PRs contain over 40% of the total
commits.

The selected PRs contain a total of 1.4 MLOC submitted

to 22 popular Github projects over a period of 2-40 months.
Table I reports the selected projects with the number of PRs
linked to the projects in ascending order. The project names are
reported with the corresponding user account, as many forks
exist. The considered projects were aged between two months
and eight years5 and contained between 56 and 1009 PRs (after
filtering) from between six (Physical-web) and 234 (Jenkins)
distinct contributors (median: 49). This corpus represents a
diverse array of size, age and diversity of contributors and
provides a large enough base to report statistically significant
results on.

C. Data extraction
For each project, we used the Github API to create a list

of indices, corresponding to all PRs that were closed at that
time. These indices were collected between Sep 9, 2014 and
Nov 3, 2014. Additionally, we used the Github API on each
PR to extract properties such as author, commit message,
(review)comments, and size.

In the following we describe the process we used to generate
entropy scores for each pull request (illustrated in Figure 2).
Step 1: we use the information on the lines that were added
and deleted in each PR (provided by GitHub in text format6
through a URL) to create a test set for each PR, which consists
of the lines added in the submission. As can also be seen in
Figure 2, modified lines in this diff are represented by a
removal of the old line and addition of the new line. Hence,
by constructing our test set of all added lines, we include both
newly added code and lines that were modified by the pull

5We found no pull requests from before 2010, when Github improved the
pull request mechanism and UI: https://github.com/blog/712-pull-requests-2-0

6e.g., https://github.com/ReactiveX/RxJava/pull/1094.diff

Table I
CONSIDERED PULL REQUESTS AND COMMITS BY PROJECT. THESE

NUMBERS INCLUDE PRS THAT WERE ISOLATED BECAUSE THEY RECEIVED
NO COMMENTS.

Project (user/projectname) PRs Commits Category

google/physical-web 56 102

small

thinkaurelius/titan 68 185
excilys/androidannotations 81 240
JakeWharton/ActionBarSherlock 126 350
Elasticsearch/Elasticsearch 159 209
loopj/android-async-http 186 358
square/picasso 209 303
netty/netty 215 720
realm/realm-java 232 1,575
WhisperSystems/TextSecure 261 445
eclipse/vert.x 263 971
square/retrofit 269 384
dropwizard/metrics 301 752
junit-team/junit 319 1,040
nathanmarz/storm 331 548
jbosstm/narayana 384 519

large

Catrobat/Catroid 459 2,096
square/okhttp 594 680
reactivex/rxjava 756 2,148
jenkinsci/jenkins 815 1,933
spring-projects/spring-integration 909 973
facebook/presto 1009 2,453

Project

Index BaseSHA
130 c7baab8...
129 b061406...
127 a5b187c...
124 6c8ca2f...
123 b0c98a5...
119 c23ed68...
...

git diff

git reset

Training set

*.java
Test set

1

3

Project

Index Merged Entropy
130 true 3.41
129 true 2.57
127 false 4.02
124 true 3.91
123 false 3.58
119 false 4.55
...

2

Language Model

Figure 2. An overview of the setup used to acquire entropy scores for pull requests.

request. Furthermore, we derive the test set for each commit
part of the PR. Here, the test set contains the added and
modified lines that the changeset contained up to that point
in time. Step 2: we extract the training set (used to estimate
the language model) from a local clone of the project. Using
the git reset command, we revert the local copy of the
project to its state when the PR is submitted. Step 3: we use
the extracted testing set to build a language model out of the
Java code in the resulting project, using the techniques outlined
in Section II-B. We use the test set as input to the language
model. The output is an entropy score reflecting how similar
the submitted code was to the project at submission time.

D. Analysis

To answer our research questions, we need to know whether
the pull request is eventually accepted. Gousios et al. find that
a significant fraction of PRs in GitHub are (partially) merged
in ways that are different from the official merge tool [16]. As
a consequence, the Github API shows a significant fraction of
pull requests as PRs as rejected, even in projects that rely
heavily on pull requests. To better identify whether a pull
request was merged, Gousios et al. develop four heuristics
to find if the submitted code was merged into the code base
via different means. In this study, we use the same heuristics
(we found an acceptance ratio of 79% across the 26 projects,
comparable to the results of Gousios et al.).

To study the effect of entropy on the process of a code
review, we further divide the PRs into the categories debated
and undebated. We define a PR as debated if it received
at least three comments during review (review + discussion
comments), following Gousios et al. who find that a PR
on average receives 2.77 comments (review + discussion
comments) and who suggest that a small fraction of pull
requests receives the majority of comments [16]. For the sake
of comparison, we furthermore define a PR as undebated if
it received at least one comment but was not debated. We

find that approximately 21% of all pull requests received no
comments before being decided, 38% received feedback but
not more than two comments, and 41% was debated.

We furthermore intend to investigate the influence of au-
thorship on the entropy of contributions. In order to derive
statistically significant results related to authorship, we restrict
our focus to the ten largest projects, as these have sufficiently
many distinct authors and contributions per author. Further-
more, in each project’s history there was a small number of
contributors (typically three or less) who were responsible for
the vast majority of contributions. These authors may therefore
have contributed so much that statistical similarities which
we find between the project and their PRs may be due to
them having shaped the project in the past. Hence, we restrict
ourselves to PRs from authors who have submitted less than
20 PRs in the entire project history, which guarantees that all
remaining authors have contributed no more than 5% of the
project’s code. Setting this cut-off to 10 PRs produced similar
results but substantially reduced the number of data points.

Observing that the median number of contributions per
author among the remaining PRs was 3, we set the threshold
for experienced at having contributed at least three times
before. Here too, similar thresholds yielded comparable
results.

E. Evaluation

We employ language models to evaluate aspects of submit-
ted code that impact the code review process. To this end, we
typically divide the studied pull requests into two categories
(e.g., accepted and rejected) and compute the mean entropy
for both categories in every project. We then pair the results
per project and compare the outcome between projects using
both a paired t-test and a, non-parametric, Wilcoxon signed
rank test [33]. In general, we found that the tests yielded
very comparable significance levels, suggesting that the data

is predominantly normally distributed. Where one test yielded
a lower level of significance, we make mention of this and
report the lesser value. Furthermore, to quantify the effect of
the difference in means between two categories, we compute
Cohen’s D [33] on the difference scores of the paired data.

The ecological fallacy states that findings at an aggregated
level (here: projects) may not apply to a disaggregated level
(here: individual PRs); this was recently found to apply to
empirical software engineering research as well [27]. Where
applicable, we therefore validate our findings at the level
of individual PRs by reporting results of a Wilcoxon rank
sum test across the complete corpus of PRs (disregarding the
projects). We generally aggregate to the project level because
typical entropy scores of PRs differ substantially between
projects (up to 1.5 bits).

In general, we found that results that held overall also
consistently held on the largest projects, but not necessarily on
the smaller projects (see Section VI for a discussion on this).
We furthermore found that the effect size of significant effects
differed substantially between these two categories (in favor
of the larger projects). To avoid a potential size confound,
we divide the selected projects into two categories: large and
small, where the large projects contain approximately 1/3rd
of the projects and 2/3rd of the pull requests. The category
is shown in the last column of Table I. Aside from reporting
results for the average across all projects, when appropriate
we report results for the average within these categories.

IV. FINDINGS

In this section, we report the results of our analysis.

RQ1: Are rejected PRs less natural than accepted ones?
For each of the 22 projects studied, we averaged the

entropies over all accepted and rejected pull requests per
project. The mean entropies of accepted and rejected PRs are
4.18 and 4.35 bits/token respectively (note that this measure,
is log scaled; corresponding perplexities are 18.12 and 20.4,
respectively). A paired t-test confirms that the average entropy
of the rejected PRs is significantly higher than that of accepted
PRs (p < 0.01) and computing the effect size (Cohen’s D on
the paired data) reveals a moderate effect (0.61). This result is
consistent across the corpus of individual PRs (disregarding
the projects), where the mean entropies of accepted and
rejected PRs were 4.14 and 4.44 respectively (p ⌧ 10

�5
).

Next, we divide the projects into the groups large and
small as explained in Section III-E. The resulting statistical
difference between accepted and rejected PRs can be seen
on the first row of Table II. A paired t-test confirms that
rejected PRs are significantly less natural in the group of
larger projects (p < 0.05) but cannot confirm this difference
among smaller projects (p > 0.1). Furthermore, the effect size
between accepted and rejected pull requests is substantially
larger when considering just the bigger projects. A similar
result was found on the corpus of individual PRs (large
projects: p ⌧ 10

�5, small projects: p < 10

�3). These results
suggest that, particularly among more established projects, the

relative similarity of submitted code to a project as a whole
has a measurable influence on the outcome of a code review.

Additionally, we investigated the influence of the PRs that
were removed because they did not receive any comments
before being decided (1,634 PRs, 93% accepted) and found
that the inclusion of these PRs did not harm the previous
results (in fact, the significance level on small projects came
within the p < 0.1 range). Additionally, we noted that
these unreviewed PRs have significantly lower entropies than
reviewed ones (p < 0.05, moderate effect). Given these results,
we may expect to see a difference in entropy with more
extensively discussed PRs as well.

RQ2: Are more debated PRs less natural?
We separate debated (3,201 PRs, 80% accepted) and unde-

bated PRs (2,958 PRs, 85.7% accepted), as defined in section
section III-E. If less natural code is more likely to be rejected,
we may also expect that less natural contributions generate
more discussion during review, so that debated PRs would
have significantly higher entropies (i.e., be significantly less
natural) than undebated PRs.

We particularly expect (eventually) accepted PRs that trig-
gered debate to be less natural than PRs that were accepted
quickly. We do not necessarily expect a comparable result for
rejected PRs, however: code that is rejected with little feedback
might be the least natural contributions of all.

We first investigate the previous result within the groups
of debated and undebated PRs; rows 2 and 3 of Table II
report the results. We first repeat the previous investigation
on undebated PRs and find a slightly stronger version of the
results for RQ1, particularly among smaller projects (paired
t-test: p < 0.05, signed rank test: p < 0.1). We conduct
the same analysis among debated PRs and find that, although
no significant difference was found overall, there is evidence
of the previous result among debated PRs in large projects.
Results on the corpus of individual PRs are comparable: For
undebated PRs the results from Section IV hold; for debated
PRs, a significant difference was found both overall and on
the large projects (p < 10

�4) but none on the small projects
(p > 0.1).

Comparisons 4 and 5 in Table II compare the results
between debated and undebated PRs, first for (eventually)
rejected PRs and then for accepted PRs. Here we find
the largest difference between more established and smaller
projects. Both rejected and accepted PRs were significantly
more entropic when subject to debate in large projects, but
on small projects only the latter result held and only with
moderate effect.

The above results show several distinctions between unde-
bated and debated pull requests: a) among the former, low
entropy PRs were substantially more likely to be accepted,
whereas among the latter we only found some evidence of
this phenomenon on large projects, b) debated pull requests
as a whole had substantially higher entropies than undebated
ones, particularly those that were eventually accepted. The
correlation between debate and entropy appears to be at least

Table II
SIGNIFICANCE AND EFFECT SIZE (COHEN’S D) OF ENTROPY DIFFERENCE BETWEEN DIFFERENT CATEGORIES OF PULL REQUESTS. D < 0.5 IS

CONSIDERED “small” EFFECT; D < 0.8 “medium”; OTHERWISE “large” . BLACK p-VALUES REFLECT SIGNIFICANCE AT LEAST AT THE p < 0.05 LEVEL,
ORANGE VALUES: ONLY EVIDENCE OF SIGNIFICANCE FOUND (0.05 < p < 0.1) AND RED VALUES: NO SIGNIFICANT CORRELATION FOUND.

Comparison All projects Large projects Small projects

id PR type Test on entropy difference D p D p D p
1 Overall Accepted < Rejected 0.61 <0.01 1.05 <0.05 0.42 >0.1
2 Undebated Accepted < Rejected 0.64 <0.01 1.04 <0.05 0.57 <0.1
3 Debated Accepted < Rejected 0.11 >0.1 0.83 <0.1 -0.22 >0.1
4 Rejected Undebated < Debated 0.06 >0.1 1.11 <0.05 -0.1 >0.1
5 Accepted Undebated < Debated 0.65 <0.01 1.18 <0.05 0.63 <0.05

as large as that between acceptability and entropy. This raises
a question: does entropy still play a role among controversial
PRs? Or do our results primarily reflect that PRs with low
entropy are likely to be accepted and receive little review? We
study this in the following question.

RQ3: Does reviewing affect the entropy of debated PRs?
We start by analyzing the entropy of the commits that com-

pose PRs. In particular, we investigate PRs that were revised
under debate. To this end, we collected 11,600 commits that
were part of PRs that were both debated and revised with
subsequent commits (these PRs had an average of approxi-
mately 10 commits per PR). For each commit, we calculated
the entropy of the PR after that commit with respect to the core
project; then, we computed the average change in entropy for
accepted and rejected PRs between the first and last commit.
The results are shown in Figure 3.

A t-test confirms that both accepted and rejected PRs
increase slightly in entropy during revision (p < 0.05). By
manual inspection, we observed that contributors of debated
PRs were asked to add novel code to their PRs (e.g., test cases).
As new code is in general less predictable, this may have

Accepted Rejected

0.
0

0.
2

0.
4

0.
6

C
ha

ng
e

in
 e

nt
ro

py

Figure 3. Change of entropy (in bits/token) of accepted and rejected pull
requests following debate during code review.

worked as a confound. No significant difference in entropy
increase was found between accepted and rejected PRs.

To rule out confounds related to novel code, we then
investigated changes at file level between successive commits.
For each review comment (i.e., a comment on a part of the
submitted code), we compared the entropy of the file under
discussion before and after revision. We found no significant
evidence that the discussed files decrease in entropy during
code review (neither among accepted nor rejected PRs), even
when restricting ourselves to revisions in which the number
of changed lines remained the same. We intend to refine this
criterion in future work.

In the following question we study whether new contributors
learn the project’s style conventions as their experience grows.

RQ4: Does contributions’ naturalness grow with experience?

Given the experimental setup, it can be argued that language
models effectively measure the similarity in implicit coding
style between a pull request and the existing code base. Hence,
we expect the coding style of the author to have a significant
impact. In particular, we expect novel contributors to write
code that is more “fluently similar” (with respect to the project)
than experienced contributors.

We first evaluate whether a difference in naturalness exists
between PRs from more and from less experienced authors,
where we use the definition of experience as in Section III-D.
We only include authors who contributed four or more times
in the project’s history and therefore have contributions both
before and after they qualified as experienced. We computed
the difference in entropy of their contributions before and
after they pass the ‘experience’ threshold. Applying the above
restrictions left us with 1,432 PRs from 127 distinct authors.

The resulting distributions of entropies are shown in Fig-
ure 4. A t-test confirms that the entropy of contributions is
significantly lower among PRs from contributors with prior
experience than among PRs from contributors with little to no
prior experience (p < 0.01). We furthermore found a large
effect (D = 1.11). Further investigation revealed that the
largest difference exists between contributors with one or two
prior contributions and contributors with three or more prior
contributions. Contributors with no prior experience showed
a large degree of variation in entropy scores, which may
be caused by this group often submitting relatively simple
changesets upon their first contact with a project.

Unexperienced Experienced

4.
0

4.
5

5.
0

En
tro
py

Figure 4. Distribution of contribution entropy among contributors with and
without experience.

V. DISCUSSION

A variety of previous research has studied the question
why certain contributions to OSS projects are rejected or not
accepted until after revision. Among others, this has produced
anecdotal evidence that conformance to the project’s code style
is considered a strong indicator of quality. The aim of this
research was to quantitatively evaluate this aspect of code
review using language models.

In the first research question we asked whether rejected
pull requests have a higher entropy with respect to project’s
source code than accepted ones. We found that the statistical
similarity between submitted code and the core project is
both measurable by language models and reveals statistically
significant differences between accepted and rejected pull
requests. Code in accepted pull requests has significantly lower
entropy to project code than code in rejected ones, across all
projects. This result corroborates the qualitative findings by
Gousios et al. [17] on the importance of style conformance
when reviewers evaluate contributions.

We also found that the effect size is larger and more
significant in larger projects than smaller ones. This finding
is in line with earlier work by Tsay et al., who found that
well-established projects are more conservative in accepting
pull requests [34]. Nevertheless, projects such as the Mozilla
project7 and the Linux Kernel8 are both several times older
and larger than most projects studied in this work, making
them very interesting candidates to determine if and how our
results generalize to other cases.

In the second research question we investigated whether
contributions that are more debated are less similar to the

7https://www.mozilla.org/
8https://www.kernel.org

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7
Entropy

C
om

m
en
ts

0.1
0.2
0.3
0.4
0.5

P_rejected

Figure 5. Probability of a PR to be rejected, by comments and entropy

project source code. We found that contributions that are
directly accepted without discussion are significantly less
entropic than debated ones, regardless of their eventual ac-
ceptability. Furthermore, the most entropic PRs were those that
were both debated and eventually rejected, suggesting further
that highly unconventional code is more likely to attract the
attention (and face the disapproval of) project maintainers.

Figure 5 shows the probability of a pull request being
rejected considering the number of comments it receives and
its entropy. As can be seen, an increase in entropy almost con-
sistently increases the likelihood of rejection, whereas when
considering comments alone, we primarily see a distinction
between PRs that received no more than two comments and
those that received three or more comments. A larger number
of comments is only correlated with a greater probability of
rejection among PRs with a very high entropy. Furthermore,
whereas comments can be seen as an artifact of the code
review itself, the entropy of a changeset can be computed
on submission. A ripe opportunity for future research would
be to study whether entropy can be used to direct reviewers’
attention to code that is more likely to generate debate or to
be rejected.

The third research question dives deeper into the context
of debated pull requests and investigates whether the debated
contributions decrease their entropy due to the review. We
found no significant evidence of such a decrease. The results
suggest that, while reviewers are quick to recognize and
approve low entropy PRs, the naturalness of submitted code
plays less of a role during more extensive code review. By
manual inspection, we found that extensive code review was

often concentrated around (changes of) functionality of the
submitted code.

The aforementioned results do not preclude that code under
review is asked to better conform to the project’s coding
conventions. Code review comes in many shapes and we
found many instances where novel contributors were asked
to better conform to coding standards (often besides requests
for functionality improvement) during code review. In our
fourth research question we investigated a possible effect of
these comments: whether novel contributors tend to adhere
more to project’s style as their experience with the project
grows. Our results indeed confirmed that contributors write
code that is more similar over time. Nevertheless, we did
not analyze further whether the project conformance comes
naturally from a better knowledge of the project rather than
comments received in code reviews. Studies can be designed
and carried out to investigate this phenomenon.

Although we considered projects coming from a variety
of communities we limited ourselves to OSS systems and
the pull-based development model. We did not verify our
results with industrial projects or on systems that make use of
different code review models: these settings deserve additional
study and may provide new insights on style conformance.

Throughout RQ2, 3 and 4, we have investigated a number
of factors that influence both acceptability and entropy of PRs.
Previous work provided evidence that many other factors influ-
ence the eventual acceptability of a contribution (e.g., whether
the contribution adds novel code or modifies existing code,
personal relationship with project maintainers). Although a
full investigation of the relationship with other factors is
beyond the scope of this work, it is of particular importance to
investigate the type of PRs that are likely to be rejected. For
instance, it might be that the observed correlation is caused
by one type of PRs that has both high entropy and a high
rate of rejection. If this is the case, the language models may
be mirroring an underlying effect: the type of the PR. As an
initial step in this direction, we investigated the influence of the
type (or intent) of PRs on entropy and acceptability: We clas-
sified all PRs into five categories (‘Bug fix’, ‘Performance’,
‘Styling’, ‘Quality assurance’, and ‘Other’), by matching a
set of manually derived keywords against the submission
message. We found that the gap between accepted and rejected
PRs was significant in all categories except among bug-fixes
(only evidence of significance), although the mean entropies
varied substantially between categories. The rate of acceptance
was similarly consistent across the categories. PRs related to
performance improvement (e.g., memory usage, speed) had
substantially higher entropies than other PRs, with bug-fixes
being the second highest. This meets our expectations, as these
PRs (particularly the first category) generally contribute novel
code to a project. Styling PRs (e.g., refactorings, enforcing
coding conventions), on the other hand, showed the lowest
entropy scores, as well as the largest gap between accepted
and rejected PRs. This matches results from previous work,
which found that low-entropy refactorings likely constitute
acceptable contributions to OSS projects [1]. These results

suggest that (a) the observed difference in entropy between
accepted and rejected PRs is robust with respect to differ-
ent types of PRs, and (b) language models may be most
powerful when evaluating contributions that modify existing
code. These results, and the combination of entropy with other
factors that influence code review, warrant more extensive
evaluation in future work.

Our study also effectively used language models as a
tool to automatically compare new code to an existing code
base. This opens a number of possible future applications:
language models may be able to derive coding conventions
corresponding to code that a new contributor is writing (e.g.,
code idioms [3]), to save effort on both the developer’s and the
reviewer’s end. Moreover, as previously mentioned, language
models can be used to direct reviewers’ attention to code that
is more likely to generate debate. Finally, we hope to inspire
new research by showing the effects that authorship and intent
have on entropy scores, and the practical ramifications of these
effects.

VI. THREATS TO VALIDITY

a) Internal Validity: Assumptions we made in the se-
lection of the projects may harm the internal validity of this
study. The manual selection of the projects may have led to
an unrepresentative sample of Github projects. To avoid this
confound, we included every project listed on Github’s “Trend-
ing Repositories” page and satisfied the criteria. The projects
selected were “trending” in the last month and collected in
three turns between September and November 2014.

The three criteria we used to filter the potential projects are
another potential threat to validity. The first criterion concerns
the use of 26 or more pull requests. This number is selected
based on previous work by Kalliamvakou et al., which found
that 95% of the projects that have used pull requests for
actual collaboration used no more than 25 pull requests in
the project history [19]. In our eventual test set, (after filtering
out unreviewed changes) the smallest project had 37 PRs and
all others had more than 50.

The second criterion concerns the use of PRs as the primary
source of contributions. On Github, the alternative to PRs is
to commit directly to the main repository, something that is
permitted to the maintainers of the project. Hence, we chose
to identify projects as ‘actively using the pull-based software
development model’ by taking the ratio of the count of the
number of commits that were part of a PR to the total number
of commits. Here, we took special care to count only commits
made after the project adopted the pull request model, as some
projects started before this feature was added. We excluded
projects for which this ratio is less than the 0.5. Although most
projects in our study scored 0.8 or higher, some project owners
used direct commits more frequently than PRs. This may
affect the results on author experience, although we found no
substantial difference in these projects’ results when compared
with the remaining test set.

In a study using language models, it is critical that the train-
ing set and test set do not overlap. In the context of this study,

that means that the code base must be fully reverted to a point
in time before a PR has been accepted or rejected, otherwise
the model would be biased towards accepted PRs. Using the
combination of the ‘base SHA’ from the Github API and the
git reset --hard command should guarantee this, and
we manually verified the correctness of this combination for
a small number of cases. We furthermore ran a series of tests
under more strict conditions. We reverted the repository to its
state before the first pull request and then for each PR from
oldest to newest, updated the repository only to the moment
the project was forked. By effectively testing on the PRs in
reverse order, we found that our earlier results still held.

Finally, it is possible that the observed correlation of the
difference in entropy with PR acceptability and debate is spu-
rious, mirroring another factor of influence. We discussed and
minimized an important threat of this category in Section V,
namely that certain types of PRs may both have high entropy
and high rates of rejection. We found that all types of PRs
display the same phenomenon (although to different extents),
despite having different overall entropy scores, suggesting
entropy is a general factor of influence in PR review.

b) External Validity: The current study focuses only
on popular Java projects that use the Github OSS platform.
The aspect of popularity can be seen as a necessity for this
approach to yield significant results. However, a number of
potential threats to the external validity of the study follow.
(1) The results may not be representative for other languages
on Github (see also Section V). (2) The results may not be
representative for other OSS platforms. In particular, none of
the projects in this study made use of pull requests for more
than 40 months (when the feature was improved on Github).
Other OSS projects, such as Eclipse, Mozilla, or many Apache
projects, are both older and larger. (3) The results may not hold
for industrial projects that make use of (modern) code review.
Due to the financial concerns that play a role in such settings,
investigating the potential of language models in identifying
code style violations may lead to different results.

In general, our results held both on the entire set of projects
and on the largest projects. For instance, we evaluated whether
a significant difference in entropy exists between accepted and
rejected PRs within the individual projects using a Benjamini-
Hochberg test. We found a significant difference on 5 out of
the 7 large projects (p < 0.05), but only on 1 out of the 15
small projects. This may in part be explained by the smaller
projects having insufficient data points to achieve significant
results. However, a number of the results presented in Table II
held with significance and strong effect on the group of large
projects but did not hold at all on the collection of small
projects (as defined in Section III-E). This suggests a size
confound, where the larger (and generally also older) projects
have a stronger sense of coding conventions, which is also
in line with the results of a recent study by Tsay et al. [34].
We have dealt with this threat to the validity of our study by
dividing the projects into the categories large and small and
reporting results for both of these categories when applicable.

VII. CONCLUSION

Source code contributions to OSS projects are evaluated
through code reviews before being accepted and merged into
the main development line. Surveying core members of pop-
ular projects on GitHub, Gousios et al. found that reviewers
perceive conformance, in terms of style and quality, as the top
factor when evaluating a code contribution [17]. In this paper,
we extend this qualitative insights and use language models to
quantitatively evaluating the influence of stylistic properties of
code contributions on the code review process and outcome.

By analyzing 22 popular OSS projects on GitHub, totaling
more than 6,000 code reviews, we found that (1) accepted
code is significantly more similar to the project from a
language model perspective than that rejected, while (2) highly
dissimilar contributions receive a different treatment in code
review, and (3) more debated ones are significantly less similar.
Finally, (4) the contributed code shows a substantial increase
in similarity as the contributor gains experience.

In this paper we make the following main contributions:

1) The first application of language models for an automated
evaluation of properties of the submitted code on the code
review outcome and process.

2) An extensive quantitative analysis on 22 OSS projects of
the effect of similarity, from a language model perspective,
between contributed code and project code on code review
outcome and code review process.

3) A discussion of the implications of our findings with
recommendations for future opportunities of research.

REFERENCES

[1] M. Allamanis, E. T. Barr, and C. Sutton. Learning natural coding
conventions. arXiv preprint arXiv:1402.4182, 2014.

[2] M. Allamanis and C. Sutton. Mining source code repositories at massive
scale using language modeling. In Mining Software Repositories (MSR),
2013 10th IEEE Working Conference on, pages 207–216. IEEE, 2013.

[3] M. Allamanis and C. A. Sutton. Mining idioms from source code. CoRR,
abs/1404.0417, 2014.

[4] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of
modern code review. In Proceedings of ICSE 2013 (35th ACM/IEEE
International Conference on Software Engineering), pages 712–721,
2013.

[5] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. The influence
of non-technical factors on code review. In Reverse Engineering
(WCRE), 2013 20th Working Conference on, pages 122–131. IEEE,
2013.

[6] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens. Modern code
reviews in open-source projects: Which problems do they fix? In
Proceedings of MSR 2014 (11th Working Conference on Mining Software
Repositories), pages 202–211, 2014.

[7] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The
mathematics of statistical machine translation: Parameter estimation.
Computational linguistics, 19(2):263–311, 1993.

[8] A. Carlson and I. Fette. Memory-based context-sensitive spelling
correction at web scale. In Machine Learning and Applications, 2007.
ICMLA 2007. Sixth International Conference on, pages 166–171. IEEE,
2007.

[9] C. Chelba and F. Jelinek. Exploiting syntactic structure for language
modeling. In Proceedings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th International Conference on
Computational Linguistics-Volume 1, pages 225–231. Association for
Computational Linguistics, 1998.

[10] S. F. Chen and J. Goodman. An empirical study of smoothing techniques
for language modeling. In Proceedings of the 34th Annual Meeting on
Association for Computational Linguistics, ACL ’96, pages 310–318,
Stroudsburg, PA, USA, 1996. Association for Computational Linguistics.

[11] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in
github: transparency and collaboration in an open software repository.
In Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, pages 1277–1286. ACM, 2012.

[12] D. Filimonov and M. Harper. A joint language model with fine-grain
syntactic tags. In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 3-Volume 3, pages
1114–1123. Association for Computational Linguistics, 2009.

[13] K. Fogel. Producing Open Source Software. O’Reilly Media, first
edition, 2005.

[14] Gerrit. https://code.google.com/p/gerrit/. Accessed 2015/02/12.
[15] GitHub. https://github.com/. Accessed 2015/02/12.
[16] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory study of the

pull-based software development model. In Proceedings of ICSE 2014
(36th ACM/IEEE International Conference on Software Engineering),
pages 345–355. ACM, 2014.

[17] G. Gousios, A. Zaidman, M.-A. Storey, and A. v. Deursen. Work
practices and challenges in pull-based development: The integrator’s
perspective. In Proceedings of the 37th International Conference on
Software Engineering, ICSE 2015, 2015. To appear.

[18] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu. On the
naturalness of software. In Proceedings of ICSE 2012 (34th International
Conference on Software Engineering), pages 837–847, 2012.

[19] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian. The promises and perils of mining github. In Proceedings
of the 11th Working Conference on Mining Software Repositories, pages
92–101. ACM, 2014.

[20] N. Kennedy. Google Mondrian: web-based code review and stor-
age. http://www.niallkennedy.com/blog/2006/11/google-mondrian.html,
2006. Accessed 2015/02/12.

[21] J. Marlow, L. Dabbish, and J. Herbsleb. Impression formation in online
peer production: activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative
work, pages 117–128. ACM, 2013.

[22] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, pages
192–201, New York, NY, USA, 2014. ACM.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open
source software development: Apache and mozilla. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(3):309–346,
2002.

[24] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A
statistical semantic language model for source code. In Proceedings
of ESEC/FSE 2013 (9th Joint Meeting on Foundations of Software
Engineering), pages 532–542, 2013.

[25] A. Pauls and D. Klein. Faster and smaller n-gram language models.
In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-Volume 1,
pages 258–267. Association for Computational Linguistics, 2011.

[26] Phabricator. http://phabricator.org/. Accessed 2015/02/12.
[27] D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in empirical

software engineering. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering, pages
362–371. IEEE Computer Society, 2011.

[28] P. C. Rigby and D. M. German. A preliminary examination of code
review processes in open source projects. University of Victoria, Canada,
Tech. Rep. DCS-305-IR, 2006.

[29] P. C. Rigby, D. M. German, L. Cowen, and M.-A. Storey. Peer review
on open-source software projects: Parameters, statistical models, and
theory. ACM Transactions on Software Engineering and Methodology
(TOSEM), 23(4):35:1–35:33, Sept. 2014.

[30] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software
peer review practices: a case study of the apache server. In Proceedings
of the 30th international conference on Software engineering, pages
541–550. ACM, 2008.

[31] R. Rosenfeld. A maximum entropy approach to adaptive statistical
language modelling. Computer Speech & Language, 10(3):187–228,
1996.

[32] Y. Shi, P. Wiggers, and C. M. Jonker. Towards recurrent neural
networks language models with linguistic and contextual features. In
INTERSPEECH, 2012.

[33] M. Triola. Elementary Statistics. Addison-Wesley, 10th edition, 2006.
[34] J. Tsay, L. Dabbish, and J. Herbsleb. Influence of social and technical

factors for evaluating contribution in github. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
356–366, New York, NY, USA, 2014. ACM.

[35] Z. Tu, Z. Su, and P. Devanbu. On the localness of software. In Proceed-
ings of FSE 2012 (20th ACM SIGSOFT International Symposium on the
Foundations of Software Engineering), pages 269–280. ACM, 2014.

