
Investigating Code Review Practices in Defective
Files: An Empirical Study of the Qt System

Patanamon Thongtanunam∗, Shane McIntosh†, Ahmed E. Hassan†, Hajimu Iida∗
∗Nara Institute of Science and Technology, Japan †Queen’s University, Canada
patanamon-t@is.naist.jp, {mcintosh, ahmed}@cs.queensu.ca, iida@itc.naist.jp

Abstract—Software code review is a well-established software
quality practice. Recently, Modern Code Review (MCR) has been
widely adopted in both open source and proprietary projects.
To evaluate the impact that characteristics of MCR practices
have on software quality, this paper comparatively studies MCR
practices in defective and clean source code files. We investigate
defective files along two perspectives: 1) files that will eventually
have defects (i.e., future-defective files) and 2) files that have
historically been defective (i.e., risky files). Through an empirical
study of 11,736 reviews of changes to 24,486 files from the Qt
open source project, we find that both future-defective files and
risky files tend to be reviewed less rigorously than their clean
counterparts. We also find that the concerns addressed during
the code reviews of both defective and clean files tend to enhance
evolvability, i.e., ease future maintenance (like documentation),
rather than focus on functional issues (like incorrect program
logic). Our findings suggest that although functionality concerns
are rarely addressed during code review, the rigor of the
reviewing process that is applied to a source code file throughout
a development cycle shares a link with its defect proneness.

Index Terms—Code Review, Software Quality

I. INTRODUCTION

Software code review is a well-established software quality
practice. Boehm and Basili argue that code review is one
of the best investments for defect reduction [1]. Moreover,
Shull et al. find that code reviews often catch more than half
of a product’s defects [2]. One of the main goals of code
review is to identify weakness in software changes early on the
project development cycle. The traditional software inspection
is a formal and rigidly structured review activity involving
in-person meetings [3]. Prior work has shown that traditional
software inspections can successfully improve the overall qual-
ity of a software product [3–5]. However, traditional software
inspections have received limited adoption in the domain of
globally-distributed software development teams [6].

Unlike the formal software inspections of the past, Modern
Code Review (MCR) is a lightweight variant of the code
review process [7]. MCR is now widely adopted in open source
and proprietary projects [8]. Since the code review process of
MCR is in stark contrast to the traditional software inspections
of the past, many recent studies revisit the findings of the past
to better understand the performance of MCR [7–12].

In this paper, we investigate the code review practices of
MCR in terms of: 1) code review activity, and 2) concerns
addressed during code review. We characterize code review
practices using 11 metrics grouped along three dimensions,
i.e., review intensity, review participation, and reviewing time.

We then comparatively study the difference of these code
review practices in defective and clean source code files. We
also investigate defective files along two perspectives: 1) files
that will eventually have defects (called future-defective files),
and 2) files that have historically been defective (called risky
files). Using data collected from the Qt open source system,
we address the following two research questions:

(RQ1) Do developers follow lax code review practices in
files that will eventually have defects?

Motivation: Our prior work has shown that lax code review
practices are correlated with future defects in the correspond-
ing software components [12]. For example, components with
many changes that have no associated review discussion tend
to have post-release defects. While these prior findings suggest
that a total lack of code review activity may increase the risk
of post-release defects, little is known about how much code
review activity is “enough” to mitigate this risk.

Results: We find that future-defective files tend to undergo
reviews that are less intensely scrutinized, having less team
participation, and a faster rate of code examination than files
without future defects. Moreover, most of the changes made
during the code reviews of future-defective files are made to
ease future maintenance rather than fix functional issues.

(RQ2) Do developers adapt their code review practices in
files that have historically been defective?

Motivation: Since the number of prior defects is a strong
indicator of the incidence of future defects [13], the files
that have historically been defective may require additional
attention during the code review process. In other words,
to reduce the likelihood of having future defects, developers
should more carefully review changes made to these risky files
than changes made to files that have historically been defect-
free. However, whether or not developers are actually giving
such risky files more careful attention during code review
remains largely unexplored.

Results: We find that developers are likely to review
changes of risky files with less scrutiny and less team par-
ticipation than files that have historically been defect-free
(i.e., normal files). Developers tend to address evolvability
and functionality concerns in the reviews of risky files more
often than they do in normal files. Moreover, such risky files
are more likely to have future defects if they undergo a large
number of lax reviews that focus on evolvability concerns.

1) Patch
upload

2) Sanity check  
by Early Warning

System (EWS)

3) Code examination
by reviewers

4) Integration testing
by Continuous

Integration (CI) system

Pass

Accepted

Pass

Fail

Rejected

Fail

Re-submit
Another iteration is required

Clean patch integrated into  
upstream VCS repositories

Fig. 1. Gerrit-based code review process of the Qt system

Our results lead us to conclude that lax code review
practices could lead to future defects in software systems.
Developers are not as careful when they review changes made
to risky files despite their historically defective nature. These
findings suggest that files that have historically been defective
should be given more careful attention during the code review
process, since the rigor of the reviewing process shares a link
with defect proneness.
Paper organization. The remainder of the paper is organized
as follows. Section II describes the code review process of
the studied Qt system. Section III describes the design of our
empirical study, while Section IV presents the results with
respect to our two research questions. Section V discusses
broader implications of our findings. Section VI discloses the
threats to the validity of our empirical study. Section VII
surveys related work. Finally, Section VIII draws conclusions.

II. QT CODE REVIEW PROCESS

The code review process of the studied Qt system is based
on Gerrit, which is a popular web-based code review tool that
tightly integrates with Version Control Systems (VCSs). Gerrit
helps developers to expedite the code review process by in-
terfacing with automated quality assurance bots that check for
regressions in system behavior, and automatically integrating
changes into upstream VCS repositories after reviewers (and
bots) are satisfied. Figure 1 illustrates the Gerrit-based code
review process, which consists of four main steps:
1) Patch upload. An author uploads a patch (i.e., a set of
proposed changes) to Gerrit and invites a set of reviewers to
critique it. During code review, the original author or other
authors can submit several revisions to improve the patch.
2) Sanity check by Early Warning System (EWS). The
EWS is an automated testing bot developed by the Qt team.
The goal of the EWS is to provide quick feedback that can be
easily revised before reviewers examine the patch. The EWS
runs a set of tests that detect basic errors, such as violations
of the Qt coding and documentation style. If the patch does
not pass the EWS testing, the patch is rejected. The author
can later revise the patch and upload a new revision.
3) Code examination by reviewers. Reviewers examine
the technical content of a patch and provide feedback by
posting a message to a general discussion thread or inserting

TABLE I
AN OVERVIEW OF THE STUDIED QT SYSTEM.

Version LOC Commits Files
w/ Review Total w/ 100% review

coverage Changed Files

Qt 5.0.0 5,560,317 9,677 10,163 11,689 25,615
Qt 5.1.0 5,187,788 6,848 7,106 12,797 19,119

inline comments within the patch itself. To decide whether a
patch should be integrated into upstream VCS repositories or
abandoned, reviewers assign a score ranging from -2 to +2 in
order to indicate agreement (positive value) or disagreement
(negative value). The author revises the patch to address
reviewer feedback until at least one reviewer agrees with the
patch and assigns it a score of +2.
4) Integration testing by Continuous Integration (CI)
system. The CI bot performs more rigorous regression testing
prior to eventually integrating clean patches into upstream
VCS repositories. If the patch does not pass this integration
testing, the patch needs to be revised according to the CI bot
report, and a new revision needs to be uploaded. Once the
patch satisfies the requirements of the CI bot, the patch is
automatically integrated into upstream VCS repositories.

III. CASE STUDY DESIGN

In this section, we describe the studied system, and our data
preparation and analysis approaches.

A. Studied System

In order to address our research questions, we perform an
empirical study on a large, rapidly-evolving open source sys-
tem with a globally-distributed development team. In selecting
the subject system, we identified two important criteria:
Criterion 1: Active MCR Practices — We want to study

a subject system that actively uses MCR for the code
review process, i.e., a system that examines and discusses
software changes through a code review tool. Hence, we
only study a subject system where a large number of
reviews are performed using a code review tool.

Criterion 2: High Review Coverage — Since we will in-
vestigate the differences of MCR practices in defective
and clean files, we need to ensure that a lack of code
review is not associated with defects [12]. Hence, we
focus our study on a system that has a large number of
files with 100% review coverage, i.e., files where every
change made to them is reviewed.

Due to the human-intensive nature of carefully studying the
code reviewing process, we decide to perform an in-depth
study on a single system instead of examining a large number
of projects. With our criteria in mind, we select Qt, an open
source cross-platform application and UI framework developed
by the Digia corporation. Table I shows that the Qt system
satisfies our criteria for analysis. In terms of criterion 1, the
development process of the Qt system has achieved a large
proportion of commits that are reviewed. In terms of criterion
2, the Qt system has a large number of files where 100% of
the integrated changes are reviewed.

(DP1) Git Revision ID
Extraction

(DP2) Defective File
Identification

(DP3) Review Linking

(DA2-a) Representative
sample selection

(DA2-b) Addressed concerns
identification

(DA1-a) Review activity
metrics calculation

(DA1-b) Review activity
analysis

Data Analysis

Data Preparation

(DA1) Quantitative Analysis of Code Review Activity

(DA2) Qualitative Analysis of Concerns Addressed during Code Review

Gerrit
Review
Dataset

Code
Dataset

Review
DB

Fig. 2. An overview of data preparation and data analysis approaches.

B. Data Preparation

We used the Gerrit review and code datasets that are
provided by prior work [12, 14]. The Gerrit review dataset of
Hamasaki et al. describes patch information, reviewer scoring,
the personnel involved, and review discussion history [14].
The code dataset of McIntosh et al. describes the recorded
commits on the release branch of the Qt VCSs during the
development and maintenance of each studied Qt release [12].
For each of our research questions, we construct a review
database by linking the Gerrit review and code datasets. Figure
2 provides an overview of our dataset linking process, which
is broken down into three steps that we describe below.

(DP1) Git Revision ID Extraction

In order to link the Gerrit review and code datasets, we
extract the Git revision ID from the message that is automati-
cally generated by the Qt CI bot. After a patch is accepted by
reviewers, it is merged into the release branch and the bot
adds a message to the review discussion of the form: “Change
has been successfully cherry-picked as <Git Revision ID>”.

(DP2) Defective File Identification

To identify the future-defective and risky files, we count the
number of post-release defects of each file. Similar to our prior
work [12], we identify post-release defects using defect-fixing
commits that are recorded during the six-month period after
the release date.

Figure 3 illustrates our approach to identify the future-
defective files for RQ1 and the risky files for RQ2. We classify
the files that have post-release defects as future-defective files.
Files that do not have post-release defect are classified as
clean files. Similarly, we classify the files that had post-release
defects in the prior release as risky files, while normal files are
files that did not have post-release defects in the prior release.

(DP3) Review Linking

To find the reviews that are associated with changes made
to the studied files, we first link the commits to reviews using
the Git revision ID. We only study the reviews of changes
that can be linked between code and review datasets. We then
produce a review database by selecting pre-release reviews
of the studied files. We select reviews of future-defective (or

Studied Release Date

Retrieve Changed FilesRetrieve Fixed Files

Count Prior Defects
Link
Files

#Prior
Defects >

0

Classify as
“Risky”

Classify as
“Normal”

Yes

No

6 months
VCS History

Prior Release Date

Classify as  
“Future-

Defective”

Classify as
“Clean”

#Future
Defects >

0

Yes

No

Count Post-Release
Defects

Retrieve Fixed Files

For RQ1For RQ2

6 months 6 months

Fig. 3. Our approach to identify defective files.

risky) files from those reviews that are associated with at least
one future-defective (or risky) file. The reviews that are not
associated with any future-defective (or risky) files are linked
to clean (or normal) files.

We conservatively link the reviews that are associated with
both future-defective (or risky) files and clean (or normal) files
to future-defective (or risky) files, when these reviews could
have been linked to clean (or normal) files. We do so because
we feel that the worst-case scenario where we mistakenly link
some review activity to future-defective (or risky) files is more
acceptable than the worst-case scenario where we mistakenly
link some review activity to clean (or normal) files.

C. Data Analysis

To address our research questions, we perform quantitative
(DA1) and qualitative (DA2) analyses. Figure 2 provides an
overview of our analyses. We describe each analysis below.

(DA1) Quantitative Analysis of Code Review Activity

We study the differences in code review activity between
future-defective (or risky) and clean (or normal) files. To do so,
we calculate several code review activity metrics and measure
the difference in code review activity metrics using a statistical
approach. We describe each step in this process below.
(DA1-a) Review activity metrics calculation. Table II pro-
vides an overview of the 11 metrics that we use to measure
code review activity. Since code review activity is often
correlated with patch size [24–26], we normalize each raw
code review activity metric by the patch size. Our metrics are
grouped into three dimensions: 1) Review Intensity measures
the scrutiny that was applied during the code review process,
2) Review Participation measures how much the development
team invests in the code review process, and 3) Reviewing
Time measures the duration of a code review.
(DA1-b) Review activity analysis. We use a statistical
approach to determine whether code review activity in future-
defective (or risky) files is significantly different from code
review activity in clean (or normal) files.

To statistically confirm the difference of the code review
activity in future-defective (or risky) and clean (or normal)
files, we first test for normality in our data using the Shapiro-
Wilk test (α = 0.05). We observe that the distributions of code

TABLE II
A TAXONOMY OF THE CODE REVIEW ACTIVITY METRICS. THE METRICS NORMALIZED BY PATCH SIZE ARE MARKED WITH A DAGGER SYMBOL (†).

Metric Description Rationale

R
ev

ie
w

In
te

ns
ity

Number of Iterations† Number of review iterations for a patch prior to its
integration.

Fixing a defect found in each round of multiple iterations of a review
would reduce the number of defects more than a single iteration of
review [15].

Discussion Length† Number of general comments and inline comments
written by reviewers.

Reviewing proposed changes with a long discussion would find more
defects and provide a better solution [10, 16].

Proportion of Revisions
without Feedback

Proportion of iterations that are not inspired by a
reviewer neither posting a message nor a score.

Although a code review of MCR can be done by bots, the suggestion
can be either superficial or false positives [17]. More revisions that
are manually examined by reviewers would lead to a lower likelihood
of having future defects.

Churn during Code
Review†

Number of lines that were added and deleted between
revisions.

More lines of codes that were revised during code review would lead
to a lower likelihood of having a future defect [18].

R
ev

ie
w

Pa
rt

ic
ip

at
io

n

Number of Reviewers† Number of developers who participate in a code
review, i.e., posting a general comment, or inline
comment, and assigning a review score.

Changes examined by many developers are less likely to have future
defects [9, 19].

Number of Authors† Number of developers who upload a revision for
proposed changes.

Changes revised by many authors may be more defective [13, 20].

Number of Non-Author
Voters†

Number of developers who assign a review score,
excluding the patch author.

Changes that receive a review score from the author may have
essentially not been reviewed [12].

Proportion of Review
Disagreement

A proportion of reviewers that vote for a disagree-
ment to accept the patch, i.e., assigning a negative
review score.

A review with a high rate of acceptance discrepancy may induce a
future fix.

R
ev

ie
w

in
g

Ti
m

e Review Length† Time in days from the first patch submission to the
reviewers acceptance for integration.

The longer time of code review, the more defects would be found and
fixed [9, 15].

Response Delay Time in days from the first patch submission to the
posting of the first reviewer message.

Reviewing a patch promptly when it is submitted would reduce the
likelihood that a defect will become embedded [9].

Average Review Rate Average review rate (KLOC/Hour) for each revision. A review with a fast review rate may lead the changes that are
defective [21–23].

TABLE III
A CONTINGENCY TABLE OF A CODE REVIEW ACTIVITY METRIC (m),

WHERE a AND c REPRESENT THE NUMBER OF REVIEWS OF DEFECTIVE
FILES, AND b AND d REPRESENT THE NUMBER OF REVIEWS OF THEIR

CLEAN COUNTERPARTS.

Low Metric Value High Metric Value
m ≤ medianm m > medianm

Have defects a c
No defects b d

review activity metrics do not follow a normal distribution
(p < 2.2 × 10−16 for all of the metrics). Thus, we use
a non-parametric test, i.e., the one-tailed Mann-Whitney U
test to check for significant differences in the code review
activity metrics of future-defective (or risky) files and clean
(or normal) files (α = 0.05).

We also measure the relative impact in order to understand
the magnitude of the relationship. We estimate the relative
impact using the odds ratio [27]. We compare the odds of
future-defective (or risky) files that undergo reviews with high
metric values (greater than the median) and reviews with low
metric values (less than or equal to the median). From the
contingency table constructed for a code review activity metric
(m) as shown in Table III, we can measure the relative impact
using a calculation of imp(m) = (c/d)−(a/b)

(a/b) . A positive
relative impact indicates that a shift from low metric values
to high metric values is accompanied by an increase in the
likelihood of future (or past) defect proneness, whereas a
negative relative impact indicates a decrease in that likelihood.

(DA2) Qualitative Analysis of Concerns Addressed during
Code Review

We compare the concerns that were addressed during code
review of future-defective (or risky) files and clean (or normal)
files. Similar to Beller et al. [28], we identify the concerns
by manually labelling the types of changes made to a patch
between revisions. We describe each step below.
(DA2-a) Representative sample selection. As the full set of
review data is too large to manually examine in its entirety,
we randomly select a statistically representative sample for our
analysis. To select a representative sample, we determine the
sample size using a calculation of s = z2p(1−p)

c2 , where p is the
proportion that we want to estimate, z = 1.96 to achieve a 95%
confidence level, and c = 0.1 for 10% bounds of the actual
proportion [29, 30]. Since we did not know the proportion in
advance, we use p = 0.5. We further correct the sample size
for the finite population of reviews P using ss = s

1+ s−1
P

. Since
we consider only changes that occur during code review, we
randomly select the representative sample from those reviews
that have at least two revisions.
(DA2-b) Addressed concerns identification. To identify the
concerns that were addressed during code review, we manually
label the changes that occurred between revisions using the
file-by-file comparison view of the Gerrit system. Each change
is labelled as being inspired by reviewer feedback or not, as
well as the corresponding type. For the type of a change,
we use the change classification defined by Mäntylä and
Lassenius [31], with the addition of the traceability category.
For each type of change, we count how many reviews make
such changes. Since many changes can be made during a

TABLE IV
AN OVERVIEW OF THE REVIEW DATABASE OF RQ1.

Qt 5.0.0 Qt 5.1.0
Future-defective Clean Future-defective Clean

Studied Files 1,176 10,513 866 11,931
Related Reviews 3,470 2,727 2,849 2,690

Review Sample 93 93 93 93
(405 revisions) (344 revisions) (371 revisions) (342 revisions)

review, the sum of the frequencies of each type can be larger
than the total number of reviews. Below, we briefly describe
each type in our change classification schema.

Evolvability refers to changes made to ease the future
maintenance of the code. This change type is composed of
three sub-types: 1) Documentation refers to changes in parts
of the source code that describe the intent of the code, e.g.,
identifier names or code comments, 2) Structure refers to code
organization, e.g., refactoring large functions, and 3) Visual
representation refers to changes that improve code readability,
e.g., code indentation or blank line usage.

Functionality refers to changes that impact the functionality
of the system. This change type is composed of six sub-
types: 1) Larger defects refer to changes that add missing
functionality or correct implementation errors, 2) Check refers
to validation mistakes, or mistakes made when detecting an
invalid value, 3) Resource refers to mistakes made with data
initialization or manipulation, 4) Interface refers to mistakes
made when interacting with other parts of the software, such
as other internal functions or external libraries, 5) Logic refers
to computation mistakes, e.g., incorrect comparison operators
or control flow, and 6) Support refers to mistakes made with
respect to system configuration or unit testing.

Traceability refers to bookkeeping changes for VCSs. We
add this type into our classification schema because the soft-
ware development of large software systems is also concerned
with the management of source code repositories [32, 33].
For instance, developers should describe the proposed change
using a detailed commit message, and the proposed change
must be applied to the latest version of the codebase.1

IV. CASE STUDY RESULTS

In this section, we present the results of our case study
with respect to our two research questions. For each research
question, we present and discuss the results of quantitative
(DA1) and qualitative (DA2) analyses.

(RQ1) Do developers follow lax code review practices in files
that will eventually have defects?

Table IV provides an overview of the review database that
we construct to address RQ1. We conjecture that files that are
intensely scrutinized, with more team participation, that are
reviewed for a longer time, and often address functionality
concerns are less likely to have defects in the future.

We now present our empirical observations, followed by our
general conclusion.

1http://qt-project.org/wiki/Gerrit-Introduction

TABLE V
RESULTS OF ONE-TAILED MANN-WHITNEY U TESTS (α = 0.05) FOR
CODE REVIEW ACTIVITY METRICS OF FUTURE-DEFECTIVE (FD) AND

CLEAN (C) FILES.

Metric Statistical Test Relative Impact (%)
Qt 5.0.0 Qt 5.1.0 Qt 5.0.0 Qt 5.1.0

Review Intensity
#Iterations† FD < C*** FD < C*** -24 ↓ -20 ↓

Discussion Length† FD < C*** FD < C** -19 ↓ -14 ↓
Revisions without Feedback FD > C*** FD > C* 7 ↑ 5 ↑
Churn during Code Review† FD > C *** FD > C*** 11 ↑ 11 ↑
Review Participation

#Reviewers† FD < C*** FD < C*** -26 ↓ -20 ↓
#Authors† FD < C*** FD < C*** -33 ↓ -27 ↓

#Non-Author Voters† FD < C*** FD < C*** -30 ↓ -26 ↓
Review Disagreement FD > C* FD > C* 3 ↑ 4 ↑

Reviewing Time
Review Length† - FD > C*** - 18% ↑
Response Delay - FD > C* - 11% ↑

Average Review Rate FD > C*** FD > C*** 42% ↑ 16% ↑
† The metrics are normalized by patch size.
Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

(RQ1-DA1) Quantitative Analysis of Code Review Activity

Observation 1 – Future-defective files tend to undergo
less intense code review than clean files do. As we suspected,
Table V shows that future-defective files tend to undergo
reviews that have fewer iterations, shorter discussions, and
have more revisions that are not inspired by reviewer feedback
than clean files do. Mann-Whitney U tests confirm that the
differences are statistically significant (p < 0.001 for all of
the review intensity metrics).

However, future-defective files tend to change more during
code review than clean files. Table V shows that the churn
during code review of future-defective files is higher than that
of clean files (p < 0.001). This may be because changes made
to future-defective files tend to be more controversial. For
example, review ID 279772 proposes a controversial change
that reviewers disagreed with, asking the author to revise the
proposed changes many times before reluctantly allowing the
integration of the changes into the upstream VCSs.

Observation 2 – Future-defective files tend to undergo
reviews with less team participation than clean files do.
Table V shows that future-defective files tend to be reviewed
by fewer reviewers, involve fewer non-author voters, and have
a higher rate of review disagreement than clean files do. Mann-
Whitney U tests confirm that the differences are statistically
significant (p < 0.001 for the number of reviewers and the
non-author voters metrics, and p < 0.05 for the proportion of
review disagreement metric).

Furthermore, Table V shows that future-defective files tend
to have less authors who upload revisions than clean files
do (p < 0.001). We observe that additional authors often
help the original author to improve the proposed changes. For
example, in review ID 35360,3 the additional author updated
the proposed changes to be consistent with his changes from
another patch. This suggests that the proposed change can be
improved and complex integration issues can be avoided when
it is revised by many developers during code review.

2https://codereview.qt-project.org/#/c/27977
3https://codereview.qt-project.org/#/c/35360

http://qt-project.org/wiki/Gerrit-Introduction
https://codereview.qt-project.org/#/c/27977
https://codereview.qt-project.org/#/c/35360

Future−Defective Files Clean Files

0

20

40

60

80

Evolvability

Functional

Traceability

Change Types

R
ev

ie
w

s
P

ro
po

rt
io

n
(%

)

Evolvability Functional

0

20

40

60

Documentation

Structure
Visual

Check
Interface

Larger
Logic

Resource
Support

Change Sub−Types
R

ev
ie

w
s

P
ro

po
rt

io
n

(%
)

(a) Qt 5.0.0

Future−Defective Files Clean Files

0

20

40

60

80

Evolvability

Functional

Traceability

Change Types

R
ev

ie
w

s
P

ro
po

rt
io

n
(%

)

Evolvability Functional

0

20

40

60

Documentation

Structure
Visual

Check
Interface

Larger
Logic

Resource
Support

Change Sub−Types

R
ev

ie
w

s
P

ro
po

rt
io

n
(%

)

(b) Qt 5.1.0

Fig. 4. Distribution of change types that occurred during the code review of future-defective and clean files. The sum of review proportion is higher than
100%, since a review can contain many types of changes.

Observation 3 – Future-defective files tend to undergo
reviews with a faster rate of code examination than clean
files do. Table V shows that future-defective files tend to
be reviewed with a faster average review rate than clean
files. A Mann-Whitney U test confirms that the difference
is statistically significant (p < 0.001). We also observe that
in Qt 5.1.0, the future-defective files tend to receive longer
response delay than the clean files do, while we cannot confirm
the statistical significance of the difference in Qt 5.0.0.

Surprisingly, Table V shows that the review length of future-
defective files tends to be longer than clean files in Qt 5.1.0
(p < 0.001). We observe that some of the reviews take a longer
time due to a lack of reviewer attention. For example, in review
ID 32926,4 there is little prompt discussion about a proposed
change. Since the patch already received a review score of
+1 from a reviewer and there were no other comments after
waiting for 9 days, the author presumed that the change was
clean and self-approved his own change. This lack of reviewer
attention may in part be due to long review queues [34]. This
finding complements observation 2 — files that are reviewed
with little team participation tend to have future defects.

Table V shows that the metrics with the largest relative
impacts are the average review rate for Qt 5.0.0 (42%) and the
number of authors for Qt 5.1.0 (-27%), while the proportion
of review disagreement metric has the smallest relative impact
for both Qt versions (an average of 3.5%). Furthermore, the
number of reviewers, authors, and non-author voters also have
a large relative impact, which ranges between -33% and -20%.

(RQ1-DA2) Qualitative Analysis of Concerns Addressed dur-
ing Code Review

Observation 4 – For evolvability changes, future-
defective files tend to more frequently address docu-
mentation and structure concerns than clean files do.
Figure 4 shows that the proportion of reviews in future-
defective files that make documentation and structure changes
is higher than the corresponding proportion in the clean
files. There are differences of 11 and 9 percentage points
(52%−41% and 39%−30%) in documentation changes, and
5 and 15 percentage points (67%−62% and 70%−55%) in
structure changes for Qt 5.0.0 and Qt 5.1.0, respectively.

4https://codereview.qt-project.org/#/c/32926

We observe that the documentation changes involve updating
copyright terms, expanding code comments, and renaming
identifiers. The structure changes relate to removing dead code
and reusing existing functions rather than implementing new
ones. Moreover, we find that the documentation changes were
inspired by reviewers in future-defective files (21%) more
often than clean files (10%), indicating that reviewers often
focus on documentation issues in future-defective files.

Furthermore, we find that evolvability is the most frequently
addressed concern during code review of both clean and
future-defective files. Figure 4 shows that, similar to prior
work [28, 31], evolvability changes account for the majority
of changes in the reviews, i.e., 82% of the reviews of future-
defective files and 70% of the reviews of clean files on average.

Observation 5 – For functionality changes, future-
defective files tend to more frequently address check,
logic, and support concerns than clean files do. Figure 4
shows that the proportion of reviews in future-defective files
that make check, logic, and support changes is higher than
the corresponding proportion in the clean files. There are
differences of 7 and 6 percentage points (18%−11% and
16%−10%) in check and logic changes, respectively. We
observe that many check changes involve validating variable
declarations. The logic changes mainly relate to changing com-
parison expressions. For the support changes, the proportion of
reviews in Qt 5.1.0 shows a clear difference of 15 percentage
points (19%−4%) between future-defective and clean files.
Moreover, in Qt 5.1.0, the support changes are addressed by
the author in future-defective files more often than clean files.
The proportion of reviews is 15% and 2% in future-defective
files and clean files, respectively. On the other hand, there
are few reviews where reviewers inspire functionality changes.
The proportion of reviews ranges between 1% - 9% (average
of 5%) in future-defective files and between 1% - 6% (average
of 4%) in clean files.

We also find that the reviews of clean files tend to more
frequently address traceability concerns than the reviews of
future-defective files do. Figure 4 shows that the proportion of
reviews that address traceability concern in clean files is higher
than the corresponding proportion in the future-defective files
with the differences of 7 and 21 percentage points (48%−41%
and 60%−39%) for Qt 5.0.0 and Qt 5.1.0, respectively.

https://codereview.qt-project.org/#/c/32926

TABLE VI
AN OVERVIEW OF THE REVIEW DATABASE TO ADDRESS RQ2.

Qt 5.1.0
Risky Normal Risky & Future-Defective Risky & Clean

Studied Files 1,168 11,629 206 962
Related Reviews 2,671 2,868 1,299 1,372

Review Sample 93 93 44 49
(399 revisions) (309 revisions) (205 revisions) (194 revisions)

The reviews of files that will eventually have defects tend to
be less rigorous and more frequently address evolvability

concerns than the reviews of files without future defects do.

(RQ2) Do developers adapt their code review practices in
files that have historically been defective?

To address RQ2, we use post-release defects of Qt 5.0.0 as
prior defects for Qt 5.1.0 and investigate the review activity
of changed files in Qt 5.1.0. Table VI shows an overview
of the review database that we use to address RQ2. We
conjecture that reviews of risky files should be more intensely
scrutinized, have more team participation, and take a longer
time to complete than the reviews of normal files.

We now present our empirical observations, followed by our
general conclusion.

(RQ2-DA1) Quantitative Analysis of Code Review Activity

Observation 6 – Risky files tend to undergo less intense
code reviews than normal files do. Table VII shows that risky
files tend to undergo reviews that have fewer iterations, shorter
discussions, and more revisions without reviewer feedback
than normal files do. Mann-Whitney U tests confirm that
the differences are statistically significant (p < 0.001 for the
number of iterations, discussion length metrics, and p < 0.01
for the proportion of revisions without feedback metric).

Table VII also shows that the reviews of risky files tend
to churn more during code review than those in normal files.
Similar to observation 1, changes with more churn during code
review are likely to be controversial. For example, in review ID
29929,5 reviewers provide many suggested fixes and the author
needs to revise the proposed changes many times before the
change was accepted for integration.

Observation 7 – Risky files tend to be reviewed with
less team participation than normal files. Table VII shows
that risky files tend to be reviewed by fewer reviewers and
non-author voters than normal files do. Mann-Whitney U
tests confirm that the differences are statistically significant
(p < 0.001 for the number of reviewers and the number of
non-author voters metrics). Moreover, there tend to be fewer
authors in the reviews of risky files than those reviews of
normal files. The low number of authors in risky files is
also worrisome, since observation 2 suggests that multiple
authors revising the proposed change in a review tend to avoid
problems that could lead to future defects.

Observation 8 – Risky files tend to undergo reviews
that receive feedback more slowly and have faster review

5https://codereview.qt-project.org/#/c/29929

TABLE VII
RESULTS OF ONE-TAILED MANN-WHITNEY U TESTS (α = 0.05) FOR

CODE REVIEW ACTIVITY METRICS OF RISKY AND NORMAL FILES.

Metric Statistical Test Relative Impact (%)
Review Intensity

#Iterations† Risky < Normal*** -28 ↓
Discussion Length† Risky < Normal*** -26 ↓

Revisions without Feedback Risky > Normal** 6 ↑
Churn during Code Review† Risky > Normal*** 7 ↑
Review Participation

#Reviewers† Risky < Normal*** -32 ↓
#Authors† Risky < Normal*** -34 ↓

Non-Author Voters† Risky < Normal*** -33 ↓
Review Disagreement - -

Reviewing Time
Review Length† Risky > Normal* 6 ↑
Response Delay Risky > Normal*** 15 ↑

Average Review Rate Risky > Normal*** 17 ↑
† The metrics are normalized by patch size.
Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

rate than normal files. Although Table VII shows that
risky files tend to undergo reviews that have a longer review
length than normal files do, its relative impact is only 6%.
On the other hand, we find that the reviews of risky files
have a longer response delay and faster review rate than the
reviews of normal files. Mann-Whitney U tests confirm that
the differences are statistically significant (p < 0.001 for the
response delay and the average review rate metrics). This result
is also worrisome, since observation 3 suggests that that files
that undergo reviews with longer response delay and faster
review rate are likely to have defects in the future.

Table VII shows that the metric with the largest relative
impact is the number of authors (-34%), while the proportion
of revisions without feedback and the review length metrics
have the smallest relative impact (6%). Furthermore, we find
that the number of iterations, the discussion length, the number
of reviewers, and non-author voters metrics also have large
relative impacts, ranging between -33% and -26%.

(RQ2-DA2) Qualitative Analysis of Concerns Raised during
Code Review

Observation 9 – Risky files tend to more frequently have
evolvability concerns addressed during code review than
normal files do. Figure 5 shows that evolvability concerns
are addressed in the reviews of risky files more often than
normal files with a proportion of reviews that is 29 percentage
points higher (87%−58%). The proportion of reviews that
make structure changes shows an obvious difference of 32
percentage points (78%−46%) in risky and normal files. We
observe that structure changes in the reviews of risky files
relate to removing dead code, while changes in the reviews
of normal files relate to re-implementing solutions using
alternative approaches and small fixes for runtime errors.

Observation 10 – Risky files tend to more frequently
have functionality concerns addressed during code review
than normal files do. Figure 5 shows that there is a difference
of 14 percentage points (47%−33%) between risky and normal
files. The proportion of reviews that make check and logic

https://codereview.qt-project.org/#/c/29929

Risky Files Normal Files

0

25

50

75

Evolvability

Functional

Traceability

Change Types

R
ev

ie
w

s
P

ro
po

rt
io

n
(%

)

Evolvability Functional

0

20

40

60

80

Documentation

Structure
Visual

Check
Interface

Larger
Logic

Resource
Support

Change Sub−Types
R

ev
ie

w
s

P
ro

po
rt

io
n

(%
)

Fig. 5. Distribution of change types that occurred during the code review of
risky and normal files. The sum of review proportion is higher than 100%,
since a review can contain many types of changes.

changes shows a clear difference of 11 percentage points
(19%−8%) between risky and normal files. We observe that
the check changes relate to validating variable values, and
logic changes relate to updates to comparison expressions.

On the other hand, Figure 5 shows that normal files tend to
address traceability concerns more often than risky files do.
There is a difference of 15 percentage points (58% - 43%)
between risky and normal files. Additionally, this concern is
often addressed by authors. Moreover, we observe that changes
to normal files are more rebased than risky files are.

Developers are not as careful when they review changes
made to files that have historically been defective and

often address the concerns of evolvability and functionality.

We study this phenomenon further to investigate the rela-
tionship between the code review practices in the risky files
and future defects. We use the same data analysis approaches,
i.e., DA1 and DA2. We separate the risky files into two groups:
1) risky files that will eventually have defects (called risky &
future-defective files) and 2) risky files that will eventually
be defect-free (called risky & clean files) when Qt 5.1.0 is
released. We also separate the randomly selected reviews of
risky files to reviews of risky & future-defective files and
reviews of risky & clean files in order to compare concerns
addressed during code review. Table VI shows an overview of
the review database that we use to perform this study.

Observation 11 – Risky & future-defective files tend
to be less carefully reviewed than risky & clean files.
Table VIII shows that risky & future-defective files tend to
undergo less intense code review with less team participa-
tion, i.e., fewer iterations, shorter discussions, more revisions
without reviewer feedback, fewer reviewers, authors, and non-
author voters than risky & clean files. Mann-Whitney U tests
confirm that the differences are statistically significant (p <
0.001 for all metrics of the review intensity and participation
dimensions). Moreover, we find that risky & future-defective
files tend to undergo reviews that have a longer response delay
and faster review rate than risky & clean files. Mann-Whitney
U tests confirm that the differences are statistically significant
(p < 0.001 for the response delay and the average review rate
metrics). These results indicate that changes made to the risky

TABLE VIII
RESULTS OF ONE-TAILED MANN-WHITNEY U TESTS (α = 0.05) FOR

CODE REVIEW ACTIVITY METRICS OF RISKY & FUTURE-DEFECTIVE FILES
(R&FD) AND RISKY & CLEAN FILES (R&C).

Metric Statistical Test Relative Impact (%)
Review Intensity

#Iterations† R&FD < R&C*** -27 ↓
Discussion Length† R&FD < R&C*** -29 ↓

Revisions without Feedback R&FD < R&C*** 10 ↑
Churn during Code Review† R&FD > R&C* 7 ↑
Review Participation

#Reviewers† R&FD < R&C*** -27 ↓
#Authors† R&FD < R&C*** -31 ↓

Non-Author Voters† R&FD < R&C*** -30 ↓
Review Disagreement - -

Reviewing Time
Review Length† - -
Response Delay R&FD > R&C*** 34 ↑

Average Review Rate R&FD > R&C*** 25 ↑
† The metrics are normalized by patch size.
Statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

Risky & Future−defective Files Risky & Clean Files

0

25

50

75

Evolvability

Functional

Traceability

Change Types

R
ev

ie
w

s
P

ro
po

rt
io

n
(%

)

Evolvability Functional

0

20

40

60

80

Documentation

Structure
Visual

Check
Interface

Larger
Logic

Resource
Support

Change Sub−Types

R
ev

ie
w

s
P

ro
po

rt
io

n
(%

)

Fig. 6. Distribution of change types that occurred during the code review of
risky & future-defective and risky & clean files. The sum of review proportion
is higher than 100%, since a review can contain many types of changes.

files that are also defective are reviewed with less intensity,
less team participation, faster review rate, and receive slower
feedback than the risky files that are defect-free.

Table VIII shows that the metric with the largest relative
impact is the response delay (34%). On the other hand, the
churn during code review metric has the smallest relative
impact (7%). We also find that the number of iterations, the
discussion length, the number of reviewers, authors, and non-
author voters metrics have a large negative relative impacts
ranging between -31% to -27%, and the average review rate
metric has a large positive relative impact (25%).

Observation 12 – Risky & future-defective files tend to
have structure, visual representation, and check concerns
addressed more often during code reviews than risky &
clean files do. Figure 6 shows that for evolvability changes,
the proportion of reviews in risky & future-defective files that
make structure and visual representation changes is higher than
the corresponding proportion in risky & clean files. There are
differences of 11 and 10 percentage points (84%−73% and
30%−20%) in structure and visual representation changes,
respectively. For functionality changes, the proportion of re-
views that make check changes shows an obvious difference
of 14 percentage points (55%−41%) between risky & future-
defective files and risky & clean files. We also observe
that reviewers inspire evolvability changes in risky & future-

defective files more often than risky & clean files. The
proportion of reviews is 43% and 31% in risky & future-
defective files and risky & clean files, respectively. However,
few functionality changes are inspired by reviewers in the
reviews of risky & future-defective files. The proportion of
reviews ranges between 0% - 11% (average of 5%) in risky &
future-defective files and between 4% - 10% (average of 5%)
in risky & clean files for each type of functionality changes.
This finding suggests that reviewers do not focus much on
functionality during code review of risky files.

Files that have historically been defective and will
eventually have defects tend to undergo less rigorous code
reviews that more frequently address evolvability concerns
than the files that have historically been defective, but will

eventually be defect-free.

V. DISCUSSION

In this section, we discuss the broader implications of our
empirical observations.
Review intensity. Observations 1 and 6 have shown that
the reviews of changes made to clean and normal files often
have longer discussions and more iterations than the reviews
of future-defective and risky files do. Prior work reports that
the focus of MCR discussion has shifted from defect-hunting
to group problem-solving [7, 8, 10]. Examining a patch in
multiple review iterations would likely uncover more problems
than a single review iteration [15]. Hence, the reviews that
have long discussions and many iterations seem to improve
the patch and avoid problems that could lead to future defects.
Review participation. Observations 2 and 7 have shown that
the reviews of changes made to clean and normal files often
have more participants than the reviews of future-defective and
risky files do. Corresponding to Linus’ law [19], our findings
suggest that code reviews should be performed by multiple
reviewers to reduce the likelihood of having future defects.
Development teams should take the number of review partic-
ipants into consideration when making integration decisions.
For example, the MCR tools should be configured to require
acceptance votes from multiple reviewers.
Review speed. Observations 3 and 8 have shown that each
review iteration of clean and normal files is performed slower
than future-defective and risky files. Similar to the traditional
code review practices [22, 23], our findings suggest that
reviewers will be able to uncover more problems hidden in
a patch if they perform a careful code examination with an
appropriate code reading rate.
Reviewing concerns. Observations 4, 5, 9, and 10 have shown
that the reviews of changes made to future-defective files and
risky files focus on evolvability concerns rather than functional
fixes. Indeed, functionality concerns are still rarely addressed
during code review. Although MCR practices seem to focus on
improving maintainability, our prior findings suggest that the
rigor of the reviewing process that is applied to a source code

file throughout a development cycle could help development
teams to avoid future defects.
Code review of risky files. Observations 11 and 12 have
shown that risky & future-defective files tend to undergo less
rigorous code reviews that more frequently address evolvabil-
ity concerns than the risky & clean files. One contributing
reason for the less careful review of risky files could be that
it is difficult for practitioners to determine the risk of code
changes during code review [35]. A supporting tool could help
practitioners notice such risky files to perform code review
more rigorously when necessary.

VI. THREATS TO VALIDITY

We now discuss potential threats to validity of our study.
Construct validity. We study the code review practices of
files derived from a set of reviews instead of studying on a
single review because uncovering defects is not the sole intent
of MCR practices [7] and the number of defects found during
code review is not explicitly recorded in a MCR tool [8].
Therefore, we use the collection of code review activity of
files during the development of a release to evaluate the impact
that the MCR practices have on software quality.

The change classification method was conducted by the first
author who are not involved in the code review process of the
studied system. The results of manual classification by the
team members might be different. However, our classification
schema is derived from prior work [28, 31] and the comments
that we use to classify code reviews are originally written by
team members who participated in the code review process.
Furthermore, we repeatedly label changes several times before
perform our study to ensure the uniformity of the change
classification, and a subset of change classification results is
verified by the second author.
Internal validity. Some of our code review activity metrics
are measured based on heuristics. For example, we assume that
the review length is the elapsed time between when a patch has
been uploaded and when it has been approved for integration.
However, there are likely cases where reviewers actually exam-
ined a patch for a fraction of this review length. Unfortunately,
reviewers do not record the time that they actually spent
reviewing a patch. Since there is a limitation of measuring
the actual code review activities, we must rely on heuristics to
recover this information. Furthermore, our rationales for using
metrics are supported by prior work [9, 10, 15, 16, 36].

There might be confounding factors that also impact soft-
ware quality. For example, Meneely et al. find that novice
reviewers are more likely to allow defects to seep through
the code review process than experts [37]. On the other hand,
only core developers (who are elected by the Qt development
community) are given voting privileges in the Gerrit system.6

Thus, each change has been examined by at least one expert
before integration. Nevertheless, taking such factors into ac-
count may allow us to gain more insight into MCR practices
in defective files.

6http://qt-project.org/wiki/The Qt Governance Model

http://qt-project.org/wiki/The_Qt_Governance_Model

External validity. Although the Qt system is an open source
project that actively assesses software changes through an
MCR tool, the analysis of the studied dataset does not allow
us to draw conclusions for all open source projects. Since the
code review process of MCR is a relatively new development,
finding systems that satisfy our selection criteria is a challenge
(cf. Section III-A). Naggapan et al. also argue that if care
is not taken when selecting which projects to analyze, then
increasing the sample size does not actually contribute to
the goal of increased generality [38]. Nonetheless, additional
replication studies are needed to generalize our results.

VII. RELATED WORK

In order to discuss the related work on code inspections
and code reviews, we group them into those that perform
quantitative studies and those that perform qualitative studies.
Quantitative studies. Understanding the code review pro-
cess would help practitioners to perform code review more
effectively. Porter et al. report that the number of reviewers
and authors were significant sources of variation that impact
software inspection performance [15]. Ferreira et al. find that
in software inspection process, reading code changes with rate
higher than 200 lines of code per hour leads to defects [22].
Rigby et al. report that in the broadcast-based code review
process of the Apache project, a defect will become embedded
in the software if proposed changes are not reviewed by
the time it is submitted [9]. Our study arrives at similar
conclusions, i.e., files that will have future defects tend to
undergo reviews with fewer reviewers, a faster review rate,
and receive late feedback.

Our prior work studies the relationship between lax par-
ticipation in the MCR process and future defects in software
components [12]. Our study aims to complement the prior
work by examining the code review activity in different
dimensions as well as observing concerns raised during the
code review process of defective and clean files.

Besides observing the number of defects, many studies
investigate factors that impact code review time and in-
tegration decisions. Jiang et al. study the relationship of
patch characteristics and code review time in the Linux
kernel [26]. Baysal et al. study the influence of the non-
technical factors on the code review time and the proportion
of accepted patches in the WebKit open source project [34].
Thongtanunam et al. investigate the impact of the reviewer
assignment problem on the code review time of four open
source projects [39]. Gousios et al. explore the relationship of
code review participation and integration decisions in GitHub
projects [11]. Inspired by these studies, we design our code
review activity metrics to comparatively study code review
practices in defective and clean files.
Qualitative studies. To better understand code review, several
studies explore review discussions to uncover the addressed
concerns during code review. Mäntylä and Lassenius observe
a 75:25 ratio of maintainability-related and functional defects
raised during the code reviews of student and industrial
development projects [31]. Beller et al. found that a similar

75:25 ratio of issues were fixed during the MCR processes
of two large systems [28]. Tao et al. report that reviewers of
Eclipse and Mozilla projects are seriously concerned about
inconsistent and misleading documentation of a patch over
other problems [40]. Similar to code review practices in
GitHub, Tsay et al. report that stakeholders are concerned
about the appropriateness of a code solution and often provide
alternative solutions during code review [10]. Complementing
these studies, we study the difference of concerns addressed
during the reviews of defective and clean files.

VIII. CONCLUSION

Although Modern Code Review (MCR) is now widely
adopted in both open source and industrial projects, the impact
that MCR practices have on software quality is still unclear.
In this study, we comparatively study the MCR practices in
defective and clean files, i.e., 1) files that will eventually
have defects (called future-defective files), and 2) files that
have historically been defective (called risky files). Due to
the human-intensive nature of code reviewing, we decide to
perform an in-depth study on a single system instead of
examining a large number of projects. Using data collected
from the Qt open source system, we empirically study 11,736
reviews of changes to 24,486 files and manually examine 558
reviews. The results of our study indicate that:

• The code review activity of future-defective files tends to
be less intense with less team participation and with a
faster rate of code examination than the reviews of clean
files (Observations 1-3).

• Developers more often address concerns about: 1) doc-
umentation and structure to enhance evolvability, and 2)
checks, logic, and support to fix functionality issues, in
the reviews of future-defective files than the reviews of
clean files (Observations 4-5).

• Despite their historically defective nature, the code review
activity of risky files tends to be less intense with less
team participation than files that have historically been
defect-free. Reviews of risky files also tend to receive
feedback more slowly and have a faster review rate than
the reviews of normal files (Observations 6-8).

• In the reviews of risky files, developers address concerns
about evolvability and functionality more often than the
reviews of normal files do (Observations 9-10).

• Risky files that will have future defects tend to undergo
less careful reviews that more often address concerns
about evolvability than the reviews of risky files without
future defects do (Observations 11-12).

Our results suggest that rigorous code review could lead to a
reduced likelihood of future defects. Files that have historically
been defective should be given more careful attention during
code review, since such files are more likely to have future
defects [13].

REFERENCES

[1] B. Boehm and V. R. Basili, “Software Defect Reduction
Top 10 List,” IEEE Computer, vol. 34, no. 1, pp. 135–
137, 2001.

[2] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa,
M. Lindvall, D. Port, I. Rus, R. Tesoriero, and
M. Zelkowitz, “What We Have Learned About Fighting
Defects,” in Proceedings of the 8th International Soft-
ware Metrics Symposium (METRICS), 2002, pp. 249–
258.

[3] M. E. Fagan, “Design and Code Inspections to Reduce
Errors in Program Development,” IBM System Journal,
vol. 15, no. 3, pp. 182–221, 1976.

[4] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski,
“Software Inspections: An Effective Verification Pro-
cess,” IEEE Software, vol. 6, no. 3, pp. 31–36, 1989.

[5] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-
Art: Software Inspections After 25 Years,” Software
Testing, Verification and Reliability, vol. 12, no. 3, pp.
133–154, Sep. 2002.

[6] L. G. Votta, “Does Every Inspection Need a Meeting?” in
Proceedings of the 1st International Symposium on the
Foundations of Software Engineering (FSE), 1993, pp.
107–114.

[7] A. Bacchelli and C. Bird, “Expectations, Outcomes, and
Challenges of Modern Code Review,” in Proceedings of
the 35th International Conference on Software Engineer-
ing (ICSE), 2013, pp. 712–721.

[8] P. C. Rigby and C. Bird, “Convergent Contemporary
Software Peer Review Practices,” in Proceedings of the
9th joint meeting of the European Software Engineering
Conference and the International Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2013,
pp. 202–212.

[9] P. C. Rigby, D. M. German, and M.-A. Storey, “Open
Source Software Peer Review Practices: A Case Study
of the Apache Server,” in Proceedings of the 30th In-
ternational Conference on Software Engineering (ICSE),
2008, pp. 541–550.

[10] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s Talk
About It: Evaluating Contributions through Discussion
in GitHub,” in Proceedings of the 22nd International
Symposium on the Foundations of Software Engineering
(FSE), 2014, pp. 144–154.

[11] G. Gousios, M. Pinzger, and A. van Deursen, “An
Exploratory Study of the Pull-based Software Develop-
ment Model,” in Proceedings of the 36th International
Conference on Software Engineering (ICSE), 2014, pp.
345–355.

[12] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,
“The Impact of Code Review Coverage and Code Review
Participation on Software Quality,” in Proceedings of the
11th Working Conference on Mining Software Reposito-
ries (MSR), 2014, pp. 192–201.

[13] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Pre-

dicting Fault Incidence Using Software Change History,”
Transactions on Software Engineering (TSE), vol. 26,
no. 7, pp. 653–661, 2000.

[14] K. Hamasaki, R. G. Kula, N. Yoshida, C. C. A. Erika,
K. Fujiwara, and H. Iida, “Who does what during a Code
Review? An extraction of an OSS Peer Review Reposi-
tory,” in Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR), 2013, pp. 49–52.

[15] A. Porter, H. Siy, A. Mockus, and L. Votta, “Understand-
ing the Sources of Variation in Software Inspections,”
Transactions On Software Engineering and Methodology
(TOSEM), vol. 7, no. 1, pp. 41–79, 1998.

[16] R. Morales, S. McIntosh, and F. Khomh, “Do Code
Review Practices Impact Design Quality? A Case Study
of the Qt, VTK, and ITK Projects,” in Proceedings of
the 22nd International Conference on Software ANalysis,
Evolution, and Reengineering (SANER), 2015, pp. 171–
180.

[17] S. Panichella, V. Arnaoudova, M. D. Penta, and G. An-
toniol, “Would Static Analysis Tools Help Developers
with Code Reviews?” in Proceedings of the 22nd In-
ternational Conference on Software ANalysis, Evolution,
and Reengineering (SANER), 2015, pp. 161–170.

[18] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni,
“Identifying the Characteristics of Vulnerable Code
Changes: An Empirical Study,” in Proceedings of the
22nd International Symposium on the Foundations of
Software Engineering (FSE), 2014, pp. 257–268.

[19] E. S. Raymond, “The Cathedral and the Bazaar,” Knowl-
edge, Technology & Policy, vol. 12, no. 3, pp. 23–49,
1999.

[20] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. De-
vanbu, “Don’t Touch My Code! Examining the Effects of
Ownership on Software Quality,” in Proceedings of the
8th joint meeting of the European Software Engineering
Conference and the International Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2011,
pp. 4–14.

[21] G. W. Russell, “Experience with Inspection in Ultralarge-
Scale Developments,” IEEE Software, vol. 8, no. 1, pp.
25–31, 1991.

[22] A. L. Ferreira, R. J. Machado, L. Costa, J. G. Silva, R. F.
Batista, and M. C. Paulk, “An Approach to Improving
Software Inspections Performance,” in Proceedings of the
25th International Conference on Software Maintenance
(ICSM), 2010, pp. 1–8.

[23] C. F. Kemerer and M. C. Paulk, “The Impact of Design
and Code Reviews on Software Quality: An Empirical
Study Based on PSP Data,” Transactions on Software
Engineering (TSE), vol. 35, no. 4, pp. 1–17, 2009.

[24] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of
Social and Technical Factors for Evaluating Contribution
in GitHub,” in Proceedings of the 36th International
Conference on Software Engineering (ICSE), 2014, pp.
356–366.

[25] P. Weißgerber, D. Neu, and S. Diehl, “Small Patches Get

In!” in Proceedings of the 5th Working Conference on
Mining Software Repositories (MSR), 2008, pp. 67–75.

[26] Y. Jiang, B. Adams, and D. M. German, “Will My Patch
Make It? And How Fast? Case Study on the Linux
Kernel,” in Proceedings of the 10th Working Conference
on Mining Software Repositories (MSR), 2013, pp. 101–
110.

[27] A. W. F. Edwards, “The Measure of Association in a 2 x
2 Table,” Journal of the Royal Statistical Society. Series
A (General), vol. 126, no. 1, pp. 109–114, 1963.

[28] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens,
“Modern Code Reviews in Open-Source Projects: Which
Problems Do They Fix?” in Proceedings of the 11th
Working Conference on Mining Software Repositories
(MSR), 2014, pp. 202–211.

[29] S. K. Lwanga and S. Lemeshow, Sample Size Determi-
nation in Health Studies: A Practical Manual. Geneva:
World Health Organization, 1991.

[30] L. Kish, Survey sampling. John Wiley and Sons, 1965.
[31] M. V. Mäntylä and C. Lassenius, “What Types of Defects

Are Really Discovered in Code Reviews?” Transactions
on Software Engineering (TSE), vol. 35, no. 3, pp. 430–
448, 2009.

[32] A. Hindle, D. M. German, M. W. Godfrey, and R. C.
Holt, “Automatic Classification of Large Changes into
Maintenance Categories,” in Proceedings of the 17th
International Conference on Program Comprehension
(ICPC), 2009, pp. 30–39.

[33] A. E. Hassan, “Automated Classification of Change Mes-
sages in Open Source Projects,” in Proceedings of the
23rd Symposium on Applied Computing (SAC), 2008, pp.
837–841.

[34] O. Baysal, O. Kononenko, R. Holmes, and M. W. God-
frey, “The Influence of Non-Technical Factors on Code
Review,” in Proceedings of 20th Working Conference on

Reverse Engineering (WCRE), 2013, pp. 122–131.
[35] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How

Do Software Engineers Understand Code Changes?: An
Exploratory Study in Industry,” in Proceedings of the
20th International Symposium on the Foundations of
Software Engineering (FSE), 2012, pp. 51:1–51:11.

[36] A. A. Porter, H. P. Siy, C. A. Toman, and L. G.
Votta, “An Experiment to Assess the Cost-Benefits of
Code Inspections in Large Scale Software Development,”
Transactions on Software Engineering (TSE), vol. 23,
no. 6, pp. 329–346, 1997.

[37] A. Meneely, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis, “An Empirical
Investigation of Socio-technical Code Review Metrics
and Security Vulnerabilities,” in Proceedings of the 6th
International Workshop on Social Software Engineering
(SSE), 2014, pp. 37–44.

[38] M. Nagappan, T. Zimmermann, and C. Bird, “Diversity
in Software Engineering Research,” in Proceedings of the
9th joint meeting of the European Software Engineering
Conference and the International Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2013,
pp. 466–476.

[39] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula,
N. Yoshida, H. Iida, and K.-i. Matsumoto, “Who
Should Review My Code? A File Location-Based Code-
Reviewer Recommendation Approach for Modern Code
Review,” in Proceedings of the 22nd International Con-
ference on Software ANalysis, Evolution, and Reengi-
neering (SANER), 2015, pp. 141–150.

[40] Y. Tao, D. Han, and S. Kim, “Writing Acceptable
Patches: An Empirical Study of Open Source Project
Patches,” in Proceedings of the 30th International Con-
ference on Software Maintenance and Evolution (IC-
SME), 2014, pp. 271–280.

