Why So Complicated?
Simple Term Filtering and Weighting for
Location-Based Bug Report Assignment

Recommendation

Ramin Shokripour®, John Anvik', Zarinah M. Kasirun*, Sima Zamani*

*Faculty of Computer Science & Information Technology
University of Malaya, Kuala Lumpur, MALAYSIA
shokripour @siswa.um.edu.my
zarinahmk @um.edu.my
sima.zamani @siswa.um.edu.my

TDepartment of Computer Science
Central Washington University, Ellensburg, Washington, USA
janvik@cwu.edu

Abstract—Large software development projects receive many
bug reports and each of these reports needs to be triaged. An
important step in the triage process is the assignment of the
report to a developer. Most previous efforts towards improving
bug report assignment have focused on using an activity-based
approach. We address some of the limitations of activity-based
approaches by proposing a two-phased location-based approach
where bug report assignment recommendations are based on the
predicted location of the bug. The proposed approach utilizes
a noun extraction process on several information sources to
determine bug location information and a simple term weighting
scheme to provide a bug report assignment recommendation.
We found that by using a location-based approach, we achieved
an accuracy of 89.41% and 59.76% when recommending five
developers for the Eclipse and Mozilla projects, respectively.

Index Terms—Bug Report Assignment, File Activity Histories,
Named Entity Recognition, POS Filtering, Mining Software
Artifacts.

I. INTRODUCTION

Software projects commonly use issue tracking systems
(ITS) such as Bugzilla' and Jira? as a means for accessing
and organizing change requests, issues reports, or bug reports.>
Bug reports provide a way for the software project to manage
the identification of faults or requests for new features.

However, the use of an issue tracking system by a software
project is not without a cost. Large software development
projects such as Mozilla* and Eclipse® receive many new

"http://www.bugzilla.org/

2http://www.atlassian‘com/software/jira

3 Although change requests commonly contain information about both
software faults and feature requests, we will use the colloquial term “bug
report” to refer to both types of reports.

“http://www.mozilla.org

Shttp://www.eclipse.org

978-1-4673-2936-1/13 © 2013 IEEE

2

reports daily. For example, as of October 2012, the Mozilla
project had received over 800,000 reports, averaging 300 new
bug reports each day. Each of these new bug reports requires
triaging. A project member, called a triager, must examine
each recently submitted bug report and makes decisions about
how the report will be organized within the development
process of the software project. Such decisions include the
validity of the reported fault, such as if the fault has been
previously reported (i.e. a duplicate report) or if the cause of
the fault is that of third-party software. These triage decisions
also include if the bug report has been filed against the correct
product component or has been given an appropriate priority.
A key decision made by the triager is who will be assigned to
make the code changes necessary to fix the fault or implement
the new feature. This assignment decision can have important
consequences for the project, as an incorrect decision can
increase the time taken for fixing a bug [1] and therefore
increase the cost of the project [2].

A project’s triage process can consume a significant amount
of time and resources [1]. Often the triager is also a member
of the development team. Time spent triaging bug reports is
time not spent improving the software product, and therefore
represents an overhead to the project. Any reduction in time
spent on the triage process frees resources for software product
improvement. Also, the speed at which bugs reports are
triaged, especially those resulting in a code change, can have
an effect on the perceived quality of the software project. This
is particularly true for projects that use a Open Source Soft-
ware (OSS) development process where the responsiveness of
the developers to the project’s user community is partially
measured by how quickly bugs are fixed [3].

MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

There have been many efforts towards reducing the cost of
the triage process. These efforts include assessing the quality
of bugs [4], automatically identifying duplicate bug reports
[5], [6] and providing recommendations for the assignment
of bug reports [7], [8], [9], [10], [11], [12]. Prior work on
bug assignment recommendation has focused primarily on
the use of either machine learning or information retrieval
techniques to predict the developer most suited to resolve a
bug. These systems commonly determine the expertise of the
project developers based on reflections of their activities within
project artifacts. We refer to such approaches as activity-based.

Although activity-based approaches to bug report recom-
mendation have been found to be highly accurate [2], [4], [12],
they are not without weaknesses (see Section II). An alternate
to an activity-based approach is to recommend a bug report
assignment based on the predicted location(s) for the bug in the
source code. We refer to these approaches as location-based.
Such approaches are similar to those for impact analysis [13],
[14], but differ in intent.

This paper presents a two-phased location-based approach
for bug report assignment. In the first phase we predict the
source code files that will be changed to fix a new bug report.
Specifically, we determine the parts-of-speech (POS) for terms
from text information sources to create an index of unigram
noun terms that link to source code files. This results in a
simpler term index than used in similar approaches. Also,
unlike prior approaches that limit themselves to a single source
of information (i.e bug report descriptions or source code
revision commit messages), our approach uses four distinct
information sources to populate the term index.

In the second phase of the approach, we use the pre-
dicted source code files from the first phase to recommend
developers for handling the new bug report. We show that
our approach avoids the complex computations common with
activity-based approaches through the use of a simple method
for term weighting based not on the frequency of terms within
information sources, but the term frequency across multiple
information sources. We applied our approach to two software
projects, Eclipse and Firefox, and achieved an accuracy of
89.41% and 59.76%, respectively. Finally, we also show that
the approach results in a higher accuracy when compared to
another location-based approach.

The rest of this paper is organized as follows. First, we
present motivation for our location-based approach to bug
report assignment recommendation. Next, we present our
location-based approach in Section III and evaluate the accu-
racy of the approach in Section IV. Finally, we discuss threats
to the validity of our work in Section V and related work in
Section VI, before concluding the paper.

II. MortivaTiON

In this section, we present the motivation behind our
location-based approach to bug report assignment recommen-
dation. First, we discuss some of the drawbacks of activity-
based approaches compared to location-based approaches.
Then we discuss the use of different information sources for

making an assignment recommendation. Finally, we discuss
the types of extracted entities that are used in either activity-
based or location-based approaches.

A. Activity-Based vs. Location-Based Approaches

As previously mentioned, bug report assignment recommen-
dation approaches can be divided into two categories: activity-
based and location-based. In an activity-based approach, an
assignment recommendation is made based on developer ex-
pertise information gleaned from reflections of activity in the
project’s artifacts, particularly bug reports.

Alternatively, an assignment recommendation can be made
based on which source code files will need to be changed,
or the location of the bug within the project, and which
developers work at those locations.

In activity-based approaches, information resources are
mined to extract information about various developer activities.
However, such an approach can fail in the following ways:

1) New developers. If the developer that resolves a bug
report is new to the project, there will be a period of time
in which this developer will not be recommended by an
activity-based approach. This is due to the developer
not having generated enough activity information to be
recommended by such an approach.

2) Developers switching teams. Software projects com-
monly organize developers into teams. However, after
a period of time a developer may move from one
project team to another. In such a case, an activity-based
assignment approach will continue to recommend that
the developer fix bugs related to their former project
area until their activities generate enough information
to make a correct recommendation. Depending on the
amount of activity information the developer previously
generated as a member of that team and the sensitivity of
the activity-based approach to recent developer activity,
it may be some time before the recommender makes a
correct recommendation for the developer.

3) Reliability of activity information. Sources of developer
activity information are commonly noisy. For example,
the “assigned-to” field for bug reports of several projects
was found to not reflect the developer who actually
resolved a bug, but another project member [8]. Such
noise can lead to activity-based approaches making
incorrect recommendations.

Location-based bug assignment methods avoid these prob-
lems by providing a better representation of developers’ cur-
rent expertise. Activity-based approaches commonly have to
use data from over a long period of time in order to have suffi-
cient project expertise information to make a recommendation.
This increases the likelihood that an activity-based approach
will make a recommendation based on obsolete expertise
information. In contrast, developers that have recently fixed
a fault in a source code file are more likely to have the
necessary expertise to fix a new bug in the same location
than other project developers [15]. If a new developer joins
a project team or a project member changes teams, their

contributions will immediately be recognized by a location-
based approach. This means that the developer is likely to be
recommended correctly for bug report assignment sooner than
with an activity-based approach, resulting in a higher quality
of assignment recommendation.

Another advantage of a location-based bug report assign-
ment recommender is a bounding of recommendations. It
is uncommon for multiple developers to work in the same
location of the source code. On average only two developers
will work in the same area of a source code file [16]. This
leads to a smaller upper bound on the number of possible
recommendations than is typical for activity-based approaches.

B. Information Sources

An important consideration in the accuracy of a bug report
assignment recommender is the information source that is
used for determining developer expertise. As a developer
improves a software product he leaves evidence of his ex-
pertise in various software artifacts. In spite of the diversity
of data that is available from a software project, bug report
assignment recommendation approaches tend to focus on only
one source of expertise information, commonly either bug
reports [12], [17] or source revision commits [11]. If the
data source is limited or not available, there may not be
sufficient information for the use of a particular approach or
the approach could have a low accuracy. For example, if an
approach exclusively uses bug report information, it may not
be effective for a newly created software product that has
generated very few bug reports. Also, by using a diverse set of
information sources, noise caused by dominant cross-cutting
terms in a single information source is reduced. We therefore
focused on an approach that used multiple project artifacts for
making assignment recommendations. Specifically, we focused
on using information from source code repository commits,
identifiers and comments in the source code, and information
from previously fixed bugs.

C. Extracted Entities

The entities that are used for establishing the relationship
between a new bug and artifacts of the project has a signif-
icant role on performance of the approach. Most proposed
approaches for automatic bug assignment recommendations
remove noise by only using general preprocessing steps of
the natural language processing (NLP), such as removing
stop words and non-alphabetic tokens. However, Capobianco
et al. [18] showed that using only unigram noun terms
significantly improves the accuracy of IR-based traceability
recovery method. Unlike other parts of speech, such as verbs
and adjectives, nouns are usually used in a specific context.
When two people use the same noun, their purposes are often
related. Moreover, using only nouns improves the accuracy of
our approach by avoiding the addition of noise words into our
index [19]. Therefore, we focused on the use of only noun
entities for terms in our proposed approach.

III. ProPOSED METHOD

In this section we present our location-based approach for
automatic bug report assignment. There are two phases to our
approach. First, we predict the source code files that will be
changed to resolve a new bug report. Next, we recommend the
developers for the new report based on information about who
has previously fixed faults in the predicted source code files.
Note that the accuracy of the first phase has a large influence
on the results of the second phase and therefore the overall
accuracy of the approach.

As mentioned in Section II, our approach focuses on using
only unigram noun terms. To predict the source code files that
will be changed to fix a new bug, we create an index of nouns
where each unigram noun is linked to one or more source code
file. To populate our noun index, we extract the nouns from the
textual information of four different artifacts produced during
software development: identifiers in the source code, commit
messages from the version control system (VCS), source code
comments, and the summary and description of bug reports
marked as FIXED in the issue tracking system. Fig. 1 provides
an overview of our approach.

The rest of this section proceeds as follows. First, we
describe the four information sources that we use to populate
our noun index. Next, we explain our process for extracting
nouns. Then we describe our technique for weighting the terms
used for predicting the location of a bug in the source code
(Section III-C) before describing how we map source code
files to project developers (Section III-D). Finally, we describe
how we make a bug report assignment recommendation using
the two-phased location-based approach in Section III-E.

A. Information Sources

1) Identifiers: Identifiers are the names of classes, methods,
fields and parameters in the source code. Identifiers play a
significant role in extracting information from the source code
because developers select identifiers very carefully [20]. For
example, in the “accessibility” package of a project, the word
‘access’ is usually combined with other words to create the
identifiers for classes and methods in the package. That is
to say, the words selected for identifiers have a meaningful
relationship with that part of the source code. Therefore, words
used to create identifiers can help to determine the area of
responsibility for each file in the project.

2) Commit Messages: The messages that developers write
when committing their changes to the VCS typically contain
information about their development activities in the different
source code files. Even if some developers do not provide a
message when committing their changes or the message is
short, the combination of all of the commit messages for a
source file provides information about the usage and respon-
sibility of the file in the project. In the commit messages,
developers tend to include the reason for changes, such as
adding a new feature or fixing a bug. Also, with each commit
the path of the changed file is stored. This information helps in
correlating the commit messages to their corresponding files.

S =
 Fixed) 2 [Fixed Bugs—
!Bugs & BuzReportio k]
h - Commit Links | &
em & Commit
| - Logs _";

Dreveloper e
bug fixing sclivities Developer code |

change activities |
T |

Extracting developer

Be

-
\—\—4

Fixed |
Bug Into [

|

_ Source |

Caode [nfo "

-

S
wol<|wn--
-y

~
(Data Collection

=, Commienis,

\

Mescages, Fixed Bugs

POS Analysis

|
|
|
|
|
|
|
|
|
|
|
|
|
|

e { New Bug
z g axtdvity higtory | s T T T t _____ ~\ (Noun filtering) E
T T [Al ‘—|_’ 5
z il | | |Noun Extracting Process | |
= 1! | Extracted Mouns
k=] ! | ¢
; | Extracted Nouns | —
|
I —_+ i;luum J
4 I (redieting the location(s), | Nouns’ rm:l i
| | of the bug | information i ¢
I I (. r
I Il Pl g
| ! Predicted Locationis) | e
| I ' 6
I Il ~ | r
| — Developers’) | p— | | , -
| activity histories | Fixer | 4
| I
| } | Developer :
N g _ *Sclccnnn*_ _ Recommended
Developers

Fig. 1. An overview of the approach.

3) Comments in Source Code: Developers commonly pro-
vide short descriptions for lines of source code. These descrip-
tions may contain such information as the reason for adding
those lines to the code or why those lines were changed. In our
work, we keep track of the source code files from which we
extract comment information so as to establish the relationship
between the terms and source code files.

4) Reports of Previously Fixed Bugs: Previously fixed bug
reports provide an important source of information for our
approach. However, we must first link the bug reports to source
code files. The source code file(s) associated with a fixed
bug report can be determined in a number of ways. First,
some bug reports have attachments that are patches containing
the files, or portions of the files, that are affected by a fix.
Also, bug reports may have comments that refer to a specific
commit to the project’s VCS, or source commit messages may
contain a bug report id. Finally, the nouns appearing in the
bug report’s summary or description can be used to link bug
reports to source code files. For example, we found that for the
Eclipse project, approximately 18% of the nouns used in the
summaries and descriptions of new bug reports were similar
to the nouns that occurred in either VCS commit messages,
identifiers or source code comments.

B. Extracting Nouns from Project Artifacts

Recall that the first step of our approach is predicting which
source code files will be affected by fixing a new bug. In this
section we describe how we create our noun index.

First, we populate our index with nouns extracted from
the identifiers found in the source code files. Depending on
the programming language used by the project, we use a
different software package. For extracting the identifiers from
Java source code files, such as for the Eclipse project, we

use Jeldoclet®, a tool that can export the contents of Javadoc
comments as XML. The identifiers that we extract are the class
names, method names, fields and parameters. For a project
that uses C++, such as Mozilla, we use CTAGS’ to extract
the same types of identifiers.

Identifiers are usually composed by the concatenation of a
set of words. We decompose the identifiers using the approach
recommended by Butler et al. [21] to produce a set of noun
terms. However, we found that bug reporters will sometimes
directly mention the name of the classes or methods in the
description of the problem. Therefore we also include the class
names and method names in our noun index. We then link the
identifier nouns to their corresponding source code files.

Next, we add to our index the nouns found in the commit
messages of the project’s VCS. As the projects we investigated
used CVS as their VCS, we use the CVSANALY® package
to extract all source code commits, including their commit
messages, to a database. The commit messages are then
tokenized and filtered as described later in this section, and
links made between the nouns and source code files.

To populate our index with nouns from the comments found
in source code files, we use the scr2srcml package of srceML’.

Finally, we extract the nouns found in bug reports, specif-
ically those reports that have been marked as FIXED in the
issue tracking system. We first create a list of report ids for the
reports with the status FIXED in the project’s issue tracking
system. We then download the corresponding bug reports and
store them as XML.

®http://jeldoclet.sourceforge.net/
"http://ctags.sourceforge.net/ctags.html
8http://metricsgrimoire.github.com/CVSAnalY/
9http://www.sdml.info/projects/srcml/

3.3 maintenance - Fix for 101610

fix for #10214

Merged fixed for bug 102494 into R3__maintenance branch

fix for 10382 Super type hierarchy computed on selection change in Outline
Real fix for 10881

fixed 27490, 27491

Fig. 2. Examples of the term ’fix’ and bug ids appearing in commit messages.

Having collected the bug reports, we next correlate the fixed
bugs to source code files of the project. We use two techniques
to link source code files to bug reports. First, we examine any
patch(es) attached to the bug report. From these patches we
extract the names of the changed files.

If the bug report does not have an attached patch, the
commit messages in the VCS are used to determine the link.
For the projects that we examined, we found that developers
commonly put the bug report id in the commit message when
submitting changed files to the project’s VCS. We therefore
use the bug report id(s) appearing in the commit messages to
determine the link between a bug report and the source code
files. This approach to linking bug reports and source code
files has also been used by other researchers [2], [22].

Developers also use key words such as ‘fix’ and ‘bug’, in
addition to bug report ids in commit messages. However, the
use of these key words is ad-hoc. Fig. 2 shows some examples
where the term ‘fix” and a bug report id are used in various
commit messages. We can see that there is no common format
or convention followed.

To detect the bug report ids in various cases of using key
words and ids in a commit message, we use a ruled-based
Named Entity Recognition (NER) method [19], specifically the
NE transducer component of the ANNIE'® plugin of GATE'!.
The Named Entity transducer uses JAPE'? grammars for defin-
ing rules that detect these entities. The rules can be defined
based on the different results of the various steps of text
analysis, such as a part-of-speech (POS) tagger, morphological
analysis, or a combination of them.

To improve the confidence of the results from using NER,
the number extracted from the commit messages is compared
with the ids of the collected bug reports. If the number exists
in the list, then the date of the source revision commit is
compared with the creation and resolution date of the bug
report. If the commit date is after the creation date of the report
or before the resolution date of the report, then the committer
(the person that committed the change to the project’s VCS)
and the fixer (the person who changed the status of bug
to FIXED in the project’s ITS) are compared. If the names
match, then the CVS commit is linked to the bug report. As
the username in the project’s ITS may not be the same as
the username in the project’s VCS for the same developer,
to compare the two names we created a map between the
usernames in the FIXED bug reports which were used as

l0http://www.aktors.org/technologies/amnie/
1 http://gate.ac.uk/
12Jolly And Pleasant Experience

an information resource and the usernames in the extracted
commit messages of our data set.

Having established links between the collected bug reports
and project’s source code files, we then extract nouns from
the bug reports. Textual information in bug reports is known
to be noisy [4]. For example, sometimes in an effort to assist
in the resolution of a bug, a reporter will add additional text
to the bug report to help with the discussion of the problem or
a proposed fix. However, this type of text adds noise that can
weaken the accuracy of a bug report assignment approach.
This noise appears primarily in the comments of the bug
reports. In some of the projects, such as the JDT product of
the Eclipse project, reporters often add sample code, stack
traces, error logs and other types of the data to the bug report.
We therefore restrict the textual data used in our approach to
that from the summary and description of the bug report. The
summary and description are tokenized and we add any new
nouns to our index, as well as any newly found links between
an existing index term and source code file(s).

Having extracted nouns from the four information sources,
we further refine the index terms by removing terms that are
less than three characters, are a symbol, or start with a digit.

The role of words in a sentence is important in determining
the value of those words. As mentioned in Section II, we only
use nouns in our index. When determining the nouns to add
to the index from a text source, such as from a bug report
description or a commit message, we use the ANNIE plugin
of GATE. This plugin is used for sentence splitting, tokenizing
and POS tagging of the terms. After analyzing the text, we
retain all of the words in the POS categories of nouns (e.g.,
NN (noun - singular or mass) and NNP (proper noun)).

C. Weighting the Index Terms

For each noun-file pair in the index, we calculate a
weight based on the number of information sources from
which the noun came. We count the number of times a
noun appears in a bug report, a commit message, a source
comment or an identifier, and then record this number
for each noun-file pair. For example, the word ’position’
for the file ”’/org.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/
correction/JavaCorrectionAssistant.java” appeared in three in-
formation sources: a commit message for the file, the iden-
tifiers in the file and the description of the fixed bug report
linked to the file. Therefore, the weight for the term ’position’
for this file is 3.

D. Determining Relevant Developers

The second part of our approach is to determine the set of
developers to recommend for each source code file. We found
that the developers who have fixed previous bugs of a file are
more likely to fix new bugs in the file than other developers
who have worked in the file. Therefore we only extract reports
marked as FIXED when creating our noun index.

We create a second index that maps each source code
file found in our first index to a developer. The names are

TABLE I
‘WEIGHTS OF THE COMMON NOUNS BETWEEN THE EcLIPSE BUG 100233 AND THE FILE
”’JORG.ECLIPSE.JDT.UI/UI/ORG/ECLIPSE/JDT/INTERNAL/UI/TEXT/ CORRECTION/
JAVACORRECTIONASSISTANT.JAVA

Nouns Weight
Annotation 3
source
editor
error
hierarchy
marker
parameter
type
class
following
problem
string
Total

[l Ml Ml Ml I SSTH ST NS T NS T IS I (S RO

N9
Y]

determined by the “Line-10 Rule”!3 [23], [24], [25] to be the
set of developers that committed changes to the project’s VCS
for a particular source code file. We consider the developer
who most recently fixed a bug in the predicted source code
file to be the most appropriate developer for resolving a new
bug report.

E. Making an Assignment Recommendation

To make a bug report assignment recommendation for a
new bug report, first we predict the source files for the new
bug report. To do this we extract and filter the nouns found in
the report’s summary and description as described in Section
III-B. This results in a set of nouns.

We then look up each of these nouns in the noun index.
This results in a set of predicted files for the new bug
report. For each of these files we compute a relevance
measure. Eq. 1 shows the formula used to calculate the file
relevance. File relevance is defined as the sum of weights
for each noun that is common between the bug report
and a file. For example, Table I shows the weights of the
common nouns between the Eclipse bug 100233 and the file
”Jorg.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/correction/
JavaCorrectionAssistant.java”. We see that the relevance value
of this file is 22 (i.e. the sum of the weights).

Bug report assignment recommenders that use text infor-
mation sources commonly use inter-/intra-document frequency
(i.e. TF-IDF) to determine the relevance of terms. In our
approach we focus on how the terms relate to describing
the responsibility of a source code file within the project.
We believe that if a term is important in describing the
responsibilities of a file, then the term will appear across
multiple information sources. Although there may be cases
where this assumption is violated, we found in our work that
the assumption holds well.

Relevance = Z

Common Nouns

Nounsweight (1)

3This rule refers to using a specific line of the commit message to
determine the user name of the committer.

We further restrict the bug’s predicted location to those files
that are part of the project’s component as indicated in the
bug report. As the reports that we are using for evaluation
are marked as FIXED, there is a high probability that the
component information is correct.'* Also, we observed that
the average number of changed files for a fixed bug report is
two. Therefore we recommend the two files with the highest
relevance measure as the predicted locations for each bug.

It is impossible to determine if the predicted locations are
the actual bug fix locations prior to fixing the bug. Therefore,
we assume that the predicted locations are either the actual
file(s) that will be changed to fix the bug, or files that are
related to the actual file(s). Having predicted the source code
files for the new bug report, we then look up each of the
predicted source code files in our source code file index to
determine the developer recommendation for each file. The
developers are then ranked according to their expertise.

1
Expertise(d, f,r) =)
All ;fd,f) Vdate — datecreae

We calculate the developer’s expertise for fixing the bug
using Eq. 2. This equation defines the expertise of each
developer (d) on a predicted file (f) for the bug report (r) based
on the number of previous change activities (act) for the file by
the developer, and the date difference (in days) between the
report creation date (date....) and the change activity date
(date,.s). In other words, we determine the expertise of the
developers based on who has changed the predicted file(s)
the most recently. In this way, a developer who has the most
recent bug change activity for a predicted file is more likely
to be recommended. For example, suppose that a bug report
is created on Day 10 of the project. Developer A commits a
fix for the bug on Day 15 and Developer B commits a revised
fix on Day 20. Then the expertise of Developer A for the file
will be 2.24 and the expertise of Developer B will be 3.16.
Developer B will be recommended over Developer A.

IV. EvALuATION

To evaluate the effectiveness of our approach, we chose to
use the measure of accuracy. We chose this measure for two
reasons. First, accuracy measures the ability of our approach
to correctly recommend the developer that actually fixed the
bug, which is one of our questions in conducting this research.
Second, we wanted to compare our results to those of other
approaches, and those works also used accuracy as their
evaluation metric (see Section IV-C). Eq.(3) shows how we
measured the accuracy of our approach.

i= 1 . . .
2t of reponts L Lf correct, 0 otherwise

3

Accuracy =
y # of reports

We evaluated our approach using two popular open source
projects: Eclipse and Mozilla. So as to work with a manage-
able set of data, we restricted our data to the Debug component

14In practice this filtering may result in an incorrect recommendation for a
new bug report if it is miscategorized.

TABLE II
DATA SET USED FOR EVALUATION.
of # of files # of Test Set

commits developers size

JDT- 7,696 702 9 85
Debug

Mozilla 1,623 47 57 80
Firefox

of the Eclipse JDT project and the Mozilla Firefox project. We
also restricted our data to the commits that were made to the
JDT and Firefox projects before December 2006 and January
2007, respectively. We chose this time frame so that we could
analyze the commit messages for each file of the project since
the creation of the file. Table II shows the number of commits,
files and developers for each of the projects.

To test the accuracy of our approach, we selected the last
100 bug reports from each of the two projects as our testing
sets. The earliest bug reports in our test sets were reported
on Feb 2, 2005 for JDT and Feb 14, 2006 for Firefox. We
then examined these reports and determined the files that
were changed for each fix and the developers that made these
changes. We were not able to determine this information for
all of the selected reports. As a result, our test set for the JDT
project (Debug component) was 85 bug reports and 80 bug
reports for the Firefox project.

As explained in Section III, our approach has two phases.
In the first phase, the set of files that will be fixed for the
bug is predicted. In the second phase, the most appropriate
developer for fixing the bug is recommended based on the
predicted set of files. The accuracy of the first phase influences
the accuracy of the set of recommended developers. Section
IV-A provides an evaluation of the accuracy of our location
prediction phase, and Section IV-B provides an evaluation of
our developer recommendations.

A. Evaluation of Location Prediction Phase

When we predict the files that will be fixed for a bug report
using our approach, there are three possible outcomes. First,
we correctly predict a source code file that will be changed to
fix the new bug report. For our Eclipse and Firefox test sets,
we correctly predicted one or more files for 42% of the JDT
reports and 62% of the Firefox reports when recommending
five locations for a new bug report. If we correctly predict
the files to be fixed, then there is a high probability of
recommending the correct developer to fix the new bug. Table
IV shows the accuracy for predicting the file(s) for our test
set of bug reports when recommending up to five files. As
expected, we can see that as the number of recommendations
increase so does the accuracy for predicting the correct files.

Alternatively, we may incorrectly predict the source
code files for the new bug, however there is a meaningful
relationship between the files that will be fixed and the
predicted file(s) [26]. It is common that when a developer
adds a new feature to a project or fixes a bug, she changes
multiple files at the same time. This set of changed files

TABLE 11
WEIGHT OF NOUNS IN THE ACTUAL AND PREDICTED FILE FOR EcLIPSE BUG #100233

Used Weight of noun | Weight of nouns
nouns in in actual file in predicted file
the Bug

Annotation - 3

source - 3

editor - 2

error - 2
hierarchy - 2
marker - 2

type 3 2
parameter 2 2
problem - 1

string 2 1
method 3 -

Tag 3 -

code 2 -

List 2 -

Total 17 20

TABLE IV
AVERAGE ACCURACY PREDICTING CHANGED FILES FOR THE JDT AND FIREFOX PROJECTS.

JDT Firefox
Top 1 14.32% 19.51%
Top 2 17.64% 35.37%
Top 3 24.70% 43.90%
Top 4 31.76% 53.66%
Top 5 42.35% 62.20%

(i.e. change set) usually has the same commit message,
and sometimes similar words are used in the identifiers.
Because of the similar vocabularies in the source code
files that are committed together, our approach has a high
probability of pointing to the correct portion of the project.
This still leads to recommending the correct developer.
For example, the actual file changed for bug 100233 is
“/org.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/correction
/JavadocTagsSubProcessor.java”. Our approach predicted
the file /org.eclipse.jdt.ui/ui/org/eclipse/jdt/internal/ui/text/
correction/JavaCorrectionAssistant.java”. Table III shows the
nouns extracted from the bug report by our approach and
the corresponding weights of these nouns for the two files.
Although the predicted file was not the actual file changed
for the bug, further examination showed that the most recent
commit for the actual file included the predicted file in the
change set. This indicates that there is a strong relationship
between the actual and predicted file. We also found that the
developer that fixed the bug is one of three developers that
fixed a recent bug involving the predicted file.

We found that for 49% of the reports in our JDT test set
and for 46% of the reports in our Firefox test where the actual
source code location was not predicted correctly, at least one
of predicted files appeared in a change set of a previous fix
containing the correct file.

Lastly, if the set of predicted files contains neither a correct
file nor a related file, then it is unlikely that our approach will
make a correct developer assignment recommendation.

AVERAGE OF ACHIEVED FIXER ACCURACIES OF THE APPROACH FOR THE EcLipse JDT

TABLE V

AND MoziLLA FIREFOX PROJECTS.

COMPARISON OF REACHED ACCURACY BY KAGDI ET AL. [27] AND OUR APPROACH

TABLE VI

JDT Firefox
Top 1 48.23% 47.56%
Top 2 61.17% 54.88%
Top 3 81.17% 56.10%
Top 4 88.23% 58.54%
Top 5 89.41% 59.76%

B. Evaluation of Developer Recommendations

As mentioned in Section III-D, the set of recommended
developers is the set of developers who have most recently
changed one or more of the files predicted by the first phase of
our approach. We evaluated the accuracy of our approach for
lists of recommendations ranging from one recommendation
to five recommendations. Table V shows the results of this
evaluation. From the table we can see that the approach has
an accuracy around 50% for both projects when recommend-
ing one developer. Also, as one would expect, the accuracy
improves with more recommendations. This suggests that our
assumptions regarding the prediction of the location(s) of bugs
to determine the appropriate developers are valid.

Moreover, that the accuracy improves with increasing num-
ber of recommendations suggests that we are capturing cases
where the best developer to resolve the bug was not chosen
and the actual fixer of bug was a sub-optimal choice. Consider
for example, a situation where the most suitable developer
for fixing a bug abstains from fixing the bug due to a high
workload and another developer, also having the necessary
expertise, is assigned and resolves the report. Assuming that
the recommendations truly reflect the expertise of the devel-
opers, then in such a case, the actual fixer of the bug would be
ranked second in the recommendations and would be found
when recommending two or more developers.

C. Comparison to a Location-Based Approach

We also compared our bug report assignment approach to a
location-based approach using information resources that are
similar to ones used by our approach, that of Kagdi et al. [27].

Kagdi et al. evaluated their developer recommendations
for three levels of fix location: file, package and system. If
the predicted file(s) for the bug have not changed in a very
long time, or have been recently added, their approach cannot
recommend the developer at the file level, and they recommend
a developer who is an expert in the package of the predicted
file instead (i.e. a package level recommendation). If no
package expert can be identified, their approach recommends
a system expert. They evaluated their approach using data
from three versions of the Eclipse project. As the aim of
our approach is to recommend the actual developer who fixed
a bug, we compare our results with the file level results of
the Kagdi’s approach. Table VI shows the accuracy of our
approach compared to that of Kagdi for the same test sets.
Moreover, this table shows the improvement in accuracy by
our approach for each test set.

Eclipse 2.0 Eclipse 3.0 Eclipse 3.3.2
Kagdi et al. 13.6% 15.7% 27.9%
[27]
Our 58.14% 85.71% 78.58%
approach
Accuracy 44.54% 70.01% 50.68%
improvement

V. THREATS TO VALIDITY

In this section we describe some of the threats to the validity
of this work, specifically threats to the internal and external
validity.

A. Internal Validity

To populate our file-developer index, we used the “Line-10
Rule” on the most recent source revision commit for a file.
However, there may have been cases where this value was not
a person with expertise in that area of the source code. For
example, the person that fixed the bug may not have commit
rights and another project member may be required to commit
the fix. However, we did not see any evidence that this was
the case in our data set.

This work focused on the use of source code locations for
recommending developers. However, bug report assignment is
a complex decision involving many factors, such as developer
interest (especially in an open source project), developer
workload, and the scheduling of developers (e.g. vacations
or leave time). It may be the case that the developer who
actually fixed a bug according to the the “Line 10 Rule” is
not the optimal choice for that report, whereas we treat it
as such. Similarly, if source files of the project are changed
similtanously by developers, our approach may not accurately
captures this behavior as we use only the most recent change.

B. External Validity

The proposed approach in this paper was evaluated using
two popular open source projects. The selected projects for
evaluating the approaches are representative of the devel-
opment processes used among large open source software
projects. Therefore, we believe that our results will extend
to similar projects. However, without further evaluation using
other software projects, such as smaller projects or closed
source projects, we cannot confirm this belief.

VI. RELATED WORK

Recall that approaches for automatic bug report assignment
can be categorized in two ways. Either an approach uses
activity information about the project members to make a
recommendation (i.e. “activity-based”) or the approach uses
fault location information (i.e. “location-based”).

We first discuss some prior activity-based approaches before
discussing related work on location-based approaches. As
location-based bug report assignment approaches are similar
to those used for bug localization and impact analysis, we also
discuss some work from this area.

A. Activity-Based Approaches

The Expertise Browser system by Mockus and Herbsleb
[28] used information from source revision commits to de-
termine the expertise of developers for source code files in a
software development project. Developers were then ranked
for a specific file based on the number of commits they
had made that contained the file. We similarly use developer
source code activity for making a recommendation, however
we restrict our focus to that of using bug fixing activities and
not general software development activities.

Unlike approaches that use the summary and description of
previously fixed bug reports to make assignment recommen-
dations for a new bug report, Matter et al. [11] determined the
expertise of developers based on the vocabulary used in source
code. To make an assignment recommendation, the extracted
vocabulary was compared with extracted vocabularies from
a new bug report. Their approach used information retrieval
to weight and determine the relationships between the two
extracted vocabularies. This approach is similar to ours in
that we also use vocabulary extracted from source code files.
However we also use other information sources.

Cubranic and Murphy [7] approached the problem of auto-
matic bug assignment as a text classification problem. They
used a Naive Bayes algorithm to create a classifier using a set
of previously assigned bug reports, and then used the classifier
to recommend an assignment for a new bug report. Anvik et
al. [2] extended this approach with further filtering of the data
and evaluated the use of various machine learning algorithms
for automatic bug report assignment. They found the SVM
algorithm to have the best performance for this problem.
Unlike these approaches that use a machine learning approach
to selecting and weighting terms, our approach uses NLP
techniques for extracting terms from information resources,
as well as a new term weighting method.

Bhattacharya et al. [12] used a combination of machine
learning tools and a probabilistic graph-based model to predict
the most appropriate developer for fixing a new bug. They
investigated the results of using various machine learning
algorithms on data from different projects. They showed that
the choice of the best machine learning algorithm is dependent
on the quality of the bug reports and varies from project to
project. Unlike their approach, our approach selects the most
appropriate developer based on their bug fixing activities for
source code files.

B. Location-Based Approaches

McDonald and Ackerman [23] designed a tool coined as the
“Expertise Recommender” (ER) to locate developers with the
desired expertise using vector-based-similarity. The tool uses
a heuristic that considers the most recent modification date
when developers modified a specific module. Similar to the
ER, we recommend the developer that most recently changed
one or more of the predicted files.

Canfora and Cerulo [10] presented an approach “aimed
at predicting impacted source files and selecting the best
candidate developers”. They used information found in the

comments of source revision commits and the description of
the bug report to select the most appropriate developer to as-
sign a new bug report. In their approach, they used the indexes
of terms that linked to files of the project and developer names
for recommending the fixer. Although both their approach and
our approach use similar information resources, they differ in
their methods for analyzing the information resources.

Kagdi et al. [29], [27] used an information retrieval-based
concept location technique to recommend the most appropriate
developers to fix a new change request. They used this tech-
nique to establish the relationship between the reported bug
and the source code of the project. After the site of the bug in
the source code is determined, an assignment recommendation
is made based on the predicted location of the bug. This
approach is the most similar to our approach. However, our
approach does not use IR techniques for predicting the location
of the bug and uses a new term weighting method.

The location-based approach presented by Linares-Vasquez
et al. [30] used Latent Semantic Indexing (LSI). The developer
is recommended based on the authors listed in header com-
ments of the predicted location(s) for the bug. Instead of the
complex LSI method, our approach uses simple NLP tech-
niques for predicting bug location and uses developer’s bug
fixing activity on predicted files to make a recommendation.

C. Bug Localization and Impact Analysis

Rao et al. [13] used Latent Dirichlet Allocation (LDA) for
predicting the location of a newly reported bug. Like our
approach, they also used source code comments and identifiers
as information resources for predicting the locations of bugs,
although we also used additional information sources.

Zhou et al. [14] proposed a revised Vector Space Model
(VSM) approach for improving the performance for bug
localization. Their approach was based on the idea that bugs
are more likely to appear in larger files. Like our approach,
they improved accuracy by determining the similarity between
the text of new bug report and previous fixed bugs.

VII. Future WoORK

To answer the question “Can the proposed approach cor-
rectly recommend the fixer of a bug report?” we used accuracy
as our evaluataion metric. However, recommender systems are
traditionally evaluated using the measures of precision and
recall. Accurately computing these values requires gathering
information that provides the set of developers that could have
fixed a bug, not just the name of the developer that did fix the
bug. We plan to perform such an evaluation in the future.

Also, we have shown that the use of information from four
different data sources improves the accuracy of a location-
based approach; however we have not investigated the relative
importance of these information sources. For example, is
the accuracy of the approach more dependant on the terms
extracted from bug reports or source code? We plan to conduct
an evaluation to determine if such dependencies exist.

Finally, we believe that the use of meta-data in the weighting
of the noun terms may improve the accuracy of approaches

10

such as ours. For example, noun terms that are used in the
last two months may be more relevant than terms used a year
ago. We plan to investigate this idea in the future.

VIII. CoNCLUSION

In this paper, we presented a location-based approach to
automatic bug report assignment that uses four information
resources. The use of the different information sources reduces
the problems caused by the lack of one information source. We
showed that using only noun terms and simple term weighting
not only improves the accuracy of a location-based approach,
but also avoids the need of some general text analysis steps
such as dimensionality reduction and threshold determination.
Recommending developers based on source code location
further ensures that the selected developers have the necessary
experience. Moreover, limiting the recommendations to those
developers who have previously fixed bugs at the source code
locations was found to improve the overall accuracy of the
recommendations. The approach was evaluated using data
from the Eclipse and Mozilla projects. When five developers
were recommended, our approach had an accuracy of 89.41%
and 59.76% for five recommendations on our Eclipse and
Mozilla data sets, respectively.

REFERENCES

[1] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser. ESEC/FSE
’09. New York, NY, USA: ACM, 2009, pp. 111-120.

J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,” ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 10:1-10:35, Aug. 2011.

K. Crowston, J. Howison, and H. Annabi, “Information systems success
in free and open source software development: theory and measures,”
Software Process: Improvement and Practice, vol. 11, no. 2, pp. 123—
148, 2006.

T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss, “What makes a good bug report?” Software Engineering, IEEE
Transactions on, vol. 36, no. 5, pp. 618 —643, sept.-oct. 2010.

P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in ICSE '07: Pro-
ceedings of the 29th international conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 499-510.
X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in ICSE ’08: Proceedings of the 30th international con-
ference on Software engineering. New York, NY, USA: ACM, 2008,
pp. 461-470.

D. Cubranic and G. C. Murphy, “Automatic bug triage using text
categorization.” in SEKE’04, 2004, pp. 92-97.

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
ICSE ’06: Proceedings of the 28th international conference on Software
engineering. New York, NY, USA: ACM, 2006, pp. 361-370.

O. Baysal, M. Godfrey, and R. Cohen, “A bug you like: A framework
for automated assignment of bugs,” in Program Comprehension, 2009.
ICPC ’09. I[EEE 17th International Conference on, May 2009, pp. 297
—298.

G. Canfora and L. Cerulo, “How software repositories can help in
resolving a new change request,” in In Workshop on Empirical Studies
in Reverse Engineering, 2005.

D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” in Mining Software
Repositories, 2009. MSR 09. 6th IEEE International Working Confer-
ence on, May 2009, pp. 131 -140.

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

11

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

(21]

[22]

[23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly-
accurate, bug assignment using machine learning and tossing graphs,”
J. Syst. Softw., vol. 85, no. 10, pp. 2275-2292, Oct. 2012.

S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972 990, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584910000650

J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on
bug reports,” in Software Engineering (ICSE), 2012 34th International
Conference on, june 2012, pp. 14 -24.

A. E. Hassan and R. C. Holt, “The top ten list: Dynamic fault prediction,”
in Proceedings of the 21st IEEE International Conference on Software
Maintenance, ser. ICSM ’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 263-272.

D. Izquierdo-Cortazar, A. Capiluppi, and J. Gonzalez-Barahona, “Are
developers fixing their own bugs?: Tracing bug-fixing and bug-seeding
committers,” International Journal of Open Source Software and Pro-
cesses (IJOSSP), vol. 3, no. 2, pp. 23-42, 2011.

A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy set-
based automatic bug triaging: Nier track,” in Proc. 33rd Int Software
Engineering (ICSE) Conf, 2011, pp. 884-887.

G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella,
“Improving ir-based traceability recovery via noun-based indexing of
software artifacts,” Journal of Software: Evolution and Process, pp. nfa—
n/a, 2012.

S. Sarawagi, “Information extraction,” Found. Trends databases, vol. 1,
pp. 261-377, March 2008.

S. L. Abebe and P. Tonella, “Natural language parsing of program
element names for concept extraction,” in Proc. IEEE 18th Int Program
Comprehension (ICPC) Conf, 2010, pp. 156-159.

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the
tokenisation of identifier names,” in Proc. 25th European Conf. on
Object-Oriented Programming, ser. LNCS, vol. 6813. Springer, 2011,
pp- 130-154.

A. Bachmann and A. Bernstein, “Software process data quality and
characteristics: a historical view on open and closed source projects,” in
Proceedings of the joint international and annual ERCIM workshops on
Principles of software evolution (IWPSE) and software evolution (Evol)
workshops, ser. IWPSE-Evol 09. New York, NY, USA: ACM, 2009,
pp. 119-128.

D. W. McDonald and M. S. Ackerman, “Expertise recommender: a
flexible recommendation system and architecture,” in Proceedings of
the 2000 ACM conference on Computer supported cooperative work,
ser. CSCW °00. New York, NY, USA: ACM, 2000, pp. 231-240.

J. Anvik and G. C. Murphy, “Determining implementation expertise
from bug reports,” in Proceedings of the Fourth International Workshop
on Mining Software Repositories, ser. MSR *07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 2—.

D. Schuler and T. Zimmermann, “Mining usage expertise from version
archives,” in Proceedings of the 2008 international working conference
on Mining software repositories, ser. MSR "08. New York, NY, USA:
ACM, 2008, pp. 121-124.

R. Shokripour, M. Khansari, and Z. M. Kasirun, “Automatic bug
assignment using history of packages,” in ICSIE 2011: Proceedings
of the 2011 International Conference on Software and Information
Engineering. Kuala Lumpur, Malaysia: ASME, June 2011, accepted.

H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, “Assigning
change requests to software developers,” Journal of Software Mainte-
nance and Evolution: Research and Practice, 2011.

A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative ap-
proach to identifying expertise,” in Proceedings of the 24th International
Conference on Software Engineering, ser. ICSE ’02. New York, NY,
USA: ACM, 2002, pp. 503-512.

H. Kagdi and D. Poshyvanyk, “Who can help me with this change
request?” in Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, may 2009, pp. 273 -277.

M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on, sept. 2012, pp. 451 —460.

