
 71

From Bazaar to Kibbutz: How Freedom Deals with Coherence
in the Debian Project

Mattia Monga
Università degli Studi di Milano

Dip. di Informatica e Comunicazione
Via Comelico 39 �– 20135 Milan, Italy

mattia.monga@unimi.it

Abstract
The goal of obtaining a coherent distribution of software
packages where all programs interact smoothly increases
its complexity with the number of applications, the
number of architectures involved, and the number of
system configurations supported. The Debian project
aims at producing a software system with thousands of
components running on eleven different hardware
architectures, with three different operating
system kernels. This paper describes the project and how
the work of hundreds of people that never meet one with
another can be coordinated to produce reasonably robust
and integrated systems.

 1. Introduction
Applications do not exist in the desert. In fact, they run in
very complex environments where an operating system
kernel, some device drivers, system and graphic libraries,
common services, etc. coexist in order to provide the
software platform on which users can enjoy their
applications.
For this reason, from the beginning (see for example the
GNU Manifesto [10]) proponents of free software aimed
at producing complete systems, because no real freedom
is possible if developers have to rely on non free
components. Historically, a major hurdle on this goal was
the unavailability of an operating system kernel.
However, in the last fifteen years several kernels (e.g.,
Linux, FreeBSD, GNU/Hurd, etc.) were made available
to the open source community, and it was feasible to
build entirely open source computing platforms which
integrate basic utilities with sophisticated application
software.
Discussion on open source software development often
focuses on the techniques used to organize an open
source project aimed at producing a well defined
application. A famous paper by E. Raymond [9] describes
a style of development metaphorically called bazaar. In a
software bazaar anyone could contribute code to the
original promoters of the project, who take care of
integration in the mainstream code. This approach is
contrasted by Raymond to the traditional software
engineering process, that in another famous writing [2] F.
Brook compared to the approach people used to build
cathedrals, where an architect leads a small group of

skilled and specialized workers, with precise schedules
and responsibilities. In fact, as recent studies have shown
[6], some of the most popular open source projects (e.g.,
the Apache web server, the Linux Kernel, the Mozilla
browser) are in between the two extremes: the project is
carried on and scheduled by a core group of developers,
strongly committed to the product, and the openness of
the source code enables contributions from individuals
who correct some bugs or add some features. These
contributions are often scarce and it can be safely
assumed that in general open source projects have a core
of developers, no larger than 10 to 15 people, who control
the code base, and it is responsible for 80% of written
code.
In this paper I want to discuss how an open source
community can produce an integrated system, composed
by aggregating several software packages that typically
derive from independent sources. These systems are
commonly called distributions. To date (February 2004),
the Linux Weekly News list of Linux distributions
contains 374 items [1]. Indeed, one of the business
models proposed in order to make profit from open
source software is selling the added value of an
assembled distribution [5], and consequently some of the
most successful distributors (Red Hat, SUSE, Mandrake,
etc.) are commercial firms, driven by tight coupled
groups of developers. Instead, in the following sections I
will focus on the Debian project, aimed at producing a
coherent distribution of free software leveraging only on
the work of independent volunteers.
As previously said, the limiting case of open source
software development process was metaphorically
compared to bazaars, in which contributors put their work
in the �“magic cauldron�” of the community. However,
building a coherent distribution requires a great effort of
coordination and cooperative work, thus the bazaar
metaphor seems completely inappropriate. Yet, in the
case of Debian, the cathedral metaphor is also inadequate,
since no main architects are present and the work is
carried entirely on a voluntary basis. Therefore, I suggest
the new metaphor of the kibbutz1, for a cooperative

1Kibbutzim are Israeli communal form of agricultural settlement. Originally it

was predominantly agricultural and practiced a very high level of sharing,

 72

community of volunteers sharing a common goal. The
properties that characterize such a community are:

people join the community on a voluntary basis, and
they do not expect to be paid for their work;
members agree on an ambitious final goal (�“making
the desert where users live blooming of good and free
software�”);
members share a civil consciousness and they accept
that their work is regulated by explicit rules
established by direct democracy.

Though voluntary work is an essential part of Debian,
given the great number (thousands) of people involved in
the project, I believe that a study of their coordination
effort can be valuable in a greater context, since most of
the ideas have to do to management of complexity and
heterogeneity and I suggest they could be applied also to
commercial organizations.
The paper is organized as follows: Section 2 presents the
Debian project and its organization, Section 3 describes
the development process it adopts and how coordination
is achieved, Section 4 explains how Debian systems can
be customized and finally Section 5 draws some
conclusions.
2. The Structure and Goals of Debian

2.1 The Debian Motivation
The Debian2 project was started by Ian Murdock on
August 16th, 1993 in order to �“carefully and
conscientiously put together and maintain and support
with similar care�” a distribution of Linux software by
working �“openly in the spirit of Linux and GNU�” [7].
From the beginning all Debian members were volunteers
and they are still not paid by Debian to do their work in
the project. However, from November 1994 to November
1995 Debian was sponsored by the Free Software
Foundation and Debian motivated the creation of
�“Software in the Public Interest�”, a non-profit
organization that provides a mechanism by which The
Debian Project may accept donations. The money
collected pays hardware and actual duty expenses of
Debian representatives.
A Linux distribution puts together pieces of software that
are in general built by people unrelated with the
distributors themselves. The Debian project requires that
software included in a Debian system is compliant to the
�“Debian Free Software Guidelines�”: basically, software
has to be licensed with an open source license [5] that
allowed freedom of use, distribution and modification
without discriminations and restrictions that can affect
unrelated code.
The first release to a greater public of a Debian
GNU/Linux system was issued on January 1994 (ver.
0.91). It contained a few hundreds of programs and was

including collective rearing of children. More recently (by 1998) industries have
taken over a significant role in the Kibbutz economy.

2The official pronounciation of Debian is 'deb'~ee~en'. The name comes from the

names of the creator of Debian, Ian Murdock, and his wife, Debra.

put together by a dozen of developers. Today (January
2004) the project count 1268 members distributed
worldwide and it manages more than 13,000 binary
packages (corresponding to more than 8,000 of source
packages) ported to 11 different architectures (i.e., Alpha,
arm, hppa, i386, ia64, m68k, mips, mipsel, powerpc,
s390, sparc) [4]. At least three complete Debian systems
exist: beside the main Linux based one, there is one based
on the BSD kernel and another based on the GNU Hurd
kernel. The original Debian founder, Ian Murdock, does
not work actively in the project since 1996.
2.2. The Debian Structure
Everyone can apply to become a Debian member. In
order to be accepted in the project one has to demonstrate
the control of the basic skills needed to manage software
packages and the understanding of the �“Debian Free
Software Guidelines�” and the �“Debian Social Contract�”3.
By joining the group one gives his or her consent to
contribute to the project according to the Debian
Constitution [8]. The Constitution defines a lean
organization with a Project Leader (DL), a Project
Secretary (DS), a Technical Committee (TC), and
Individual Developers. The DL, DS, and the chairman of
the TC has to be three different persons. The work is
entirely voluntary: nobody is obliged to do anything and
everyone chooses freely to be assigned to a task he or she
does find useful or interesting. A new DL is appointed
every year by a general election involving all the
individual developers that vote with a Condorcet's
mechanism. The DL can make urgent decisions and he or
she appoints the DS and, together with the TC, renews
the members of the TC itself. The TC is composed up to
8 members, with a minimum of 4 people, and it decides
technical policies and it composes developers
disagreements. Individual developers can override any
DL and TC decision by issuing a general resolution with
a qualified majority. The DS is appointed by DL and the
previous DS every year. The DS is in charge of managing
elections and other calls for vote and it adjudicates any
disputes about interpretation of the constitution. The
properties and financial activities are managed by
�“Software in the Public Interest, Inc�” (SPI), in which
every Debian member can be a voting member.
The consequence of this organizational structure is that
no single individual can take personal control of the
project. Even better, �“Any individual Developer may
make any technical or nontechnical decision with regard
to their own work.�” [8] However, since coherence of the
final product is one of the goals on which members agree,
this absolute freedom has to be temperated by
coordination achieved by a number of policies, that, after
discussion on the mailing lists (most of them are public

3The Debian Social Contract states that the Debian project will be always free
software (according to the definition of the Debian Free Software Guidelines),
it collaborates with the free software community and it follows procedures
open to the public.

 73

and also non developers can contribute to the discussion -
- see http://lists.debian.org), are defined by the TC, but
they should meet a high degree of general consensus to
not be overridden by general resolutions. I will discuss
policies further in Section 3.2.
In order to study the Debian organization it is important
to consider a number of actors that interact with the
Debian galaxy, without necessarily being members of the
project. Yet, they may influence the Debian work.
First of all there are Upstream Authors. They contribute
to Debian by writing open source software. In theory they
could not even know about Debian. In practice they are
often in direct communication with Debian developers,
because inside Debian a lot of work is done to discover
and correct bugs. Thus, it is common that Debian
developers (from now on, DDs) forward to upstream
authors bugs, patches, suggestions, new features requests,
etc.
Secondly, there are Users. Satisfaction of users is of
course an important force that indirectly drives the
project. Moreover, Debian systems provide a
sophisticated infrastructure for bug tracking (Debian Bug
Tracking System, DBTS). It is the main avenue through
which users can report problems and propose
enhancements. It is important to understand that it plays a
critical role in the pursuing of coherence, since it is used
also to report bugs of the distribution itself. For
distributions the same Linus' Law [9] of generic software
applies: when they are exposed to a great number of
observers, with different needs and slightly different
operating environments, all bugs are shallow.
A third category that is worth mentioning for its
increasing significance is the one composed by people
that use Debian systems to build their own specialized
distributions. The openness and intimate coherence of
Debian systems make them ideal candidates to be
customized for specific purposes. The most successful
customization is probably the Knoppix distribution,
aimed at producing a system running entirely from a CD
and able to recognize automatically a huge set of different
hardware on i386 machines. As I will discuss in Section
4, the open architecture of Debian system is particularly
apt to customizations without necessarily going out of
sync with the mainstream Debian distribution.
3. The Debian Development Process
3.1. Debian Distributions

A distribution of a Debian system is composed by an
installation program and a set of software packages. The
installation program is able to set up the system from
scratch on a large number of different hardware
configurations: this makes the installation a quite
complex operation. Software packages can be retrieved
from a set of CDs, a local hard disk or the network.
All the Debian development effort is focused on the
production of packages. A package is the minimal unit
that can be installed or removed from a system.
Consequently, each DD is responsible for one or more

packages, and he or she is said to be the maintainer of
that package4. When a maintainer has put together his or
her package, it is uploaded to a public repository from
where Debian users worldwide can try to install it on
their systems. Since up to now the package was tested
only on the DD's machine, its status should considered
alpha-testing and the repository is called the unstable
distribution. However, notwithstanding the scaring name,
a considerable number of users (and virtually all the DDs)
tries packages from the unstable distribution, thus the test
is quite significant. If a package lives in the unstable
distribution for ten days without any critical bug is
notified, it is automatically uploaded to another, more
stable, repository corresponding to a beta-testing status.
This repository is known as the testing distribution.
Approximately yearly, a Release Manager is appointed
by the DL, and starting from the testing distribution a set
of packages is frozen. This means that no new packages
can be added to the set, included packages evolve only
for bug correction, and eventually, when all release
critical bugs are corrected, a new stable distribution is
released to the public. The stable distribution is what is
normally considered the official Debian distribution and
included packaged are updated only for fixing security
vulnerabilities.
It is worth noting that DDs normally produce their
package on a specific architecture (the most common is
i386). However, unless the package control file specifies
explicitly that its use is restricted to a single architecture,
every package inserted in the unstable distribution is
automatically build for all the architectures considered by
Debian (eleven, to date) and it can enter in testing only if
the build process is successful.
3.2. Coordination

The goal of obtaining a coherent distribution where all
programs can interact smoothly is a very complex one.
The problem seems without a solution if a distribution is
obtained by aggregating thousands of packages produced
by hundreds of developers on dozens of different systems
configurations. Nevertheless, Debian systems were able
to obtain a quite good overall user satisfaction, as
testified by several awards won in 2003 (Linux journal
readers' choice, Linux enterprise readers' choice, Linux
new media award). In fact, the main effort carried on by
DDs is directed to ensure that their packages are fully
compliant to Debian policies.
Policies are key in the Debian approach to software
distribution. Freedom of DDs is unlimited as long as they
comply to their collectively agreed policies. Policies are
often based on international or community standards
(e.g., the Filesystem Hierarchy Standard [3]) and they
concern all the global issues that affect the coherence of a
system: i.e., libraries deployment, environment variables,

4A few complex applications, i.e., the XFree86 package, are maintained by a

team of four or five people

 74

shared services, scripting languages. They sometimes
take the form of general principles (�“Maintainer scripts
must be idempotent�”), but more frequently they assert
some automatically checkable property of the installed
package (�“Link targets like foo/../bar are deprecated�”).
For complex subsystems special sub-policies exist: for
example, the Emacs extensible editor has its own policy
that reduce possible conflicts among the huge number of
emacs-specific packages coming from different sources.
Policy enforcement is pursued at different levels, in order
to exploit cross validation to minimize inconsistent
packaging:

during package assembling: most of the policies are
associated to a tool (collectively called �“debhelpers�”)
that ensures the correct application. For example,
documentation can be introduced in a package by
using the script dh_installdocs; it guarantees that
when the package will be installed, the documentation
files will be put in /usr/share/doc and compressed
with gzip.
during package testing: several tools exist to check
policy compliance before uploading the package to
the public repository. The most important one is
lintian, a script that analyze a package for about thirty
categories of policy violations. Moreover, when a
packaged is uploaded to a public repository some
critical checks are repeated and the package is refused
if checks fail.
during package deployment: every user that detects an
incoherence can issue a bug with an automated
procedure (reportbug). Since policies are public and
available on every Debian system, also not harmful
violations can be in principle discovered (and bug
reports show that they often are) and notified to DDs.

Every package implicitly assumes a working environment
providing to it some services. DDs should make explicit
these assumptions by defining a set of dependencies for
each package. The richness of Debian dependency
language enables fine tuning of installed systems: if A
depends on B, B must be installed in order to install A; if
A recommends B, most users would not run A without B;
if A suggests B, B may enhance A functionalities, but A
can be used in most cases also without B. Moreover, two
packages can conflict, a package may replace another,
and a package A can provide the functionalities of B. The
latter relationship makes useful the existence of virtual
packages (e.g., a generic mailer application) that can be
required by others. In order to foster reuse and avoid
duplications, Debian promotes micro-packaging,
therefore it is common that from a single source package
several binary packages are generated. Thanks to these
dependency relationships, installing a new application on
a running system can be as painless for users as typing a
�“apt-get install application�” command: all the required
packages are retrieved from a public repository (possibly
on a set of CDs), installed and configured. In most cases
even running services can be upgraded in this way, since

Debian policies define standard mechanism for stopping
and restarting daemons. Moreover, when an application is
removed, it is possible to check which libraries were
�“orphaned�” (i.e., they are no more requested by any
package) by this removal and remove them too.
4. Customizing and Mantaining a Debian System
One of the added value of open source systems is that
they can be customized to better satisfy user needs.
However, customization is also risky. A highly
customized system can be very difficult to keep in sync
with the mainstream open source development. Suppose
for example that a user wishes to use a program java-
local rather than the program java provided by the
Debian �“java�” package. If the user overwrote
/usr/bin/java with java-local, the package management
system will not know about this change, and it will
discard the customization on upgrades. For this reason,
Debian introduces the concept of package diversion, by
which users can maintain their diverted versions of
programs, while enjoying mainstream upgrades. For
example, by issuing the command dpkg-divert --divert
/usr/bin/java.debian /usr/bin/java all future installations
of the Debian �“java�” package will write the file
/usr/bin/java to /usr/bin/java.debian. Moreover, several
alternative equivalent programs can be installed in a
system and simple infrastructure can be used to keep a
generic name linked to the preferred alternative (e.g., x-
www-browser may point to galeon, even if both mozilla
and galeon are installed. These facilities make Debian
systems ideal to be used as a starting base for specialized
distributions: successful examples are the Knoppix
distribution (running entirely from a CD), and the
Familiar distribution (intended to be run on PDAs): while
very different, they all share the same packet
infrastructure and they keep reusing the daily work of
DDs notwithstanding their customizations.
Another problem that sometimes hurdles users in
upgrading their customized systems, is that configuration
options can be discarded by the new version of
applications. Roughly speaking, the configuration of an
application is a three steps process. Major options are set
system wide when the application is installed; they can
affect major issues (for example, how a program is
started: if it is an inetd daemon or if it is SUID root) and
they are only rarely modified. Other less important
options are more frequently changed by editing
configuration files. User options are changed by users
themselves and settings are stored in their home
directories. In Debian systems, preservation of major
options across upgrades is achieved by exploiting the
debconf database. When a new application is installed for
the first time some questions are asked to the user. The
answers provided by the user are stored in that database
and when a new version of the application is going to be
installed only new options are presented to the user.
Users' choices are preserved for unchanged options and
the installation script is responsible for traducing them in

 75

the possibly new syntax of configuration files. Moreover,
every time an upgrade affects a system wide
configuration file, a warning is issued, asking which
version the user wants to keep and, if the files are human
readable text files as it is common in the Unix world,
differences can be merged together. Instead, no support
is provided at the moment to evolve end-user options.
However, these are often just cosmetic ones and therefore
much less critical.
Another approach is worth mentioning in this paper is
what can be called aspect oriented package maintenance.
In any system complex enough, there are issues that
cross-cut the whole system and cannot be easily
packaged in an isolated module. The Debian solution to
this problem follows an aspect oriented approach: special
events of the package life cycle are exposed to other
packages and they can, obliviously from other packages
points of view, introduce actions that will be performed
when these events occur. For example, the localepurge
package aims at not installing all localized files (i.e., files
specific for different languages) not explicitly preserved
by the user of the system (it is a big waste of space to
install non useful Japanese documentation files if nobody
reads Japanese!). Other packages know nothing about
localepurge, but, when it is installed, its execution is
needed during their installation. Therefore, the package
installation system (clearly a cross-cutting issue) can be
customized by specific programs, that may subscribe
themselves to be executed when well defined events
occur (basically installation and removal of a package)
5. Conclusions
The goal of obtaining a coherent distribution of software
packages where all programs interact smoothly increases
its complexity with the number of applications, the
number of architectures involved, and the number of
system configuration supported. The Debian project
copes with this complexity with an approach that does not
resemble neither the cathedral model with a single
architect with unlimited power, nor the bazaar model
where the only coordination force is mutual interaction.
Instead, freedom of action is preserved, and a
democratically decided coherence is pursued as far as
possible by technical means. The Debian coordination
effort to manage complexity and heterogeneity should be
studied in depth in order to understand which techniques
can be applied conveniently also to commercial
organizations.
Acknowledgments
I would like to thank all the members of the Debian
project for their voluntary work. I am a member of the
Debian project since 2000. However, the opinions
expressed in this paper, except the ones taken from cited
official documents, are my own only responsibility.
6. References
[1] Linux weekly news. http://www.lwn.org/distros, 2004.

[2] F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley publishing
company, USA, anniversary edition, 1995.
[3] Freestandards.org. Filesystem hierarchy standard.
http://www.pathname.com/fhs/, 1998.
[4] B. Garbee. Where would you like 100,000 users to go
today.
http://www.gag.com/~bdale/talks/2004/adelaide/keynote/
bdaleLCA.html, 2004. Linux Conf. Australia, Adelaide.
[5] Open Source Initiative. Open source licences.
http://www.opensource.org/licenses/, 2004.
[6] A. Mockus, R. T. Fielding, J. Herbsleb, Two case
studies of open source software development: Apache and
Mozilla. ACM Trans. Softw. Eng.
[7] I. Murdock. The Debian manifesto.
http://www.debian.org/doc/manuals/project-history/ap-
manifesto.en.html, 1993.
[8] Debian Project. The Debian constitution.
http://www.debian.org/devel/constitution, 1998.
[9] E. S. Raymond. The cathedral and the bazaar.
http://www.tuxedo.org/esr/writings/cathedral-bazaar/,
Nov. 1998.
[10] R. Stallman. The GNU manifesto.
http://www.gnu.org/gnu/manifesto.html, 1985.

