
KNOWLEDGE TRANSFER IN R&D OUTSOURCING
(AND LINUX–VS–WINDOWS)

SALVATORE MODICA
∗

Abstract. Why did Microsoft not hire all those smart programmers who
ended up developing Linux through the internet? Because, we answer, the
value of the information about its operating system that Microsoft should

have transferred to any of them to render her productive would have been too
high compared to her expected individual contribution, so that after writing a

contract with Microsoft the typical developer would have run away to sell the
acquired knowledge on the market.

On the other hand, knowledge transfer in R&D outsourcing is not always

so critical, and for example in the pharmaceutical and chemical industries re-

search contracts are extensively used, usually in the context of a long term
relationship between firm and innovator. We analyze this kind of repeated

interaction, and find that when the knowledge–transfer problem is not block-
ing, the firm should transfer to the innovator as much information as it is
compatible with the latter’s incentive constraints.

JEL Classification System: . . .

1. Introduction

By R&D outsourcing we mean a firm contracting out research about techno-
logical advancement of its product. The practice develops during the nineties in
response to the need to expand research capabilities in the face of increasing compet-
itive pressure. As both Kimsey–Kurokawa [13] and Holmström–Roberts [12] report,
we stress that one often observes strategically critical research being contracted
out, as in the case of product design in automobile industry. Of this “something
of a trend today toward disintegration, outsourcing, contracting out, and dealing
through the market” ([12] p.80) one finds more circumscribed evidence in Thayer
[24] and Birch [5] respectively for the chemical and the pharmaceutical industry, the
latter reporting that the R&D outsourcing market has grown at an average annual
rate of 14.6% between 1997 and 2001. But in other sectors, for example in the case
of development of a computer’s operating system, the situation is different. In the
present paper a unified explanation of this difference will be given.

From a theoretical point of view the only paper dealing with the problem is to
our knowledge Aghion–Tirole [1], who study optimal allocation of property rights
on innovation in a one–shot interaction between firm and innovator; they conclude
that control should be allocated to the innnovator, in terms of the present paper
that R&D outsourcing is more efficient than internal product development, if the
innovator’s effort is ‘important enough’ (ibidem p.1191). Assuming that this is the
case, and also that there are no problems with ex-ante definability of the nature
of innovation, we highlight a further potential obstacle to technology outsourcing,

∗
November 2003, First Draft. Financial Support: MIUR. Affiliation: Dip. Scienze Eco-

nomiche Finanziarie e Aziendali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.

email modica@unipa.it. Thanks: I am grateful to Nicola Persico for inspiring comments and
suggestions he has given me in conversations related to the topics of the present paper, and to
Enrico Minelli for helping me with its presentation.

1

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 2

which is the following: to render the innovator productive, the firm may have to
transmit her some information about its existing technology and internal processes;
but this information may be valuable to the innovator independently of her rela-
tionship with the firm, possibly so much that she might just walk away with it
and default on her contractual obligations with the firm. The remedy to this is to
establish a long term relationship, and in practice it often works —but not always. 1

We then set up and study a multi–period model. The paper has two parts, both
stemming from analysis of the above knowledge–transfer problem: the first concerns
situations where the severity of the problem impairs the relationship between the
firm and potential outside innovators (and there the Linux–vs–Windows issue comes
up); the second derives optimal dynamic contracts in cases where the resulting
incentive–constrained problem has non–trivial solutions.

First Part: impossibility of outsourcing (section 3). Knowledge management
is a problem of increasing practical relevance. Rajan–Zingales [19], who make it
one of the main ingredients of their theory of the firm, report for example that
Intel was founded by two senior managers of Fairchild Semiconductors who left the
latter with an important piece of new technological knowledge acquired thanks to
their position; more generally, they quote recent empirical research finding that this
phenomenon is rather widespread. Information leaking being a problem within a
firm, it can only get worse when it comes to transferring knowledge to third parties.
In the extreme it can become a deadlock, when critical bits of information need to
be revealed to give the outside innovator the chance to produce valuable results.
As it was seen above, this is not the case in the chemical and the pharmaceutical
industries. It is, arguably, the case where development of the kernel (core) of a
computer operating system is involved: to work on it you have to know it all. 2

The impossibility part of the paper applies the last observation to interpret
the most important novelty in recent history of the computer software industry,
namely the challenge to the essential monopoly of the Microsoft Windows operat-
ing system posed by the emergence of Linux, a non–proprietary system developed
spontaneously through the internet on the basis of an initial creation of a Finnish
student called Linus Torvalds. We shall briefly summarize some information on the
economic history of Linux in Appendix B; here, being perhaps redundant we would
like to stress that the challenge is real. The reader is probably using Microsoft
software to read this paper, but currently the crucial penetration is occurring at
‘carrier’ level (that of large telecommunication corporations); let me bring up two
more examples from the business world to illustrate. Hewlett Packard Director of
Carrier-Grade Server Christine Martino told Internetnews last June that of the cus-
tomers recently asked about their plans “about 80 to 90 percent [...] are either run-
ning Linux or are working on running Linux in the near term.” And Motorola, who
has already produced a mobile phone powered by Linux, has declared that Linux
will serve as a ‘key pillar’ of its handset software strategy —and has ‘put its money
where mouth is’ by selling its 19 percent stake in Symbian, a leading developer of
operating systems for smart phones that use next-generation cellular networks. 3

1On the long–term nature of R&D outsourcing relationships in the U.S. and Japan see Birch
[5], Kimsey–Kurokawa [13] and Holmström–Roberts [12]; more about this later.

2On this point we are in disagreement with Aghion–Tirole [1] who lump together software
and biotechnology (overlooking, from our point of view, the knowledge–transfer problem): “When

intellectual inputs dominate as for software and biotechnology, research will often be performed

by independent units” (ibidem, p.1206).
3Web references are respectively www.internetnews.com/infra/article.php/221613 and

http://news.zdnet.co.uk/hardware/mobile/0,39020360,39117339,00.htm. All web sites quoted
in the present paper have been visited in October 2003.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 3

In fact Microsoft itself is the first to be convinced of the seriousness of the threat;
see the ‘Halloween Documents’ at http://www.opensource.org/halloween.

But if Linux is becoming the ‘best’ operating system around, then the question
is “How come it has improved so much compared to Windows in the last years?”
The easy answer, “Because thousands of developers and an even larger number of
testers/debuggers have worked on Linux, while only a few hundreds were working on
Windows”, only leads to the real economics problem, which is: “Why did Microsoft
not hire all those smart programmers who ended up developing Linux, by ad hoc
outsourcing contracts?” Certainly not because “It did not know them”, for it
would not have been difficult to screen the good programmers on the market. The
answer we propose is that it did not hire them because of a fatal knowledge–transfer
problem.

Second Part: dynamic outsourcing (section 4). The key to overcoming the above
impasse and reach a cooperative outcome is, as often in such cases, repetition. On
the importance of the long term nature of real outsourcing contracts in Japan see
Kimsey–Kurokawa [13]; in business language this becomes ‘establishing a preferred–
client relationship’, see Birch [5] reporting on the success of this strategy in the
pharmaceutical industry in the U.S. 4 In the language of the present paper, in this
sector the knowledge transfer needed to establish an R&D outsourcing relationship
has not been too high compared to the productivity of the innovators.

Focusing attention on the knowledge–transfer problem in a multiperiod setup:
given that some knowledge–transfer plan is feasible, and given that the more knowl-
edge is transferred the more the innovator is productive and therefore the bigger is
the value to be shared, it is then intuitively obvious that optimally, the firm should
transfer as much knowledge as it is compatible with the innovator’s incentive con-
straints. This principle will be seen to indeed hold (just as obviously, when dealing
with a dynamic, infinite–dimensional, problem some work is needed to translate
intuition into formal statements and proofs). The finding also has some empiri-
cal substantiation. Besides Kimsey–Kurokawa [13], also Holmström–Roberts [12],
reporting research on automobile industry in the U.S. and Japan, stress the long
term nature of interactions but also the ‘rich information sharing’ (ibidem p.82)
between contracting parties.

The sequel of the paper is organized as follows: the formal problem we study
is stated in the next section, and the two aforementioned parts of the paper are
contained in sections 3 and 4 respectively; the concluding section 5 is about ‘lessons
from open source’ and policy speculations. Proofs are in Appendix A, and some
background on the Linux project in Appendix B for ease of reference.

2. Statement of the Problem

There are two actors in the model, a firm and an innovator. The firm knows
that the innovator can improve its performance if she has some knowledge of its
internal processes. Abstracting altogether from uncertainty, we assume there is
an exogenous process of knowledge in the hands of the firm, {Kt}t=0,1..., which
although not formally required, we imagine as being increasing. If the firm transfers
knowledge kt to the innovator, where necessarily 0 ≤ kt ≤ Kt, then net benefit from
the latter’s work is Vt(kt); on the other hand the innovator has also the option of
just walking away with kt instead of working for the firm, and if he does this he
gets a default value Dt(kt) —all at time t. At each t, the firm chooses kt and

4The cited article by Birch is ‘based on’ a longer report, on sale for EUR 1,283.00, which I

have not seen. We recall again that besides repetition there are cooperation and integration, on
which we do not focus here.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 4

(φt, 1− φt), where φt and 1− φt are its own and the innovator’s shares of Vt. The
firm’s problem we formally analyse is then the following (with discount factor β):

max{kt,φt}t≥0

∑
t≥0

βt φtVt(kt)

subject to, for all t,

0 ≤ kt ≤ Kt, φt ≤ 1, (P)∑
s≥t

βs-t(1− φs)Vs(ks) ≥ Dt(kt) , and∑
s≥t

βs-t φsVs(ks) ≥ 0.

The last two constraints are the innovator’s incentive constraint and the firm’s
participation constraint, which do not need much explanation (the reader may
consult Ray [20] for discussion). Finally, we imagine the innovator to be liquidity
constrained, and not the firm; this is why it is assumed φt ≤ 1 but not φt ≥ 0. Vt

is assumed increasing concave, Dt increasing convex, and Vt(0) = Dt(0) = 0, for all
t. The sequence {Kt} is taken to be bounded, so the problem is set up in `∞ (and
its dual; details about this are in appendix).

We are well aware that we are studying a much simplified problem. We have in
mind in particular the issues addressed by Aghion–Tirole [1] of contractibility of
effort and ex–ante definability of innnovation, which in a dynamic setting become
highly relevant hold–up problems (How can the firm walk away if it suspects that the
innovator’s effort is too low, with strategic knowledge already in the latter’s hands?
See Kultti–Takalo [14] for a concrete instance of this). Also, equally important
is uncertainty in this context, in theory as well as in practice; indeed, uncertainty
about the quality of the innovator is one of the main concerns in business practice. 5

Problem (P) above has the same structure of the one studied by Ray [20]; we have
more special strategy sets (forms of agreements), but on the other hand impose no
stationarity on the functions involved; and, while Ray identifies a general qualitative
property of the solutions to this type of problems, we explicitly solve the one in
hand (when the feasible set is non-empty) for a class of cases.

In fact for this this problem the economics of the situations where the problem
has an effectively empty feasible set is as interesting as the mathematics of the
solutions when the latter exist, so we discuss the two cases separately. In the
sequel it will sometimes be more natural to call the two actors principal and agent.

3. No–contract Feasible set: Linux–vs–Windows

The feasible set in problem (P) page 4 is never empty, because it contains all
sequences {φt, kt} with kt = 0 all t (and φt ∈ [0, 1]); if it contains no other points,
the only feasible contract between firm and innovator is the null contract. The
conditions under which this is the case are easily spelled out. The extreme case is
with Vt ≡ 0 ∀t > 0 and V0 < D0, and the general case is then clear: the innovator’s
productivity falls rapidly with time, and the first–shot outcome is not as valuable
as the knowledge needed to produce it. This will be the case for example if the
innovator’s productivity is low for all but near–full knowledge transfer, and for such
transfers on the other hand the default value is very high. 6

5In the pharmaceutical and biopharmaceutical industry for example, the difficulty starts with

choosing among a large number of ‘Contract Research Organizations’ (what we call innovators)
—cfr. Thomas Kupiec, “Analytical Outsourcing: assessing outsource/in–house options”, Contract

Pharma March 2003, online at http://www.contractpharma.com/March032.htm.
6There still is the alternative of in–house development, ‘integration’ in the terminology of

Aghion–Tirole [1], when outsourcing is unfeasible; but in the Linux–Windows context on which

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 5

Going back to the question raised in the introduction of interpreting the recent
Linux–vs–Windows history (and in terms of the next section’s ‘past’ and ‘present’
we are here interpreting past history), at this point there is little to say that the
reader has not already anticipated: it is our contention that the above no–contract
scenario fits well the story under discussion. Indeed, to develop an operating system
a programmer cannot do without knowing it deeply. And moreover, it is often by
inspecting its various aspects that she finds the one whose improvement best fits her
capabilities —as in science. Finally, and the parallel to science is again inevitable,
often a programmer’s best shot is his first; in the above terms Vt decreases sharply
with time.

The other part of the argument is that the magnitude of the default value D0

may well be high compared to V0 for near–full knowledge transfer, and the rationale
for this is that, as the Fairchild–Intel story recalls, the value of critical knowledge
may be in the order of the value of the firm itself. If this is the case, in one–
developer firms the order of magnitude of D0(K0) is the discounted sum of all future
Vt(Kt)’s; when many developers are employed, it is a lot higher. In particular,
it seems reasonable to think that the value of the source code of the Windows
operating system is uncomparably higher than the potential value of a developer’s
contribution. 7

So to repeat what anticipated in the introduction, our interpretation of the
technical explosion of the Linux operating system with little or no comparable
reaction on the part of the incumbent Microsoft monopolist is that the latter,
owing to the above described knowledge–transfer problem, was forced to hang on
to its few hundreds of programmers (and debuggers), and was therefore totally unfit
to compete with the army of open–source developers and testers who contributed,
with no problems of that sort, to make Linux the powerful operating system which
it is today. We stress that there was no knowledge–transfer problem in the Linux
side; the reason is simply that knowledge there is common property; we expand on
this latter point (and some related ones) in Appendix B.

4. Non–trivial Feasible Set: Optimal Outsourcing

We now assume that the zero knowledge–transfer path is dominated by other
feasible alternatives, and begin to analyse the problem by writing the Lagrangean
and imposing stationarity and complementary slackness conditions. Justification
of this procedure is in the appendix.

To anticipate, there are no surprises in the solutions. Inspection of problem (P)
page 4 quickly reveals that principal and agent have here a common interest —that
V be as high as possible. Thus intuitively the solution should call for as large a
transfer of k as it is compatible with the agent’s incentive constraint. This is what
formal analysis confirms.

The Lagrangean of problem (P) without the non-negativity constraints on kt is

L =
∑

t≥0
βt

[
φtVt(kt) + ξt(Kt − kt) + ζt(1− φt)

]
+

∑
s≥0

λs

[∑
t≥s

βt-s(1− φt)Vt(kt)−Ds(ks)
]

+
∑

s≥0
µs

[∑
t≥s

βt-s φtVt(kt)
]
.

we shall focus attention the same conditions which lead to the null–contract feasible set also make
integration unprofitable, for the latter would mean employing thousands of programmers, with

long term costs by far exceeding expected benefits.
7Of course the type of knowledge the firm has to transfer to the innovator does not need to be

‘critical’; this is indeed what the successful stories of technology outsourcing demonstrate. It is

worth noting that in such cases the firm often has multiple contractors at the same time; for the
biotechnology industry this is reported in research quoted by Holmström–Roberts [12] (p.85–86).

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 6

Letting

νt = λ0β
t + λ1β

t−1 + · · ·+ λt, ρt = µ0β
t + µ1β

t−1 + · · ·+ µt

this becomes

L =
∑

t≥0
βt

[
ξt(Kt − kt) + ζt(1− φt)− β−tλtDt(kt)

]
+

∑
t≥0

Vt(kt)
[
(βt + ρt)φt + νt(1− φt)

]
.

Thus complementary slackness and FOC are

ξt(Kt − kt) = 0, ζt(1− φt) = 0 ∀t,

λs

[∑
t≥s

βt-s(1− φt)Vt(kt)−Ds(ks)
]

= 0, µs

∑
t≥s

βt-s φtVt(kt) = 0 ∀s,[
(βt + ρt)φt + νt(1− φt)

]
V ′

t (kt)− λtD
′
t(kt) = βtξt ,[

βt + ρt − νt

]
Vt(kt) = βtζt ∀t .

So the FOC with respect to kt is[
(βt + ρt)φt + νt(1− φt)

]
V ′

t (kt)− λtD
′
t(kt) ≥ 0,

= 0 if kt < Kt .
(1)

And given Vt(kt) > 0 ∀kt > 0, the one with respect to φt is βt + ρt − νt ≥ 0, equal
if φt < 1; this is more conveniently rewritten as

(λ0 − µ0) + (λ1 − µ1)β−1 + · · ·+ (λt − µt)β−t ≤ 1,

= 1 if φt < 1 .
(2)

Now observe that φt = 1 ∀t is not feasible, for it violates the agent’s incentive
constraint (we are dealing with solutions with non-zero {kt}, for which the Vt and
Dt functions are non-zero). Let t0 be the first t such that φt < 1. Then from (2),
after t0 the first s such that λs 6= µs must have λs < µs. This implies that inequality
in (2) strict at s, whence φs = 1; it also implies µs > 0, which by complementary
slackness gives

∑
t≥s βt-s φtVt(kt) = 0; and the latter, with φs = 1, then implies

that the principal participation constraint is violated at s + 1. Conclusion: after
t0 one has λt = µt ∀t. Therefore, for all t > t0: either (i) λt = µt = 0; or (ii)
λt = µt > 0.

In case (i), νt − ρt = βt (for all t > t0): indeed at t0, since φt0 < 1, equation
(2) says νt0 − ρt0 = βt, so νt0+1 − ρt0+1 = β(νt0 − ρt0) + (λt0+1 − µt0+1) = βt0+1,
etc. Thus (1) becomes (βt + ρt)V ′

t (kt) ≥ 0, equal if kt < Kt. But both factors
on the left side of the inequality are positive, so kt < Kt cannot be: in this case
kt = Kt ∀t > t0.

In case (ii), from the complementary slackness conditions on λ and µ we get, for
each s > t0,∑

t≥s
βt-s φtVt(kt) = 0 and

∑
t≥s

βt-s Vt(kt) = Ds(ks) .

The first set of equalities easily imply that φt = 0 ∀t > t0. So all production value
goes to the agent after t0, and {kt}t>t0 is chosen so that this value just covers default
value Dt at each t (recalling that Vt are concave and Dt convex, this means that he
chosen k’s could not be higher without violating the agent’s incentive constraint).
In this case the structure of the solution is the same as that found by Ray in [20]
in the stationary case.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 7

In both cases, the picture for t < t0 is that since φt = 1, the principal’s individual
rationality constraints are met with strict inequality, whence µt = 0; so (1) becomes

βtV ′
t (kt) ≥ λtD

′
t(kt),

= if kt < Kt.

We next explicitly describe the solution in three special cases, differing in the
amount of knowledge which can be transferred in equilibrium. Letting

Vt =
∑

s≥t
βs-t Vs(Ks) ,

we consider the situations where one of the following conditions holds for all t:

Dt(Kt) = Vt; Dt(Kt) > Vt; Dt(Kt) < Vt.

In the last case, intuitively the solution should have kt = Kt all t, and we shall
confirm formally that this is so, except possibly for a finite number of initial periods.
In the second case such full knowledge transfer is clearly not feasible: the feasible
set can be ‘thin’, so the first step is to impose conditions which guarantee that it
is large enough for the problem to be interesting; here stationarity seems to be the
single most natural assumtption to make. The first case is obviously a measure–zero
set, but it is instructive for the solutions of the others, and with it we start.

Case Dt(Kt) = Vt ∀t. We shall see that this case falls under heading (ii) above.
We make here two assumptions. First, in keeping with the spirit of the present
section that no–knowledge–transfer is dominated, we assume that V ′

0(0) > D′
0(0);

since D0(0) = V0(0) = 0 and D0(K0) = V0(K0) + βV1 > V0(K0), we then have

0 < argmaxk0
V0 −D0 < K0. (3)

The second is a more technical assumption, quite natural in the `∞ setup:

The sequence (Vt)t≥0 is bounded . (4)

In the next proposition optimal policy is characterized. The idea is that the
principal wants to push knowledge transfer kt up to Kt as soon as she can and
leaving all value to the agent from then on (feasibility and kt = Kt implies φt = 0),
conditional on being able to appropriate the value coming out of the initial phase.
The optimal policy would be to do this in period 1 if the agent were not liquidity
constrained (that is if there were no constraint φ0 ≤ 1); with this constraint the
initial phase lasts usually longer.

To get some intuition we may start by observing that the agent’s incentive con-
straint at t = 0 is just∑

t≥0
βt φtVt(kt) ≤

∑
t≥0

βt Vt(kt)−D0(k0) ; (5)

so if the right member is maximized subject to the other constraints and to being
equal to the left member (which is the principal’s payoff), the solution to (P) is
found. To see how the optimization process goes observe that the highest value the
right side of (5) can take is [maxk0 V0−D0]+βV1; and that setting kt = Kt ∀t ≥ 1
forces φt = 0 ∀t ≥ 1 by the assumption Dt(Kt) = Vt; the latter also implies that
the sequence φt = 1, kt = Kt ∀t ≥ 1 satisfies all incentive constraints for such t’s.
Therefore if there a φ0 ≤ 1 such that the incentive constraint at t = 0 holds with
equality, that is such that

φ0V0(k0) = V0(k0)−D0(k0) + βV1 with k0 = argmax(V0 −D0),

then (5) holds with equality and the problem is solved: k0 = argmax(V0−D0), kt =
Kt ∀t ≥ 1, φ0 defined by the last equation displayed, and φt = 0 ∀t ≥ 1. In this

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 8

case the principal obtains all of her payoff in the first period. Problem is that a
φ0 ≤ 1 as required above may not exist, that is, it may be that

D0(k0) ≥ βV1, k0 = argmax(V0 −D0) (6)

fails. In the latter case the next step is to try and maximize the right member of
(5) with respect to k0 and k1, leaving kt = Kt ∀t ≥ 2, while respecting the agent’s
incentive constraints and subject to finding φ0 and φ1 (φt = 0 ∀t ≥ 2) such that
at the maximizing values of k0, k1 relation (5) hold with equality. In this problem,
optimal φ0 = 1; so if the optimal unconstrained value of φ1 is ≤ 1 then again we
have found the solution of (P), and the principal gets all her payoff in the first two
periods. We shall show in appendix that the process stops in a finite number of
stages, and this leads to the proposition which follows.

As to the statement below, observe that given Dt(Kt) = Vt, problem (P) reduces
to the one appearing there when after t0 one imposes φt = 0 and kt = Kt (and
neglects φt0 ≤ 1). Again, proof is in appendix.

Proposition 1. In the case Dt(Kt) = Vt ∀t, assuming V ′
0(0) > D′

0(0) and that the
sequence (Vt)t≥0 is bounded, there exists a first time t0 < ∞ such that the problem

max{kt,φt}t=0,...,t0

∑t0

t=0
βtVt(kt) + βt0+1Vt0+1 −D0

subject to

kt ≤ Kt, t = 0, . . . , t0 φt ≤ 1, t = 0, . . . , t0 − 1∑t0

s=t
βs−tφsVs =

∑t0

s=t
βs−tVs + βt0+1−tVt0+1 −Dt, t = 0, . . . , t0

has optimal φt0 ≤ 1 (from the last of the above constraints, this φt0 is defined by the
equation φt0Vt0(kt0) = Vt0(kt0)+βVt0+1−Dt0(kt0)). The problem also has optimal
φt = 1 for all t < t0.

Optimal policy for problem (P) is given by the solution to the above problem,
followed by φt = 0 and kt = Kt for all t > t0.

Remark. It is shown in the proof that for all t < t0 the optimal policy has
Dt(kt) = βDt+1(kt+1). Thus a sufficient condition for the optimal amount of
knowledge transfer to be increasing is that βDt+1 < Dt for all t, i.e. that the
default value does not grow too fast.

Case Dt(Kt) > Vt ∀t. This case also falls under heading (ii) of page 6. This is
the case where vaule of the default option is relatively high, and so it is the closest
to the no–contract feasible set. To guarantee that a non–trivial set of contracts is
feasible, as we said before we have found that imposing stationarity is the single
more natural assumption. We then assume here that:

Vt = V, Dt = D, Kt = K, ∀t ≥ 0. (7)

Thus the inequality Dt(Kt) > Vt ∀t becomes

D(K) > (1− β)−1V (K).

Given this, V (0) = D(0) and concavity of V − (1 − β)D, if the derivative at
zero of the latter function is non–positive the only stationary sustainable level of
knowledge transfer is zero even with φ = 0, because it would be D(k) > (1 −
β)−1V (k) ∀k > 0. We then also assume that V ′(0) > (1− β)D′(0) (this is weaker
than the corresponding assumption in the previous case). Hence there exist a largest
level of stationary sustainable knowledge transfer 0 < k∗ < K, defined by

D(k∗) = (1− β)−1V (k∗). (8)

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 9

As in the previous case the idea is that the principal wants to push up kt as soon
as she can; but now not up to K, which is unfeasible, but up to k∗.

Proposition 2. In the case Dt(Kt) > Vt ∀t, assuming stationarity (7) and that
V ′(0) > (1 − β)D′(0), all of proposition 1 can be restated, with the following two
modifications: Vt0+1 in the problem there described replaced by (1−β)−1V (k∗), and
the final statement “ kt = Kt for all t > t0” changed to “ kt = k∗ for all t > t0”.

Moreover, in the present case optimal knowledge transfer is increasing (for the
sufficient condition stated in the remark following proposition 1 holds here).

Case Dt(Kt) < Vt ∀t. This case will fall under heading (i) of page 6. As we
already observed one would guess that full knowldege transfer is optimal; this is
only partially true, because as we shall see it may happen that full transfer does
not begin at time zero. To ease exposition we shall again make two simplifying
assumptions. The first is in the spirit of stationarity:

Vt = V ∀t ≥ 0. (9)

This is equivalent to assuming Vt(Kt) = V0(K0) ∀t ≥ 0 ((9) is obviously implied
by the latter; but given (9) one has Vt = Vt(Kt) + βVt+1 = Vt(Kt) + βVt whence
Vt(Kt) = (1−β)Vt = (1−β)V ∀t). Next, although default value is ‘small’ here, we
still find it natural to imagine that the gap between V and Dt(Kt) would shrink
with time. We assume that this occurs at a constant rate, in the sense that for
some γ ∈ (0, 1) one has

Vt −Dt(Kt) = γ
[
Vt−1 −Dt−1(Kt−1)

]
, t > 0, (10)

which given (9) is obviously equivalent to Dt(Kt) = (1− γ)V + γDt−1(Kt−1).
Now define

φ̂t =
1− βγ

1− β

V −Dt(Kt)
V

.

Since V −Dt(Kt) = γt
[
V −D0(K0)

]
, clearly φ̂t = γtφ̂0. Call t0 ≥ 0 the first t such

that φ̂t ≤ 1. Optimal policy is then as follows (proof in appendix):

Proposition 3. In the case Dt(Kt) < Vt ∀t, under assumptions (9) and (10), for
the t0 ≥ 0 just defined, optimal policy has kt = Kt and φt = φ̂t ∀t > t0. Optimal
kt and φt for t ≤ t0 are specified in the appendix.

For example, if φ̂t0 = 1 the policy for this initial phase is kt = Kt, φt = 1 ∀t ≤ t0;
otherwise the latter is usually not feasible (again details in appendix).

Notice that in the present case the principal’s continuation payoff, although
decreasing to zero, remains positive forever.

5. Conclusions

As anticipated in the introduction we have no conclusions, and this section only
contains some comments on what we may abstract from the open source experience,
that is, on the conditions under which an open source model might be applied
outside software production. 8

Core and Trusted Authority. The fact that it is essential that there be a ‘sub-
stantive initial core’ which has the potential to become of widespread use is well
recognized (cfr. e.g. Benkler [3], Weber [29]). And from the organizational point
of view I would like to stress the importance of a ‘central authority’ (like Linus in
person at the beginning of the Linux project and the OSDL these days).

Product Cycle and Quality Circles. To peer–develop an initial product each
contributor must obvously have a higher payoff from revealing than from concealing

8For ease of reference some background on open source is collected in Appendix B.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 10

his work (and using it only for himself). Assuming the possibility to emarginate
those who conceal from sharing in subsequent improvements, the requirement is that
there be an equilibrium in which each reveals her contribution to the community
and benefits from the others’ ones (the ‘contributing a brick to have a complete
house in return’, cfr. p. 17). The conditions for this seem to be most favourable:
(i) for complex products, where improvements occur in all directions/parts; 9 and
(ii) in the initial phase of development, where due to decreasing returns to research
the value of individuals’ contributions is highest.

User Value and Granularity. On the motivational side one surely cannot rely on
social excitement (cfr. Appendix B), but the same must be said of the often quoted
signalling motive (see e.g. Lerner–Tirole [16]): as reported in the Appendix, after
close inspection it was found rather weak even in the software case. What remains
is the user–value, which as we learn from the work of von Hippel should not be
undervalued. It is to be stressed that one should have in mind here the firm–user
more than the consumer–user: a firm innovating a process machine which it uses in
a major product line may make substantial profits from the innovation; or, think
of brakes improvements on the part of a producer of racing cars or aircrafts. Thus,
‘large team work’ is not necessarily an insurmountable barrier. All the more so
given that in a peer production process cooperation has no complicated property–
related drawbacks; see, most notably, the current experience of the OSDL (see
again Appendix B) where all major competitors in the telecommunication market
are involved.

Intermediate Products. The discussion so far points to a specific class of goods:
the intermediate products. A moment’s thought suggests the qualification that
they should not be crucial for gaining competitive edge; for example, brakes but not
components/solutions affecting fuel consumption for family cars in Europe (where
fuel is highly taxed and fuel consumption is the first thing consumers watch and
car makers advertise).

Timing. The Linux kernel has develped so fastly because ‘the world’ was just
ready to take up Linus’ work and improve upon it. Quite likely, if Linus had written
his 0.01 version in 1975 instead of 1991, history would have been very different. In
fact we have an example of something like this happening: John von Neumann’s
insights on computers’ architecture date 1945, but it took about ten years before
they influenced industrial production (which they did pervasively when time was
ripe; cfr. Mowery–Rosenberg [18]). The point here is obviuos but it may be crucial:
for peer production, peers must be there and ready.

Policy and Initial Core. This is not a paper about intellectual property and
desirability of patents, and we will not raise the point in the last paragraph. See
Bessen–Maskin [4] and Scotchmer [23] for ‘problems’ with patents in the presence
of cumulative innovation. Remaining focused on peer production, we remark that
the weak spot in such processes which the preceeding observations point to is the
existence of the ‘substantive initial core’ —there are not many Torvalds or von
Neumann around.

Given an initial core, under the conditions just spelled out product development
is possibly faster in a patent–free, open source environment rather than in a pro-
prietary system; but as we all know absence of patents may deter production of
primary innovations/initial cores. Thus the trade-off for growth which seems to
emerge for patent policy is between having more primary innovations with slower
improvement against having fewer innovations with more extensive development.

9I speak of directions here because for such products I visualize, in place of the traditional
‘quality ladder’ (cfr. Scotchmer), an image of quality (lager and lager) ‘circles’.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 11

The additional policy dimension may be the public funding of open sourced
primary innovations whenever this seems propitious; the above considerations are
intended to contribute to identify conditions under which it may be so.

Appendix A: Mathematical Arguments

Justifying the Lagrangean. There are two steps involved in writing the La-
grangean the way we have done (i.e. the ‘usual’ way) and imposing its stationarity
in this context. The first concerns existence of multipliers in the dual of `∞; the
second regards conditions ensuring that those multipliers are in fact in `1 (a subset
of the above dual), i.e. expressible as a sequence of real numbers. For both we shall
merely invoke existing theorems.

Existence of multipliers in the positive cone of `∗∞ such that at the optimal
solution the lagrangean is stationary follows for instance from theorem 1.10 of
chapter 3 (p.190) of Barbu–Precupanu [2]. The regularity condition (ib. p.191) in
our case amounts to the requirement that the inequality∑

t≥s
βt-s(1− φt)V ′

t > D′
s

hold for s sufficiently large along the optimal sequence. Conditions ensuring this
are easy to write in all cases considered in the paper (a simple, but unappealing
one is that β be close enough to one).

As to the `1 problem, we can apply corollary 5.6 of Rustichini [22] directly;
validity of its hypotheses in our case is immediate to check.

Proof of Proposition 1. We resume the argument where it was interrupted, after
(6). As we were saying, if that relation fails one turns to the two–period problem,
which is the following:

max(φ0,φ1),(k0,k1) V0 + βV1 + β2V2 −D0

subject to

φ0 ≤ 1, kt ≤ Kt, t = 0, 1 (P2)

φ0V0 + βφ1V1 = V0 + β(V1 + βV2)−D0 (a)

φ1V1 = V1 + βV2 −D1. (b)

Substituting the last constraint the problem can be written as

max(k0,k1) V0 + β [V1 + βV2]−D0

subject to D0 ≥ βD1, kt ≤ Kt, t + 0, 1. (P ′
2)

Suppose that the solution to this problem has D1 ≥ βV2; then the value of φ1

defined by (b) satisfies φ1 ≤ 1, so that (φ0, φ1) defined by (a) and (b) together
with the solution (k0, k1) of (P ′

2) solve (P): to wit, the solution of the latter is
φ0 = 1 (which follows from the fact that the constraint D0 ≥ βD1 in (P ′

2) is
binding, as will be verified shortly), φ1 defined by (b), (k0, k1) solving (P ′

2), and
φt = 0, kt = Kt ∀t ≥ 2. In this case the principal gets her payoff in the first two
periods, and from then on only the agent’s payoff is positive.

If the solution to (P ′
2) has D1 < βV2, then we pass to the obvious next step, which

is the three–period try. We shall show that this process ends in a finite number of
steps, but before moving on we must check that the constraint D0 ≥ βD1 is binding
in (P ′

2). The lagrangean is

V0 −D0 + β [V1 + βV2] + λ(D0 − βD1) + µ0(K0 − k0) + βµ1(K1 − k1);

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 12

so FOC and complementary slackness give

V ′
0 − (1− λ)D′

0 ≥ 0, = 0 if k0 < K0, (F2 i)

V ′
1 − λD′

1 ≥ 0, = 0 if k1 < K1. (F2 ii)

If k1 < K1 then from (F2 ii) λ = V ′
1/D′

1 > 0, so the constraint in question binds.
Thus it may be non–binding only if k1 = K1; with this and λ = 0, (F2 i) reads
V ′

0 −D′
0 ≥ 0, = 0 if k0 < K0. But since the max of the concave function V0 −D0

is interior by (3) one has V ′
0 −D′

0 < 0 at K0, so it cannot be k0 = K0; so it should
be k0 < K0; but then V ′

0 −D′
0 = 0, i.e. k0 = argmax(V0 −D0); on the other hand,

for this pair (k0,K1) we have by failure of (6) D0 < βV1 = βD1, i.e. the pair is not
feasible for the problem in hand. We conclude that the constraint is binding, and
so optimal φ0 = 1 in (P2). We observe for future reference that it has also been
shown that λ > 0; this implies, via (F2 i), that k0 > argmax(V0 −D0) > 0.

To see what is involved in showing that the the process ends in a finite number
of steps let us look again at the inequality D1 ≥ βV2 in (P ′

2); since we have just
found D0 = βD1 at the optimum, this is

D0(k0) ≥ β2V2, k0 solving (P ′
2). (11)

Comparing this with (6) we guess that the s-period try will be the successful one if
the inequality D0(k0) ≥ βsVs holds for k0 optimal solution of the relevant problem.
Since it will be shown that this k0 will always be not smaller than argmax (V0 −
D0), by the boundedness assumption (4) the inequality will be satisfied for s large
enough.

We turn to the (s+1)–period problem, in the variables k0, . . . , ks. The hypothesis
is that for the sequence k0, . . . , ks−1 solving the s–period problem, one has Ds−1 <
βVs; and that similarly for k0, . . . , ks−2 solving the (s− 1)–period problem one has
Ds−2 < βVs−1; and so on down to the one–period problem. In words, the induction
hypothesis is that problem (P) cannot be solved by the principal appropriating all
of her payoff in less than s + 1 periods.

We consider the (s+1)–period analogue of problem (P2) and arrive at the (s+1)–
period version of problem (P ′

2), which is, omitting the constant term βs+1Vs+1,

max(k0,...,ks)

∑s

t=0
βtVt −D0

subject to (P ′
s)

kt ≤ Kt, t = 0, . . . , s

Dt ≥ βDt+1, t = 0, . . . , s− 1.

Again our aim is to show that the constraints on D are binding. For then the ques-
tion whether φs ≤ 1, i.e. Ds ≥ βVs+1, becomes D0 ≥ βs+1Vs+1. The lagrangean
for (P ′

s) is

V0−D0+λ0(D0−βD1)+µ0(K0−k0)+β [V1 + λ1(D1 − βD2) + µ1(K1 − k1)]+. . .

+βs−1 [Vs−1 + λs−1(Ds−1 − βDs) + µs−1(Ks−1 − ks−1)]+βs [Vs + µs(Ks − ks)] .

Stationarity and complementary slackness give

V ′
0 − (1− λ0)D′

0 ≥ 0, = 0 if k0 < K0

V ′
1 − (λ0 − λ1)D′

1 ≥ 0, = 0 if k1 < K1

.

V ′
s−1 − (λs−2 − λs−1)D′

s−1 ≥ 0, = 0 if ks−1 < Ks−1

V ′
s − λs−1D

′
s ≥ 0, = 0 if ks < Ks.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 13

As in the two–period case, from the last condition displayed we deduce that for
Ds−1−βDs not to be binding it must be ks = Ks, and λs−1 = 0. But then the rest
of the conditions are exactly the same as those of the s–period problem, in which
case the solution would be the same as that of the s–period problem followed by
ks = Ks; but then the hypothesis implies that Ds−1 < βVs = βDs, contradicting
feasibility; so Ds−1 = βDs.

Next Ds−2−βDs−1. If ks−1 < Ks−1 then as before λs−2−λs−1 = V ′
s−1/Ds−1 > 0

which would imply that the constraint is binding. If on the other hand ks−1 = Ks−1

and λs−2 = 0, we are back to the (s− 1)–period problem, which with ks−1 = Ks−1

has Ds−2 < βDs−1, contradicting feasibility again. So Ds−2 − βDs−1 is binding,
and continuing this way we conclude that all the D constraints are binding. It has
also been shown, incidentally, that always λ0 > 0.

Now, as anticipated, given D0 = βD1 = · · · = βsDs (and φ0 = · · · = φs−1 = 1
in problem (Ps)), the question whether φs ≤ 1, i.e. Ds ≥ βVs+1, becomes

D0(k0) ≥ βs+1Vs+1, (12)

k0 being part of the solution to the s–period problem. And this holds for s suf-
ficiently large. Indeed, in any s–period problem either k0 = K0, or from comple-
mentary slackness V ′

0 −D′
0 = −λ0D

′
0 < 0, last inequality from λ0 > 0; thus in all

problems the optimal k0 > argmax(V0 − D0), whence the left member of (12) is
bounded away from zero; on the other hand, by assumption (4) the right member
tends to zero as s diverges. This concludes the argument.

Proof of Proposition 2. As we did in the previous case we rewrite the agent’s
incentive constraints, the first one binding:∑

t≥0
βt φtV (kt) = [V (k0)−D(k0)] +

∑
t≥1

βtV (kt) (13)∑
t≥s

βt-s φtV (kt) ≤
∑

t≥s
βt-s V (kt)−D(ks), s ≥ 1 . (14)

Forget as before the constraint φ0 ≤ 1. In the previous case it was then immediate
that the max the right member of (13) was [maxk0 V0 −D0] + βV1, and that this
choice of {kt}t≥0 satisfied (with equality) the other incentive constraints. In the
present case the situation is slightly more complex: the choice kt = K ∀t ≥ 1
is unfeasible, and then maximization of

∑
t≥1 βtV (kt) with respect to {kt, φt}t≥1

subject to the constraints (14) is non–trivial. We shall now show that it is solved
by kt = k∗, φt = 0 ∀t ≥ 1. Thus if for this choice (with k0 = argmax(V −D)) the
φ0 defined by φ0V (k0) = V (k0) − D(k0) + β(1 − β)−1V (k∗) happens to be ≤ 1,
problem (P) is solved.

If not, as before the principal has to try and appropriate his payoff in two periods.
In this case again the difference compared to the case Dt(Kt) = Vt ∀t is that we
have a non–trivial maximization, of

∑
t≥2 βtV (kt) under the constraints in (14) for

s ≥ 2; but again it is be proved by the same argument as the one we are about to
give that the solution to this maximum problem is kt = k∗, φt = 0 ∀t ≥ 2. Thus
at stage two we are again in a position analogous to that of case Dt(Kt) = Vt ∀t,
with V2 replaced by (1− β)−1V (k∗) in problem (P2) of page 11. At this point the
argument parallels the previous one: optimal φ0 = 1, and if the φ1 defined by the
equation φ1V (k1) = V (k1)−D(k1)+β(1−β)−1V (k∗), with k1 part of the solution
of the modified (P2), is ≤ 1, then problem (P) is solved. Otherwise one goes to
stage three, etc. until payoff appropriation is possible. The concluding part of the
argument is as before.

It is thus left to analyse maximization
∑

t≥1 βtV (kt) over the set defined by (14).
We shall show that the sequence kt = k∗ ∀t ≥ 1 maximizes the given function on a

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 14

larger set, namely that it solves the problem

max{kt}t≥1

∑
t≥1

βtV (kt)

subject to
∑

t≥s
βt-s V (kt)−D(ks) ≥ 0, s ≥ 1 .

To this end observe that to improve upon the choice kt = k∗ ∀t ≥ 1 one has to
raise at least one kt from k∗. We show that this cannot be done without violating
some constraint (keep in mind that if kt = k∗ ∀t ≥ 1 all the constraints hold with
equality). Without loss of generality suppose k1 is raised, say to k∗ + h1. By
definition of k∗, cfr. equation (8), it will be ∆D > (1 − β)−1∆V , so if one keeps
kt = k∗ ∀t ≥ 2, since

∆
(∑

t≥1
βt−1V (kt)

)
= ∆V < (1− β)∆D < ∆D

the constraint at s = 1 is violated (∆ refers here to raising k1 from k∗ to k∗ + h1

of course); hence to restore it one should raise k2 —or some other kt t ≥ 2, the
argument does not change. But by the same token, if one raises k2 one then has
to raise k3 (or kt3 . . .) to restore the (s = 2)–constraint, and so on: that is, if k1

is raised from k∗ one should keep raising k’s farther and farther away. Can this be
done ad infinitum? The question here is, by how much does k2 need to be raised
to restore feasibility at s = 1? From the above displayed inequalities it follows that
the needed increment of k2 would be larger than the increment needed if the first
inequality there were instead an equality, i.e. the h2 such that

β
(
V (k∗ + h2)− V (k∗)

)
= β

(
D(k∗ + h1)−D(k∗)

)
.

But V (k∗ + h2) − V (k∗) < V ′(k∗)h2, D(k∗ + h1) − D(k∗) > D′(k∗)h1, and from
(8) one has V ′(k∗) < (1− β)D′(k∗); therefore

h2 >
D′(k∗)
V ′(k∗)

h1 > (1− β)−1 h1 > h1.

Analogously, to restore feasibility at t = 2 one should then have to raise k3 by
an amount h3 > h2, and by so doing it is clear that one hits the upper bound K in
a finite number of steps. The conclusion is that it is in fact impossible to improve
upon the choice kt = k∗ ∀t ≥ 2, as was to be shown.

Proof of Proposition 3. We first put on record an observation:

Lemma. Fix a time τ , and assume kt = Kt ∀t > τ . Then all incentive constraints
for s > τ are satisfied with equality if φt = φ̂t ∀t > τ .

Proof. Recall that by assumption (9) Vt(Kt) = V0(K0), which in turn implies
Vt(Kt) = (1 − β)V ∀t. Then for s > τ , given that kt = Kt and φt = φ̂t for
t ≥ s, the incentive constraint at s is (1− β)V

∑
t≥s βt−sφ̂t ≤ V −Ds(Ks), which,

by assumption (10) and the fact that φ̂t = γ(s−τ)+(t−s)φ̂τ , can be written as

(1− β)V
1− βγ

γs−τ φ̂τ ≤ γs
(
V −D0(k0)

)
.

We just have to plug in the definition of φ̂τ , page 9 to verify that equality holds. �

Consider now the case t0 = 0, i.e. φ̂0 ≤ 1. Start again from observing that the
incentive constraint at t = 0 has the objective function on the left. As before,
try to maximize the right member and subject to have equality in the constraint.
Since the right member is

∑
t≥0 βt V0(kt) −D0(k0), set first kt = Kt ∀t ≥ 1, and

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 15

then φt = φ̂t ∀t ≥ 1 to have the other constraints satisfied (with equality, from the
lemma). This way the constraint at zero becomes

φ0V0(k0) + β
(
V −D1(K1)

)
≤ V0(k0)−D0(k0) + βV.

If we set k0 = K0 and φ0 = φ̂0 we have equality by definition, so from φ̂0 ≤ 1,

V0(K0) + β
(
V −D1(K1)

)
≥ V0(K0)−D0(K0) + βV. (15)

Suppose first that φ̂0 < 1, so that the above inequality is strict; if we lower k0

from K0 towards argmax(V0−D0) the right member goes up, the left one down, and
two possibilities arise: (i) equality is reached at some k∗ ∈

(
argmax(V0−D0),K0

)
;

in this case the value V0(k∗) − D0(k∗) + βV is the highest possible principal’s
payoff, attainable with φ0 = 1 (if we lower k0 further the left member, i.e. the
principal’s payoff, decreases, with φ0 = 1 and even more for any φ0 < 1); thus
optimal policy is here k0 = k∗ (defined by the equality D0(k) = βD1(K1)), kt =
Kt ∀t ≥ 1, φ0 = 1, φt = φ̂t ∀t ≥ 1; (ii) at argmax(V0 −D0) inequality in (15) is
still strict; in this case the maximum possible value of

∑
t≥0 βt Vt(kt)−D0(k0), i.e.

max
[
V0 − D0

]
+ βV, is attainable with the φ0 < 1 defined by φ0V (argmax(V0 −

D0)) + β
(
V −D1(K1)

)
= max [V0 −D0] + βV, and optimal policy has the φ0 just

defined, k0 = argmax [V0 −D0], and continuation for t ≥ 1 as in the previous case.
If on the other hand φ̂0 = 1, so (15) is an equality, then lowering k0 from K0 can

only do harm (period–zero incentive constraint would hold with strict inequality,
and the left member, i.e. the principal’s payoff, would be lower than with k0 = K0).
Hence optimal poicy in this case is kt = Kt ∀t ≥ 0, φ0 = 1, φt = φ̂t ∀t ≥ 1. This
ends the case t0 = 0.

We now turn to the case t0 > 0; recall that this means φ̂t0 ≡ γt0(1 − βγ)(V −
D0(K0))/(1− β)V ≤ 1, but φ̂t > 1 ∀t < t0. Let us write the principal’s payoff as∑t0−1

t=0
βtφtVt(kt) + βt0

∑
t≥t0

βt−t0φtVt(kt). (16)

Taking into account the constraints for t ≥ t0, which still have to be met, we know
from the previous case what the constrained maximum of the second sum is, and
the policy which achieves it.

Suppose first that φ̂t0 = 1. Then if kt0 = Kt0 , the incentive constraints for
t ≥ t0 are all satisfied with equality (those for t > tt0 from the lemma, the one at
t0 checked easily). Moreover, in this case we shall now verify that it is feasible to
set kt = Kt, φt = 1 ∀t < t0; since this is the best one can hope for, optimal policy
is found: kt = Kt ∀t, φt = 1 ∀t ≤ t0 and φt = φ̂t ∀t > t0. To verify feasibility of
the policy for t < t0 consider the constraint at t0 − 1, which with the given policy
becomes

Vt0−1(Kt0−1) + β
∑

t≥t0
βt−t0φtVt(Kt) ≤ V −Dt0−1(Kt0−1);

but
∑

t≥t0
βt−t0φtVt(Kt) = V −Dt0(Kt0) = γt0(V −D0(K0)), so the left member is

equal to (1−β)V+βγt0(V−D0); and since the right member is γt0−1(V−D0(Kt0)),
the constraint is (1− β)V + βγt0(V −D0(K0)) ≤ γt0−1(V −D0(Kt0)); rearranging,
this is just φ̂t0−1 ≥ 1, true by hypothesis. Analogously, the (t0–2)–constraint
becomes φ̂t0−2 ≥ 1, and so on down to zero.

Consider now the case φ̂t0 < 1. Here as we know the policy maximizing the
second sum in (16) calls for kt0 < Kt0 , and this creates a trade–off: for a lower kt0

implies a lower Vt0 , and this in turn tightens the incentive constraints for t < t0.
For example, it makes the policy of full transfer knowledge and full appropriation
for t < t0, found optimal just above when φ̂t0 = 1, generally unfeasible. Given that
optimal policy for t > t0 remains the one defined before (kt = Kt, φt = φ̂t), choice

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 16

for t ≤ t0 solves the finite–dimensional problem just introduced, of maximizing∑t0
t=0 βtφtVt(kt) subject to the constraints for t ≤ t0 (the values of kt, φt for t ≥ t0

being fixed). This ends the proof.

Appendix B: Notes on the Linux Project

Some information is collected here about the economic history of Linux, in the
hope that some readers will find it useful; it is also used in the concluding section
5. After mentioning the legal regime under which the system works we shall briefly
go into past history and current situation.

Legal Underpinning: the GPL. The legal twist that gave birth, in the late
eighties, to Open Source software is the General Public Licence, whose original
idea is owed to the MIT programmer Richard Stallman. As all licences, the GPL
and the several less ‘radical’ variants which are around by now are written by
lawyers and for lawyers; we shall pass on the little we understand about them. 10

Open source means that the user must be able to ‘see the source [code]’, but
there is more in the GPL; the essential twist is, in Stallman’s original word-
ing, to ‘turn copiright into copyleft’: whereas copyright contains restrictions to
use, modify and distribute a product, copyleft contains the restriction to restrict
those things. 11 It is interesting that the GPL does not restrict the right to sell
the programs covered by the licence —there is no need to. As Stallman puts it
(www.gnu.org/philosophy/selling.html),

“[there are] no requirements about how much you can charge for distributing a copy
of free software. You can charge nothing, a penny, a dollar, or a billion dollars. It’s
up to you, and the marketplace, so don’t complain to us if nobody wants to pay a
billion dollars for a copy.”

Indeed nobody will, because the impossibility to restrict redistribution induces com-
petition between buyer and seller: buyer cannot make money by reselling product
because if it tries to sell it for p the original seller can sell it for p − ε; hence the
buyer will not pay more than redistribution cost, so that the original seller will not
make money in the first place.

Thus the rule underlying open source software production is in essence that
every user (potentially user/developer) has the right to see what the users before
her have done, and must pass this right on to the subsequent users. Of course,
thinking of Linux again, this is surely not sufficient to generate a process of such
import; there are motivational issues (why do programmers contribute to an open
source project if they cannot ‘make money’?), and problems of coordination and
technical feasibility in the way, and we now turn to these.

Past. We touch upon three points: (i) the actors’ motivations, (ii) organization,
and (iii) technology of the Linux project.

(i) Motivations. About his decision to make Linux freely available, his creator
Linus Torvalds says “[it] wasn’t some agonizing decision that I took from thinking

10The two main sites about the topic are www.gnu.org and www.opensource.org, and contain all

licences and extensive discussions. Useful for general understanding is in particular the commonly
accepted Open Source Definition, which contains the essential requirements which open source

licenses should satisfy. The idea of a definition which would serve as basis for the licences originates

with Bruce Perens; his original version is in the Articles section of his web site, www.perens.com,
of independent interest.

11“The central idea of copyleft is that we give everyone permission to run the program,
copy the program, modify the program, and distribute modified versions —but not permis-
sion to add restrictions of their own. Thus, the crucial freedoms that define ‘free software’

are guaranteed to everyone who has a copy; they become inalienable rights.” Stallman, at
www.gnu.org/gnu/thegnuproject.html.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 17

long and hard on it: it was a natural decision within the community that I felt I
wanted to be a part of.” (interview in First Monday, [7]). That crucial decision
was effectively the only one available to him at the time, as Linus himself declares
in his book [25] (chapter 2, section IX); but the point remains that it was a natural
choice. For that community he wanted to be a part of was a community to which
all members were feeling good to belong, in a somehow deep sense. It was like
when hippies liked to be hippies in the States, or the ’68–guys liked to be what
they were in Europe; and more and more all those involved perceived to be part of
something great and important (at least this is the impression I get by watching
the hackers’ community from outside). Viewed in this light the economics question
“How come all these guys have contributed apparently for free” sounds stupid at
first sight; but of course it must be read as “What is there besides social magic
behind their motivations”. 12 First there is some ‘individual’ magic, like there
is in mathematics; Torvalds, for one, thinks this —‘the fun’— is the main thing
(Torvalds [25]). 13 Then there are two purely economical forces: the signalling
motive, and the direct use–value to the user–developer of his own contribution.
On the first, the insiders’ view is not difficult to guess; see e.g. Raymonds [21], or
Torvalds in [7]; critical is also Benkler [3]. 14 User value on the other hand has
certainly been decisive for the major open source projects (see e.g. Lerner–Tirole
[16]). And it is worth noting that even outside the software industry, the relevance of
user–driven product development is widely recognized; see most notably von Hippel
[26, 27, 28]. Also, to the individual use value one must add the cumulative effect
of concurring contributions —as Ganesh Prasad puts it for software development,
“Each programmer contributes a brick and each gets back a complete house in
return.” 15 This picture of motivations will be recalled when we comment on
replicability of the open source model outside software production in the concluding
section.

(ii) Organization. 16 The hierarchical organization of the Linux project (and of
most of its satellite projects) is usually of a ‘benevolent dictatorship’ (cfr. Dafermos

12Concerning ‘who contributed what’, in their survey on 13,000 contributors to open source
projects Ghosh and Prakash [9] found that three quarters made only one contribution, but at the

other end nearly three quarters of contributions came from the top ten percent of contributors.
I suppose the social excitement factor alone is enough to explain the one–timers’ contributions;
the question is really about the hard–working guys. Note that even for the latter the social

factor is not irrelevant, for they were leaders of a large generational movement, and obtaining and
maintaining such a position may well be worth a lot of hard work.

13In fact ‘fun’ is more for him: it is the third and last of the three stages of evolution of

humanity according to his (non–trivial) theory of evolution, the first two being survival and social
order; see [25].

14Torvalds, after much pressure from the interviewer responds “Yes, there are issues involved
with ‘getting value back’ from your involvement [. . .] but the first consideration for anybody

should really be whether you’d like to do it even if you got nothing at all back”. Benkler adduces

the fact that some of the most important projects, like the Apache Web Server and the Free
Software Foudation, do not provide personal attribution to the code they produce. In fact much

more is true, cfr. Ghosh–David [8]: in the Linux kernel consistently more than half of the code
is unsigned; and those packages whose lines of code are entirely signed constitutes the 0.66% of
total kernel packages.

15 http://linuxtoday.com/infrastructure/2001041200620OPBZCY--.
16In the sense of industrial organization. Many have written about the organization of the

project from a social point of view. Not surprisingly the parallels to the academic model of open
knowledge production are ubiquituos: besides Raymond [21] see e.g. Himanen [11], who starts
from Plato’s Academia, and Benkler [3] who is himself an academic. From an evolutionary point
of view, interesting is the essay by Kuwabara [15] who, based on the gift–culture idea of Raymond,
gives an interpretation of the process in the light of the the Santa–Fe approach to the dynamics

of complex systems. A link to the work of J.B. Arthur from Santa–Fe comes also from Dafermos

[6] in connection with increasing returns.

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 18

[6]); the dictator must also be trusted, and trust is conferred by public legitimacy.
As to productive organization, the clearest insight for understanding emergence
of ‘peer production’ comes in my opinion from Benkler [3] (NYU School of Law).
Benkler makes a conditional statement, given strong enough actors’ motivations
(cfr. above) and technological feasibility (on this shortly). With these assumptions
in place, to the two dimensions of transaction costs/organization costs responsible
for the firm/market tradeoff in Coase’s theory Benkler adds a third dimension: that
of ‘information opportunity costs’, and correspondingly a third alternative mode
of production: peer production. The idea is that the latter may prevail due to
the advantages which decentralized information gathering and exchange gives in
identifying and allocating creative work to the more appropriate jobs.

(iii) Technology. The essential characteristics of the process are well understood:
there is a substantial initial ‘core’ of potential widespread use (Weber [29]); the sub-
sequent product development is modular (also Benkler [3] and Lerner–Tirole [16]);
the size of the modules is small ([3], [16]; Benkler uses the term ‘granularity’); and
modules integration (quality control and decision processes) is managed effectively
(cfr. [3]). Lerner–Tirole argue that lack of granularity is the main technological ob-
stacle to transposition of the open source/peer production model to other industries:
“[. . .] In many industries, development of individual components require large team
work and substantial capital costs” ([16], p. 231). This is undoubtedly true, but
not necessarily pervasive; von Hippel [28] for instance cites old empirical research
on technological innovation (concerning the post–war decades) showing that both
in Rayon manufacture and computer hardware the cumulation of a multitude of
minor technical changes is “responsible for much or most technical progress” ([28]
p.14). Distinguishing the different stages of product maturity, is seems reasonable
to expect large teams and investments more frequently needed in an initial phase,
followed by a cumulation of minor improvements taking place in a subsequent one.

Present. In the last couple of years much has changed. Ghosh and Prakash [9]
found in 2000 that 75% of contributors to open source projects were one–timers;
there are no surveys about the current situation yet, but the obvious guess is that
the times of one–timers have gone (just read on). We will talk separately about
(i) for–profit firms commercializing Linux, and (ii) the Open Source Development
Labs.

(i) Red Hat & C. In a paper appeared in August 2003, Haruvy et al. [10] solved
what would have been Red Hat’s optimal control problem with commercializing
open source software in a situation like the one of the 2000 Survey, namely: if such
a firm charges a short–run profits maximizing price, the high profit realized may
induce spite in the hackers’ community, hence decreased contributions, hence lower
future product quality, hence ultimately lower profits. Well, forget it. Remember
the Red Hat Box selling at around 50 US Dollars? In mid–October 2003 it was
still selling, but it was pretty hard to find in their web site (at least for me); by
end–October, it had disappeared completely! The point is that it is not what
they sell any more; they sell Red Hat ‘Architecture’, and Red Hat ‘Solutions’, to
firms who become Red Hat customers. No role for hackers left to play. Open
Source, Linux–based software is now getting ready to replace proprietary (mostly
Unix–based) software infrastructure at mission–critical level, in the communication
market. The operating system is just a part of a much more complex product,
and competition is growing between ‘Red Hat Architecture’ against ‘IBM Linux
Solutions’, ‘SuSe for the Enterprise’, etc. (incidentally Red Hat and VA Software,
the two leading firms of the sector quoted at Wall Street, have seen their stock
value more than doubled in the last three months, August–October 2003).

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 19

(ii) The OSDL. What about Linus, who started it all? Miniaturized along with
old kernel problems? Contrarily to what one could expect, the answer is no —
indeed, all the opposite. To migrate to Linux in corporate data centers and in
telecommunications networks, the interested companies want reassurance that the
system meet some critical ‘carrier-grade’ requirements. And since different firms
have different technologies and priorities, sofware developers on their part need to
know what exactly these requirements are, and how they are ranked in terms of
priority. So the crucial step becomes the creation of a ‘focal’ set of requirements
definitions and priority ranking (of course evolving with time), based on inputs
from the business sector and to which developers can refer for their programming
objectives. Supported by a global consortium of Information Technology industry
leaders, the Open Source Development Labs, a non-profit organization, was founded
in 2000 for exactly that purpose. 17 Most big corporations were involved, but the
vital ‘authority’, in the sense of recognition from the community the way Torvalds
had been for the early kernel development, was missing. What exactly was missing
is easily guessed: Linus in person, of course. Well, since June 2003 that is where he
is: in this new Linux world, again at what is becoming an important gravitational
center of it. In essence, in the market sketched sub (i) above, where product
complexity makes the source more and more ‘hidden’, the role if OSDL is that of
keeping the core of it common and open.

References

[1] Aghion, Philippe and Jean Tirole (1994): The Management of Innovation, The Quarterly

Journal of Economics 109: 1185–1209
[2] Barbu, Viorel and Theodor Precupanu (1986): Convexity and Optimization in Banach

Spaces, D. Reidel Publishing Co.

[3] Benkler, Yochai (2002): Coase’s Penguin, or, Linux and ‘The Nature of the Firm’, Yale
Law Journal 112

[4] Bessen, James and Eric Maskin (2000): Sequential Innovation, Patents and Imitation, MIT

Working Paper no. 00-01
[5] Birch, Steve (2003): R&D Outsourcing Strategies, Pharmafocus (July), online at

www.pharmafile.com/pharmafocus

[6] Dafermos, George N. (2001): Management and Virtual Decentralised Networks: The Linux
Project, First Monday 6 No.11

[7] First Monday (1998): Interview with Linus Torvalds: What motivates free software devel-
opers? First Monday 3 No.3

[8] Ghosh, Rishab Aiyer and Paul A. David (2003): The nature and composition of the Linux

kernel developer community: a dynamic analysis, Stanford Project on Economics of Open
Source Software, mimeo Stanford University

[9] Ghosh, Rishab Aiyer and Prakash, V.V. (2000): The Oribiten Free Software Survey, 1st

Edition, online at http://orbiten.org

[10] Haruvy, E., A. Prasad and S.P. Sethi (2003): Harvesting Altruism in Open–Source Software

Development, Journal of Optimization Theory and Applications 118: 381-416

[11] Himanen, Pekka (2001): The Hacker Ethic and the Spirit of the Information Age, Random
House

[12] Holmström, Bengt and John Roberts (1998): The Boundaries of the Firm Revisited, Jour-

nal of Economic Perspectives 12: 73–94
[13] Kimzey, Charles H. and Sam Kurokawa (2002): Technology Outsourcing in the U.S. and

Japan, Research Technology Management 45: 36–42

17The web site is www.osdl.org. The consortium includes from hardware producers like Cisco,
Dell, HP, IBM, Intel, Mitsubishi, Nec, Sun and Toshiba, to firms involved in telecommunications
like Ericsson and Nokia, and more software oriented firms like Linuxcare, Red Hat, SuSe, Tur-

bolinux. The directory lab activities/carrier grade linux/documents.html contains the main
charter document, together with a ‘Technical Scope White Paper’; the analogous White Paper for

Data Centers is in lab activities/data center linux/documents.html. The technical Require-

ments Definition (version 2.0) is of course also available at their site. A ‘need to know’ paper
about carrier grade linux, written for engineers, is Mehaffey [17].

KNOWLEDGE–TRANSFER PROBLEM IN OUTSOURCING 20

[14] Kultti K. and T. Takalo (2000): Incomplete contracting in an R&D project: the Micronas

case, R & D Management 30: 67–77
[15] Kuwabara, Ko (2000): Linux: a Bazaar at the Edge of Chaos, First Monday 5 No.3
[16] Lerner, Josh and Jean Tirole (2002): Some Simple Economics of Open Source, Journal of

Industrial Economics 50: 197–234
[17] Mehaffey, John (2002): Carrier Grade Linux: What You Need to Know, Communication

Systems Design, online at www.commsdesign.com/story/OEG20020827S0008

[18] Mowery, David C. and Nathan Rosenberg (2000): Paths of Innovation: Technological
Change in 20th–Century America, Cambridge University Press

[19] Rajan, Raghuram G. and Luigi Zingales (2001): The Firm as a Dedicated Hierarchy: A

Theory of the Origins and Growth of Firms, Quarterly Journal of Economics 116: 805–851
[20] Ray, Debraj (2002): The Time Structure of Self–enforcing Agreements, Econometrica 70:

547–582

[21] Raymond, Eric S. (1998): Homesteading the Noosphere, First Monday, 3 No.10
[22] Rustichini, A. (1998): Lagrange Multipliers in Incentive–constrained Problems, Journal of

Mathematical Economics 29: 365–380
[23] Scotchmer, Suzanne (1999): Cumulative Innovation in Theory and Practice, GSPP Working

Paper no. 240, UC Berkeley

[24] Thayer, Ann M. (1997): Outsourcing R&D to Gain an Edge, Chemi-
cal & Engineering News (February), American Chemical Society, online at

http://pubs.acs.org/hotartcl/cenear/970210/rd.html

[25] Torvalds, Linus and David Diamond (2001): Just for Fun: The Story of an Accidental
Revolutionary, Harper Business

[26] von Hippel, Eric (1986): Lead Users: a Source of Novel Product Concepts, Management

Science 32: 791–805
[27] von Hippel, Eric (1998): Economics of Product Development by Users: Impact of ‘Sticky’

Local Information, Management Science 44: 629–644

[28] von Hippel, Eric (2002): Horizontal Innovation Networks —by and for Users, MIT Sloan
School of Management WP No. 4366–02

[29] Weber, Steven (2000): The Political Economy of Open Source Software, BRIE Working
Paper 140, Berkeley University

