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1. INTRODUCTION

The open source software “movement” has received enormous attention in the
last several years. It is often characterized as a fundamentally new way to
develop software [Dibona et al. 1999; Raymond 1999] that poses a serious
challenge [Vixie 1999] to the commercial software businesses that dominate
most software markets today. The challenge is not the sort posed by a new
competitor that operates according to the same rules but threatens to do it
faster, better, cheaper. The OSS challenge is often described as much more fun-
damental, and goes to the basic motivations, economics, market structure, and
philosophy of the institutions that develop, market, and use software.

The basic tenets of OSS development are clear enough, although the details
can certainly be difficult to pin down precisely (see Perens [1999]). OSS, most
people would agree, has as its underpinning certain legal and pragmatic ar-
rangements that ensure that the source code for an OSS development will be
generally available. Open source developments typically have a central person
or body that selects some subset of the developed code for the “official” releases
and makes it widely available for distribution.

These basic arrangements to ensure freely available source code have led to
a development process that is radically different, according to OSS proponents,
from the usual industrial style of development. The main differences most often
mentioned are the following.r OSS systems are built by potentially large numbers (i.e., hundreds or even

thousands) of volunteers. It is worth noting, however, that currently a number
of OSS projects are supported by companies and some participants are not
volunteers.r Work is not assigned; people undertake the work they choose to undertake.r There is no explicit system-level design, or even detailed design [Vixie 1999].r There is no project plan, schedule, or list of deliverables.

Taken together, these differences suggest an extreme case of geographically
distributed development, where developers work in arbitrary locations, rarely
or never meet face to face, and coordinate their activity almost exclusively by
means of email and bulletin boards. What is perhaps most surprising about
the process is that it lacks many of the traditional mechanisms used to coordi-
nate software development, such as plans, system-level design, schedules, and
defined processes. These “coordination mechanisms” are generally considered
to be even more important for geographically distributed development than for
colocated development [Herbsleb and Grinter 1999], yet here is an extreme case
of distributed development that appears to eschew them all.

Despite the very substantial weakening of traditional ways of coordinating
work, the results from OSS development are often claimed to be equivalent,
or even superior to software developed more traditionally. It is claimed, for
example, that defects are found and fixed very quickly because there are “many
eyeballs” looking for the problems (Eric Raymond [1999] calls this “Linus’s
Law”). Code is written with more care and creativity, because developers are
working only on things for which they have a real passion [Raymond 1999].

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.



Open Source Software Development • 311

It can no longer be doubted that OSS development has produced software of
high quality and functionality. The Linux operating system has recently enjoyed
major commercial success, and is regarded by many as a serious competitor to
commercial operating systems such as Windows [Krochmal 1999]. Much of the
software for the infrastructure of the Internet, including the well-known bind,
Apache, and sendmail programs, were also developed in this fashion.

The Apache server (one of the OSS software projects under consideration in
this case study) is, according to the Netcraft survey, the most widely deployed
Web server at the time of this writing. It accounts for over half of the 7 million or
so Web sites queried in the Netcraft data collection. In fact, the Apache server
has grown in “market share” each year since it first appeared in the survey in
1996. By any standard, Apache is very successful.

Although this existence proof means that OSS processes can, beyond a doubt,
produce high-quality and widely deployed software, the exact means by which
this has happened, and the prospects for repeating OSS successes, are fre-
quently debated (see, e.g., Bollinger et al. [1999] and McConnell [1999]). Propo-
nents claim that OSS software stacks up well against commercially developed
software both in quality and in the level of support that users receive, although
we are not aware of any convincing empirical studies that bear on such claims.
If OSS really does pose a major challenge to the economics and the methods of
commercial development, it is vital to understand it and to evaluate it.

This article presents two case studies of the development and maintenance of
major OSS projects: the Apache server and Mozilla. We address key questions
about their development processes, and about the software that is the result of
those processes. We first studied the Apache project, and based on our results,
framed a number of hypotheses that we conjectured would be true generally of
open source developments. In our second study, which we began after the anal-
yses and hypothesis formation were completed, we examined comparable data
from the Mozilla project. The data provide support for several of our original
hypotheses.

In the remainder of this section, we present our specific research questions.
In Section 2, we describe our research methodology for both the Apache and
Mozilla projects. This is followed in Section 3 by the results of Study 1, the
Apache project, and hypotheses derived from those results. Section 4 presents
our results from Study 2, the Mozilla project, and a discussion of those results
in light of our previous hypotheses. We conclude the article in Section 5.

1.1 Research Questions

Our questions focus on two key sets of properties of OSS development. It is
remarkable that large numbers of people manage to work together success-
fully to create high-quality, widely used products. Our first set of questions (Q1
to Q4) is aimed at understanding basic parameters of the process by which
Apache and Mozilla came to exist.

Q1: What were the processes used to develop Apache and Mozilla?
In answer to this question, we construct brief qualitative descriptions of

Apache and Mozilla development processes.
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Q2: How many people wrote code for new functionality? How many people
reported problems? How many people repaired defects?

We want to see how large the development communities were, and identify
how many people actually occupied each of these traditional development and
support roles.

Q3: Were these functions carried out by distinct groups of people, that is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most of
the work?

Within each development community, what division of labor resulted from
the OSS “people choose the work they do” policy? We want to construct a profile
of participation in the ongoing work.

Q4: Where did the code contributors work in the code? Was strict code owner-
ship enforced on a file or module level?

One worry of the “chaotic” OSS style of development is that people will make
uncoordinated changes, particularly to the same file or module, that interfere
with one another. How does the development community avoid this?

Our second set of questions (Q5 to Q6) concerns the outcomes of these pro-
cesses. We examine the software from a customer’s point of view, with respect to
the defect density of the released code, and the time to repair defects, especially
those likely to significantly affect many customers.

Q5: What is the defect density of Apache and Mozilla code?
We compute defects per thousand lines of code, and defects per delta in order

to compare different operationalizations of the defect density measure.
Q6: How long did it take to resolve problems? Were high priority problems

resolved faster than low priority problems? Has resolution interval decreased
over time?

We measured this interval because it is very important from a customer
perspective to have problems resolved quickly.

2. METHODOLOGY AND DATA SOURCES

In order to produce an accurate description of the open source development
processes, we wrote a draft of description of each process, then had it reviewed
by members of the core OSS development teams. For the Apache project, one
of the authors (RTF), who has been a member of the core development team
from the beginning of the Apache project, wrote the draft description. We then
circulated it among all other core members and incorporated the comments
of one member who provided feedback. For Mozilla, we wrote a draft based on
many published accounts of the Mozilla process.1 We sent this draft to the Chief
Lizard Wrangler who checked the draft for accuracy and provided comments.
The descriptions in the next section are the final product of this process. The
commercial development process is well known to two of the authors (AM, JDH)
from years of experience in the organization, in addition to scores of interviews

1Please see Ang and Eich [2000], Baker [2000], Eich [2001], Hecker [1999], Howard [2000], Mozilla
Project, Oeschger and Boswell [2000], Paquin and Tabb [1998], Yeh [1999], Williams [2000], and
Zawinski [1999].
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with developers. We present a brief description of the commercial process at
the end of this section.

In order to address our quantitative research questions, we obtained key
measures of project evolution from several sources of archival data that had
been preserved throughout the history of the Apache project. The develop-
ment and testing teams in OSS projects consist of individuals who rarely if
ever meet face to face, or even via transitory media such as the telephone.
One consequence of this is that virtually all information on the OSS project is
recorded in electronic form. Many other OSS projects archive similar data, so
the techniques used here can be replicated on any such project. (To facilitate
future studies, the scripts used to extract the data are available for download
at http://mockus.org/oss.)

2.1 Apache Data Sources

Developer Email List (EMAIL). Anyone with an interest in working on Apache
development could join the developer mailing list, which was archived monthly.
It contains many different sorts of messages, including technical discussions,
proposed changes, and automatic notification messages about changes in the
code and problem reports. There were nearly 50,000 messages posted to the list
during the period starting in February, 1995. Our analysis is based on all email
archives retrieved on May 20, 1999.

We wrote Perl scripts to extract date, sender identity, message subject, and
the message body that was further processed to obtain details on code changes
and problem reports (see below). Manual inspection was used to resolve such
things as multiple email addresses in cases where all automated techniques
failed.

Concurrent Version Control Archive (CVS). The CVS commit transaction
represents a basic change similar to the Modification Request (MR) in a com-
mercial development environment. (We refer to such changes as MRs.) Every
MR automatically generates an email message stored in the apache-cvs archive
that we used to reconstruct the CVS data. (The first recorded change was made
on February 22, 1996. The version 1.0 of Apache released in January 1996 had
a separate CVS database.) The message body in the CVS mail archive corre-
sponds to one MR and contains the following tuple: date and time of the change,
developer login, files touched, numbers of lines added and deleted for each file,
and a short abstract describing the change. We further processed the abstract
to identify people who submitted and/or reviewed the change.

Some changes were made in response to problems that were reported. For
each MR that was generated as a result of a problem report (PR), we obtained
the PR number. We refer to changes made as a result of a PR as “fixes,” and
changes made without a problem report as “code submissions.” According to
a core participant of Apache, the information on contributors and PRs was
entered at least 90% of the time. All changes to the code and documentation
were used in the subsequent analysis.

Problem Reporting Database (BUGDB). As in CVS, each BUGDB trans-
action generates a message to BUGDB stored in a separate BUGDB archive.
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We used this archive to reconstruct BUGDB. For each message, we extracted
the PR number, affected module, status (open, suspended, analyzed, feedback,
closed), name of the submitter, date, and comment.

We used the data elements extracted from these archival sources to con-
struct a number of measures on each change to the code, and on each problem
report. We used the process description as a basis to interpret those measures.
Where possible, we then further validated the measures by comparing several
operational definitions, and by checking our interpretations with project par-
ticipants. Each measure is defined in the following sections within the text of
the analysis where it is used.

2.2 Mozilla Data Sources

The quantitative data were obtained from CVS archives for Mozilla and from
the Bugzilla problem tracking system.

Deltas were extracted from the CVS archive running the CVS log on every
file in the repository. MRs were constructed by gathering all delta that share
login, comment, and are recorded within a single three-minute interval. The
comment acknowledges people who submitted the code and contains relevant
PR numbers (if any). As before, we refer to MRs containing PRs as “fixes,” and
the remaining MRs as “code submissions.”

The product is broken down into directories /layout, /mailnews, and so on.
Files required to build a browser and mail reader are distributed among them.
We have selected several directories that correspond to modules in Mozilla
(so that each one has an owner) and that are similar in size to the Apache
project (generate between 3 and 12 K delta per year). Abbreviated descriptions
of directories taken from Mozilla documentation [Howard 2000] are below.r /js contains code for tokenizing, parsing, interpreting, and executing

JavaScript scripts.r /layout contains code for the layout engine that decides how to divide up the
“window real estate” among all the pieces of content.r /editor contains code used for the HTML editor (i.e., Composer in Mozilla
Classic), for plain text and HTML mail composition and for text fields and
text areas throughout the product.r /intl contains code for supporting localization.r /rdf contains code for accessing various data and organizing their relation-
ships according to Resource Description Framework (RDF), which is an open
standard.r /netwerk contains code for low-level access to the network (using sockets and
file and memory caches) as well as higher-level access (using various protocols
such as http, ftp, gopher, castanet).r /xpinstall contains the code for implementing the SmartUpdate feature from
Mozilla Classic.

We refer to developers with email domain @netscape.com and @mozilla.org
as internal developers, and all others we call external developers. It is worth
noting that some of the 12 people with the @mozilla.org email address are not
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affiliated with Netscape. We attempted to match email to full names to elimi-
nate cases where people changed email addresses over the considered period or
used several different email addresses, or when there was a spelling mistake.

To retrieve problem report data, we used scripts that would first retrieve
all problem report numbers from Bugzilla and then retrieve the details and
the status changes of each problem report. In the analysis we consider only
three status changes for a problem report. A report is first CREATED, then
it is RESOLVED, either by a fix or other action. (There are multiple reasons
possibly; however, we discriminated only between FIXED and the rest in the
analysis below.) After inspection, the report reaches the state of VERIFIED if
it passes, or is reopened again if it does not pass. Only reports including code
changes are inspected. Each report has a priority associated with it, with values
P1 through P5. PRs also include the field “Product,” with “Browser” being the
most frequent value, occurring in 80% of PRs.

2.3 Data for Commercial Projects

The change history of the files in the five commercial projects was maintained
using the Extended Change Management System (ECMS) [Midha 1997], for
initiating and tracking changes, and the Source Code Control System (SCCS)
[Rochkind 1975], for managing different versions of the files.

We present a simplified description of the data collected by SCCS and ECMS
that are relevant to our study. SCCS, like most version control systems, operates
over a set of source code files. An atomic change, or delta, to the program text
consists of the lines that were deleted and those that were added in order to
make the change. Deltas are usually computed by a file-differencing algorithm
(such as UNIX diff), invoked by SCCS, which compares an older version of a
file with the current version.

SCCS records the following attributes for each change: the file with which it
is associated, the date and time the change was “checked in,” and the name and
login of the developer who made it. Additionally, the SCCS database records
each delta as a tuple including the actual source code that was changed (lines
deleted and lines added), the login of the developer, the MR number (see below),
and the date and time of the change.

In order to make a change to a software system, a developer may have to
modify many files. ECMS groups atomic changes to the source code recorded
by SCCS (over potentially many files) into logical changes referred to as Mod-
ification Requests. There is typically one developer per MR. An MR may have
an English language abstract associated with it, provided by the developer,
describing the purpose of the change. The open time of the MR is recorded in
ECMS. We use the time of the last delta of an MR as the MR close time. Some
projects contain information about the project phase in which the MR is opened.
We use it to identify MRs that fix postfeature test and postrelease defects.

2.4 Commercial Development Process

Here we describe the commercial development process used in the five com-
parison projects. We chose these projects because they had the time span and
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size of the same order of magnitude as Apache, and we have studied them
previously, so we were intimately familiar with the processes involved and
had access to their change data. In all projects, the changes to the source
code follow a well-defined process. New software features that enhance the
functionality of the product are the fundamental design unit by which the
systems are extended. Changes that implement a feature or solve a problem
are sent to the development organization and go through a rigorous design
process. At the end of the design process the work is assigned to develop-
ers in the form of Modification Requests, which are information represent-
ing the work to be done to each module. To perform the changes, a devel-
oper makes the required modifications to the code, checks whether the changes
are satisfactory (within a limited context, i.e., without a full system build),
and then submits the MR. Code inspections, feature tests, integration, sys-
tem tests, and release to customer follow. Each of these stages may gener-
ate fix MRs, which are assigned to a developer by a supervisor who assigns
work according to developer availability and the type of expertise required.
In all of the considered projects the developers had ownership of the code
modules.

The five considered projects were related to various aspects of telecommuni-
cations. Project A involved software for a network element in an optical back-
bone network such as SONET or SDH. Project B involved call handling software
for a wireless network. The product was written in C and C++ languages. The
changes used in the analysis pertain to two years of mostly porting work to
make legacy software run on a new real-time operating system. Projects C, D,
and E represent Operations Administration and Maintenance support software
for telecommunications products. These projects were smaller in scale than
A and B.

3. STUDY 1: THE APACHE PROJECT

3.1 The Apache Development Process

Q1: What was the process used to develop Apache?
Apache began in February 1995 as a combined effort to coordinate exist-

ing fixes to the NCSA httpd program developed by Rob McCool. After several
months of adding features and small fixes, Apache developers replaced the old
server code base in July 1995 with a new architecture designed by Robert Thau.
Then all existing features, and many new ones, were ported to the new archi-
tecture and it was made available for beta test sites, eventually leading to the
formal release of Apache httpd 1.0 in January 1996.

The Apache software development process is a result of both the nature of
the project and the backgrounds of the project leaders, as described in Fielding
[1999]. Apache began with a conscious attempt to solve the process issues first,
before development even started, because it was clear from the very beginning
that a geographically distributed set of volunteers, without any traditional or-
ganizational ties, would require a unique development process in order to make
decisions.
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3.1.1 Roles and Responsibilities. The Apache Group (AG), the informal or-
ganization of people responsible for guiding the development of the Apache
HTTP Server Project, consisted entirely of volunteers, each having at least one
other “real” job that competed for their time. For this reason, none of the devel-
opers could devote large blocks of time to the project in a consistent or planned
manner, therefore requiring a development and decision-making process that
emphasized decentralized workspaces and asynchronous communication. AG
used email lists exclusively to communicate with each other, and a minimal
quorum voting system for resolving conflicts.

The selection and roles of core developers are described in Fielding [1999].
AG members are people who have contributed for an extended period of time,
usually more than six months, and are nominated for membership and then
voted on by the existing members. AG started with 8 members (the founders),
had 12 through most of the period covered, and now has 25. What we refer
to as the set of “core developers” is not identical to the set of AG members;
core developers at any point in time include the subset of AG that is active in
development (usually 4 to 6 in any given week) and the developers who are on
the cusp of being nominated to AG membership (usually 2 to 3).

Each AG member can vote on the inclusion of any code change, and has
commit access to CVS (if he or she desires it). Each AG member is expected
to use his or her judgment about committing code to the base, but there is
no rule prohibiting any AG member from committing code to any part of the
server. Votes are generally reserved for major changes that would affect other
developers who are adding or changing functionality.

Although there is no single development process, each Apache core devel-
oper iterates through a common series of actions while working on the software
source. These actions include discovering that a problem exists or new func-
tionality is needed, determining whether a volunteer will work on the issue,
identifying a solution, developing and testing the code within their local copy of
the source, presenting the code changes to the AG for review, and committing
the code and documentation to the repository. Depending on the scope of the
change, this process may involve many iterations before reaching a conclusion,
although it is generally preferred that the entire set of changes needed to solve
a particular problem or add a particular enhancement be applied in a single
commit.

3.1.2 Identifying Work to Be Done. There are many avenues through
which the Apache community can report problems and propose enhancements.
Change requests are reported on the developer mailing list, the problem report-
ing system (BUGDB), and the USENET newsgroups associated with the Apache
products. The developer discussion list is where new features and patches for
bugs are discussed and BUGDB is where bugs are reported (usually with no
patch). Change requests on the mailing list are given the highest priority. Since
the reporter is likely to be a member of the development community, the report
is more likely to contain sufficient information to analyze the request or con-
tain a patch to solve the problem. These messages receive the attention of all
active developers. Common mechanical problems, such as compilation or build

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.



318 • A. Mockus et al.

problems, are typically found first by one of the core developers and either fixed
immediately or reported and handled on the mailing list. In order to keep track
of the project status, an agenda file (“STATUS”) is stored in each product’s
repository, containing a list of high priority problems, open issues among the
developers, and release plans.

The second area for reporting problems or requesting enhancements is in
the project’s BUGDB, which allows anyone with Web or email access to enter
and categorize requests by severity and topic area. Once entered, the request
is posted to a separate mailing list and can be appended to via email replies,
or edited directly by the core developers. Unfortunately, due to some annoying
characteristics of the BUGDB technology, very few developers keep an active eye
on the BUGDB. The project relies on one or two interested developers to perform
periodic triage of the new requests: removing mistaken or misdirected problem
reports, answering requests that can be answered quickly, and forwarding items
to the developer mailing list if they are considered critical. When a problem from
any source is repaired, the BUGDB is searched for reports associated with that
problem so that they can be included in the change report and closed.

Another avenue for reporting problems and requesting enhancements is the
discussion on Apache-related USENET newsgroups. However, the perceived
noise level on those groups is so high that only a few Apache developers ever
have time to read the news. In general, the Apache Group relies on interested
volunteers and the community at large to recognize promising enhancements
and real problems, and to take the time to report them to the BUGDB or forward
them directly to the developer mailing list. In general, only problems reported
on released versions of the server are recorded in BUGDB.

In order for a proposed change actually to be made, an AG member must ulti-
mately be persuaded it is needed or desirable. “Showstoppers,” that is, problems
that are sufficiently serious (in the view of a majority of AG members) that a
release cannot go forward until they are solved, are always addressed. Other
proposed changes are discussed on the developer mailing list, and if an AG
member is convinced it is important, an effort will be made to get the work done.

3.1.3 Assigning and Performing Development Work. Once a problem or en-
hancement has found favor with the AG, the next step is to find a volunteer who
will work on that problem. Core developers tend to work on problems that are
identified with areas of the code with which they are most familiar. Some work
on the product’s core services, and others work on particular features that they
developed. The Apache software architecture is designed to separate the core
functionality of the server, which every site needs, from the features, which are
located in modules that can be selectively compiled and configured. The core
developers obtain an implicit “code ownership” of parts of the server that they
are known to have created or to have maintained consistently. Although code
ownership doesn’t give them any special rights over change control, the other
core developers have greater respect for the opinions of those with experience
in the area being changed. As a result, new core developers tend to focus on
areas where the former maintainer is no longer interested in working, or in the
development of new architectures and features that have no preexisting claims.
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After deciding to work on a problem, the next step is attempting to identify
a solution. In many cases, the primary difficulty at this stage is not finding a
solution, it is in deciding which of various possibilities is the most appropriate
solution. Even when the user provides a solution that works, it may have char-
acteristics that are undesirable as a general solution or it may not be portable
to other platforms. When several alternative solutions exist, the core developer
usually forwards the alternatives to the mailing list in order to get feedback
from the rest of the group before developing a solution.

3.1.4 Prerelease Testing. Once a solution has been identified, the developer
makes changes to a local copy of the source code and tests the changes on his or
her own server. This level of testing is more or less comparable to unit test, and
perhaps feature test in a commercial development, although the thoroughness
of the test depends on the judgment and expertise of the developer. There is
no additional testing (e.g., regression, system test) required prior to release,
although review is required before or after committing the change (see next
section).

3.1.5 Inspections. After unit testing, the core developer either commits the
changes directly (if the Apache guidelines [Apache Group] call for a commit-
then-review process) or produces a “patch” and posts it to the developer mailing
list for review. In general, changes to a stable release require review before being
committed, whereas changes to development releases are reviewed after the
change is committed. If approved, the patch can be committed to the source by
any of the developers, although in most cases it is preferred that the originator
of the change also perform the commit.

As described above, each CVS commit results in a summary of the changes
being automatically posted to the apache-cvs mailing list, including the com-
mit log and a patch demonstrating the changes. All of the core developers
are responsible for reviewing the apache-cvs mailing list to ensure that the
changes are appropriate. Most core developers do in fact review all changes.
In addition, since anyone can subscribe to the mailing list, the changes are
reviewed by many people outside the core development community, which
often results in useful feedback before the software is formally released as
a package.

3.1.6 Managing Releases. When the project nears a product release, one
of the core developers volunteers to be the release manager, responsible for
identifying the critical problems (if any) that prevent the release, determining
when those problems have been repaired and the software has reached a stable
point, and controlling access to the repository so that developers don’t inad-
vertently change things that should not be changed just prior to the release.
The release manager creates a forcing effect in which many of the outstanding
problem reports are identified and closed, changes suggested from outside the
core developers are applied, and most loose ends are tied up. In essence, this
amounts to “shaking the tree before raking up the leaves.” The role of release
manager is rotated among the core developers with the most experience with
the project.
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In summary, this description helps to address some of the questions about
how Apache development was organized, and provides essential background for
understanding our quantitative results. In the next section, we take a closer
look at the distribution of development, defect repair, and testing work in the
Apache project, as well as the code and process from the point of view of cus-
tomer concerns.

3.2 Quantitative Results

In this section we present results from several quantitative analyses of the
archival data from the Apache project. The measures we derive from these
data are well suited to address our research questions [Basili and Weiss 1984].
However, they may be unfamiliar to many readers since they are not software
metrics that are in wide use, (see, for example, Carleton et al. [1992] and Fenton
[1994]). For this reason, we provide data from several commercial projects, to
give the reader some sense of what kinds of results might be expected. Although
we picked several commercial projects that are reasonably close to Apache, none
is a perfect match, and the reader should not infer that the variation between
these commercial projects and Apache is due entirely to differences between
commercial and OSS development processes.

It is important to note that the server is designed so that new functionality
need not be distributed along with the core server. There are well over 100
feature-filled modules distributed by third parties, and thus not included in
our study. Many of these modules include more lines of code than the core
server.

3.2.1 The Size of the Apache Development Community

Q2: How many people wrote code for new Apache functionality? How many
people reported problems? How many people repaired defects?

The participation in Apache development overall was quite wide, with almost
400 individuals contributing code that was incorporated into a comparatively
small product. In order to see how many people contributed new functionality
and how many were involved in repairing defects, we distinguished between
changes that were made as a result of a problem report (fixes) and those that
were not (code submissions). We found that 182 people contributed to 695 fixes,
and 249 people contributed to 6,092 code submissions.

We examined the BUGDB to determine the number of people who submitted
problem reports. The problem reports come from a much wider group of partic-
ipants. In fact, around 3,060 different people submitted 3,975 problem reports,
whereas 458 individuals submitted 591 reports that subsequently caused a
change to the Apache code or documentation. The remaining reports did not
lead to a change because they did not contain sufficient detail to reproduce the
defect, the defect was already fixed or raised, the issue was related to incorrect
configuration of the product, or the defect was deemed to be not sufficiently
important to be fixed. Many of the reports were in regard to operating system
faults that were fixed by the system vendor, and a few others were simply in-
valid reports due to spam being directed at the bug reporting system’s email
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Fig. 1. The cumulative distribution of contributions to the code base.

interface. There were 2,654 individuals who submitted 3,384 reports that we
could not trace to a code change.

3.2.2 How Was Work Distributed Within the Development Community?

Q3: Were these functions carried out by distinct groups of people, that is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most of
the work?

First, we examine participation in generating code. Figure 1 plots the cumu-
lative proportion of code changes (vertical axis) versus the top N contributors
to the code base (horizontal axis).

The contributors are ordered by the number of MRs from largest to small-
est. The solid line in Figure 1 shows the cumulative proportion of changes
against the number of contributors. The dotted and dashed lines show the
cumulative proportion of added and deleted lines and the proportion of delta
(an MR generates one delta for each of the files it changes). These measures
capture various aspects of code contribution.

Figure 1 shows that the top 15 developers contributed more than 83% of the
MRs and deltas, 88% of added lines, and 91% of deleted lines. Very little code
and, presumably, correspondingly small effort is spent by noncore developers
(for simplicity, in this section we refer to all the developers outside the top 15
group as noncore). The MRs done by core developers are substantially larger, as
measured by lines of code added, than those done by the noncore group. This dif-
ference is statistically significant. The distribution of the MR fraction is signif-
icantly (p < 0.01) smaller (high values of the distribution function are achieved
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Fig. 2. Cumulative distribution of fixes.

for smaller values of the argument) than the distribution of added lines using
the Kolmogorov–Smirnov test. The Kolmogorov–Smirnov test is a nonparamet-
ric test that uses empirical distribution functions (such as shown in Figure 1).
We used a one-sided test with a null hypothesis that the distribution of the frac-
tion of MRs is not less than the distribution of the fraction of added lines. Each
of the two samples under comparison contained 388 observations representing
the fraction of MRs and the fraction of lines added by each developer.

Next, we looked separately at fixes only. There was a large (p-value< 0.01)
difference between distributions of fixes and code submissions. (We used a two-
sample test with samples of the fraction of MRs for fixes and code submissions.
There were 182 observations in the fix sample and 249 observations in the code
submission sample.) Fixes are shown in Figure 2. The scales and developer
order are the same as in Figure 1.

Figure 2 shows that participation of the wider development community is
more significant in defect repair than in the development of new functionality.
The core of 15 developers produced only 66% of the fixes. The participation rate
was 26 developers per 100 fixes and 4 developers per 100 code submissions, that
is, more than six times lower for fixes. These results indicate that despite broad
overall participation in the project, almost all new functionality is implemented
and maintained by the core group.

We inspected the regularity of developer participation by considering two
time intervals: before and after January 1, 1998. Forty-nine distinct developers
contributed more than one fix in the first period, and the same number again
in the second period. Only 20 of them contributed at least two changes in both
the first and second periods. One hundred and forty developers contributed at
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Table I. Statistics on Apache and Five Commercial Projects

MRs (K) Delta (K) Lines Added (K) Years Developers

Apache 6 18 220 3 388
A 3.3 129 5,000 3 101
B 2.5 18 1,000 1.5 91
C 1.1 2.8 81 1.3 17
D 0.2 0.7 21 1.7 8
E 0.7 2.4 90 1.5 16
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Fig. 3. Cumulative distribution of the contributions in two commercial projects.

least one code submission in the first period, and 120 in the second period. Of
those, only 25 contributed during both periods. This indicates that only a few
developers beyond the core group submit changes with any regularity.

Although developer contributions vary significantly in a commercial project,
our experience has been that the variations are not as large as in the Apache
project. Since the cumulative fraction of contribution is not commonly avail-
able in the programmer productivity literature we present examples of several
commercial projects that had a number of deltas within an order of magnitude
of the number Apache had, and were developed over a similar period. Table I
presents basic data about this comparison group. All projects come from the
telecommunications domain (see Sections 2.3 and 2.4). The first two projects
were written mostly in the C language, and the last three mostly in C++.

Figure 3 shows the cumulative fraction of changes for commercial projects A
and B. To avoid clutter, and because they do not give additional insights, we do
not show the curves for projects C, D, or E.
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Table II. Comparison of Code Productivity of Top Apache Developers and
Top Developers in Several Commercial Projects

Apache A B C D E

KMR/developer/year .11 .03 .03 .09 .02 .06
KLOC/developer/year 4.3 38.6 11.7 6.1 5.4 10

The top 15 developers in project B contributed 77% of the delta (compared
to 83% for Apache) and 68% of the code (compared to 88%). Even more extreme
differences emerge in porting of a legacy product done by project A. Here, only
46 and 33% of the delta and added lines are contributed by the top 15 developers.

We defined “top” developers in the commercial projects as groups of the
most productive developers that contributed 83% of MRs (in the case of KMR/
developer/year) and 88% of lines added (in the case of KLOC/developer/year).
We chose these proportions because they were the proportions we observed
empirically for the summed contributions of the 15 core Apache developers.

If we look at the amount of code produced by the top Apache developers
versus the top developers in the commercial projects, the Apache core develop-
ers appear to be very productive, given that Apache is a voluntary, part-time
activity and the relatively “lean” code of Apache (See Table II). Measured in
KLOC per year, they achieve a level of production that is within a factor of 1.5
of the top full-time developers in projects C and D. Moreover, the Apache core
developers handle more MRs per year than the core developers on any of the
commercial projects. (For reasons we do not fully understand, MRs are much
smaller in Apache than in the commercial projects we examined.)

Given the many differences among these projects, we do not want to make
strong claims about how productive the Apache core has been. Nevertheless,
one is tempted to say that the data suggest rates of production that are at least
in the same ballpark as commercial developments, especially considering the
part-time nature of the undertaking.

3.2.3. Who Reports Problems? Problem reporting is an essential part of
any software project. In commercial projects the problems are mainly reported
by build, test, and customer support teams. Who is performing these tasks in
an OSS project?

The BUGDB had 3,975 distinct problem reports. The top 15 problem re-
porters submitted only 213 or 5% of PRs. Almost 2,600 developers submitted
one report, 306 submitted two, 85 submitted three, and the maximum number
of PRs submitted by one person was 32.

Of the top 15 problem reporters only three are also core developers. It shows
that the significant role of system tester is reserved almost exclusively to the
wide community of Apache users.

One would expect that some users, like administrators of Web hosting shops,
would be reporting most of the problems. Given the total number of Web sites
(domain names) of over four million (according to the NetCraft survey), this
might indeed be so. The 3,000 individuals reporting problems represent less
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than 1% of all Apache installations if we assume the number of actual servers to
be one tenth of the number of Web sites (each server may host several Web sites).

3.2.4 Code Ownership

Q4: Where did the code contributors work in the code? Was strict code ownership
enforced on a file or module level?

Given the informal distributed way in which Apache has been built, we
wanted to investigate whether some form of “code ownership” has evolved. We
thought it likely, for example, that for most of the Apache modules, a single
person would write the vast majority of the code, with perhaps a few minor
contributions from others. The large proportion of code written by the core
group contributed to our expectation that these 15 developers most likely ar-
ranged something approximating a partition of the code, in order to keep from
making conflicting changes.

An examination of persons making changes to the code failed to support
this expectation. Out of 42 “.c” files with more than 30 changes, 40 had at
least two (and 20 had at least four) developers making more than 10% of the
changes. This pattern strongly suggests some other mechanism for coordinating
contributions. It seems that rather than any single individual writing all the
code for a given module, those in the core group have a sufficient level of mutual
trust that they contribute code to various modules as needed.

This finding verifies the previous qualitative description of code “ownership”
to be more a matter of recognition of expertise than one of strictly enforced
ability to make commits to partitions of the code base.

3.2.5 Defects

Q5: What is the defect density of Apache code?

First we discuss issues related to measuring defect density in an OSS
project and then present the results, including comparison with four commer-
cial projects.

How to Measure Defect Density. One frequently used measure is postrelease
defects per thousand lines of delivered code. This measure has several major
problems, however. First, “bloaty” code is generally regarded as bad code, but
it will have an artificially low defect rate. Second, many incremental deliveries
contain most of the code from previous releases, with only a small fraction of
the code being changed. If all the code is counted, this will artificially lower
the defect rate. Third, it fails to take into account how thoroughly the code is
exercised. If there are only a few instances of the application actually installed,
or if it is exercised very infrequently, this will dramatically reduce the defect
rate, which again produces an anomalous result.

We know of no general solution to this problem, but we strive to present
a well-rounded picture by calculating two different measures, and comparing
Apache to several commercial projects on each of them. To take into account
the incremental nature of deliveries we emulate the traditional measure with
defects per thousand lines of code added (KLOCA) (instead of delivered code). To
deal with the “bloaty” code issue we also compute defects per thousand deltas.
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Table III. Comparison of Defect Density Measures

Measure Apache A C D E

Postrelease Defects/KLOCA 2.64 0.11 0.1 0.7 0.1
Postrelease Defects/KDelta 40.8 4.3 14 28 10
Postfeature test Defects/KLOCA 2.64 * 5.7 6.0 6.9
Postfeature test Defects/KDelta 40.8 * 164 196 256

To a large degree, the second measure ameliorates the “bloaty” code problem,
because even if changes are unnecessarily verbose, this is less likely to affect the
number of deltas (independent of size of delta). We do not have usage intensity
data, but it is reasonable to assume that usage intensity was much lower for
all the commercial applications. Hence we expect that our presented defect
density numbers for Apache are somewhat higher than they would have been
if the usage intensity of Apache was more similar to that of commercial projects.
Defects, in all cases, are reported problems that resulted in actual changes to
the code.

If we take a customer’s point of view, we should be concerned primarily with
defects visible to customers, that is, postrelease defects, and not build and test-
ing problems. The Apache PRs are very similar in this respect to counts of
postrelease defects, in that they were raised only against official stable releases
of Apache, not against interim development “releases.”

However, if we are looking at defects as a measure of how well the devel-
opment process functions, a slightly different comparison is in order. There is
no provision for systematic system test in OSS generally, and for the Apache
project in particular. So the appropriate comparison would be to presystem test
commercial software. Thus, the defect count would include all defects found dur-
ing the system test stage or after (all defects found after “feature test complete”
in the jargon of the quality gate system).

Defect Density Results. Table III compares Apache to the previous com-
mercial projects. Project B did not have enough time in the field to accumu-
late customer-reported problems and we do not have presystem test defects
for Project A. The defect data for Apache was obtained from BUGDB, and for
commercial projects from ECMS as described in Sections 2.1 through 2.3. Only
defects resulting in a code change are presented in Table III.

The defect density in commercial projects A, C, D, and E varies substantially.
Although the user-perceived defect density of the Apache product is inferior to
that of the commercial products, the defect density of the code before system
test is much lower. This latter comparison may indicate that fewer defects are
injected into the code, or that other defect-finding activities such as inspections
are conducted more frequently or more effectively.

3.2.6 Time to Resolve Problem Reports

Q6: How long did it take to resolve problems? Were high priority problems re-
solved faster than low priority problems? Has resolution interval decreased over
time?
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Fig. 4. Proportion of changes closed within given number of days.

The distribution of Apache PR resolution interval is approximated by its
empirical distribution function that maps the interval in days to proportion
of PRs resolved within that interval. Fifty percent of PRs are resolved within
a day, 75% within 42 days, and 90% within 140 days. Further investigation
showed that these numbers depend on priority, time period, and whether the
PR causes a change to the code.

Priority. We operationalized priority in two ways. First we used the priority
field reported in the BUGDB database. Priority defined in this way has no effect
on interval. This is very different from commercial development, where priority
is usually strongly related to interval. In Apache BUGDB, the priority field is
entered by a person reporting the problem and often does not correspond to the
priority as perceived by the core developer team.

The second approach for operationalizing priority categorized the mod-
ules into groups according to how many users depended on them. PRs were
then categorized by the module to which they pertained. Such categories
tend to reflect priorities since they reflect number of users (and developers)
affected. Figure 4 shows comparisons among such groups of modules. The
horizontal axis shows the interval in days and the vertical axis shows the
proportion of MRs resolved within that interval. “Core” represents the ker-
nel, protocol, and other essential parts of the server that must be present
in every installation. “Most Sites” represents widely deployed features that
most sites will choose to include. PRs affecting either “Core” or “Most Sites”
should be given higher priority because they potentially involve many (or
all) customers and could potentially cause major failures. On the other hand,
“OS” includes problems specific to certain operating systems, and “Major
Optional” includes features that are not as widely deployed. From a customer’s
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point of view, “Core” and “Most Sites” PRs should be solved as quickly as possi-
ble, and the “OS” and “Major Optional” should generally receive lower priority.

The data (Figure 4) show exactly this pattern, with much faster close times
for the higher-priority problems. The differences between the trends in the two
different groups are significant (p-value< .01 using the Kolmogorov–Smirnov
test), whereas the trends within groups do not differ significantly. The docu-
mentation PRs show mixed behavior, with “low priority” behavior for intervals
under five days and “high priority” behavior otherwise. This may be explained
by the fact that documentation problems are not extremely urgent (the product
still operates), yet very important.

Reduction in Resolution Interval. To investigate if the problem resolution
interval improves over time, we broke the problems into two groups according
to the time they were posted (before or after January 1, 1997). The interval
was significantly shorter in the second period (p-value< .01). This indicates
that this important aspect of customer support improved over time, despite the
dramatic increase in the number of users.

3.3 Hypotheses

In this case study, we reported results relevant to each of our research questions.
Specifically, we reported onr the basic structure of the development process,r the number of participants filling each of the major roles,r the distinctiveness of the roles, and the importance of the core developers,r suggestive, but not conclusive, comparisons of defect density and productivity

with commercial projects, andr customer support in OSS.

Case studies such as this provide excellent fodder for hypothesis develop-
ment. It is generally inappropriate to generalize from a single case, but the
analysis of a single case can provide important insights that lead to testable
hypotheses. In this section, we cast some of our case study findings as hypothe-
ses, and suggest explanations of why each hypothesis might be true of OSS in
general. In the following section, we present results from Study 2, another case
study, which allows us to test several of these hypotheses. All the hypotheses
can be tested by replicating these studies using archival data from other OSS
developments.

Hypothesis 1: Open source developments will have a core of developers who
control the code base. This core will be no larger than 10 to 15 people, and will
create approximately 80% or more of the new functionality.

We base this hypothesis both on our empirical findings in this case, and
also on observations and common wisdom about maximum team size. The core
developers must work closely together, each with fairly detailed knowledge
of what other core members are doing. Without such knowledge they would
frequently make incompatible changes to the code. Since they form essentially

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.



Open Source Software Development • 329

a single team, they can be overwhelmed by communication and coordination
overhead issues that typically limit the size of effective teams to 10 to 15 people.

Hypothesis 2: For projects that are so large that 10 to 15 developers cannot
write 80% of the code in a reasonable time frame, a strict code ownership policy
will have to be adopted to separate the work of additional groups, creating, in
effect, several related OSS projects.

The fixed maximum core team size obviously limits the output of features
per unit time. To cope with this problem, a number of satellite projects, such
as Apache-SSL, were started by interested parties. Some of these projects pro-
duced as much or more functionality than Apache itself. It seems likely that
this pattern of core group and satellite groups that add unique functional-
ity targeted to a particular group of users, will frequently be adopted in such
cases.

In other OSS projects such as Linux, the kernel functionality is also small
compared to application and user interface functionalities. The nature of re-
lationships between the core and satellite projects remains to be investigated;
yet it might serve as an example of how to break large monolithic commercial
projects into smaller, more manageable pieces. We can see the examples where
the integration of these related OSS products is performed by a commercial
organization, for example, RedHat for Linux, ActivePerl for Perl, and CYGWIN
for GNU tools.

Hypothesis 3: In successful open source developments, a group larger by an
order of magnitude than the core will repair defects, and a yet larger group (by
another order of magnitude) will report problems.

Hypothesis 4: Open source developments that have a strong core of developers
but never achieve large numbers of contributors beyond that core will be able to
create new functionality but will fail because of a lack of resources devoted to
finding and repairing defects.

Many defect repairs can be performed with only a limited risk of interact-
ing with other changes. Problem reporting can be done with no risk of harmful
interaction at all. Since these types of work typically have fewer dependencies
among participants than does the development of new functionality, potentially
much larger groups can work on them. In a successful development, these ac-
tivities will be performed by larger communities, freeing up time for the core
developers to develop new functionality. Where an OSS development fails to
stimulate wide participation, either the core will become overburdened with
finding and repairing defects, or the code simply will never reach an acceptable
level of quality.

Hypothesis 5: Defect density in open source releases will generally be lower
than commercial code that has only been feature-tested, that is, received a com-
parable level of testing.

Hypothesis 6: In successful open source developments, the developers will also
be users of the software.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.



330 • A. Mockus et al.

In general, open source developers are experienced users of the software they
write. They are intimately familiar with the features they need, and what the
correct and desirable behavior is. Since the lack of domain knowledge is one
of the chief problems in large software projects [Curtis et al. 1988], one of the
main sources of error is eliminated when domain experts write the software. It
remains to be seen if this advantage can completely compensate for the absence
of system testing. In any event, where the developers are not also experienced
users of the software, they are highly unlikely to have the necessary level of
domain expertise or the necessary motivation to succeed as an OSS project.

Hypothesis 7: OSS developments exhibit very rapid responses to customer
problems.

This observation stems both from the “many eyeballs implies shallow bugs”
observation cited earlier [Raymond 1999], and the way that fixes are dis-
tributed. In the “free” world of OSS, patches can be made available to all
customers nearly as soon as they are made. In commercial developments, by
contrast, patches are generally bundled into new releases, and made available
according to some predetermined schedule.

Taken together, these hypotheses, if confirmed with further research on OSS
projects, suggest that OSS is a truly unique type of development process. It
is tempting to suggest that commercial and OSS practices might be fruitfully
hybridized, a thought which led us to collect and analyze the data reported in
Study 2 below.

Subsequent to our formulation of these hypotheses, we decided to replicate
this analysis on another open source project. We wanted to test these hypotheses
where possible, and we particularly wanted to look at a hybrid commercial/OSS
project in order to improve our understanding of how they could be combined,
and what the results of such a combination would be. Recent developments in
the marketplace brought forth several such hybrid projects, most notably the
Mozilla browser, based on the commercial Netscape browser source code.

In the next section, we use the methodology described above to characterize
Mozilla development, to answer the same basic questions about the develop-
ment process, and insofar as possible, test the hypotheses we developed in
Study 1.

4. STUDY 2: THE MOZILLA PROJECT

Mozilla has a process with commercial roots. In the face of stiff competition,
Netscape announced in January, 1998 that their Communicator product would
be available free of charge, and that the source code would also be free of
charge. Their stated hope was to emulate the successful development approach
of projects such as Linux. The group mozilla.org was chartered to act as a central
point of contact and “benevolent dictator” for the open source effort. Compared
to the Apache project, the work in the Mozilla project is much more diverse:
it supports many technologies including development tools (CVS, Bugzilla,
Bonsai, Tinderbox) that are not part of the Web browser. It also builds toolkit-
type applications, some of which are used to build a variety of products, such
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as Komodo from ActiveState. At the time of writing, it is unclear how well
Netscape’s open source strategy has succeeded.

There are many ways in which characteristics of open source and commercial
development might be combined, and Mozilla represents only a single point in a
rather large space of possibilities. It must be kept in mind, therefore, that very
different results might be obtained from different hybridization strategies. In
our conclusions, we describe what we see as the strengths and weaknesses of
the Mozilla approach, and suggest other strategies that seem promising.

We base our description of the Mozilla development process on references2

with a view from the inside [Baker 2000; Paquin and Tabb 1998], from the
outside [Oeschger and Boswell 2000], and from a historic perspective [Hecker
1999; Zawinski 1999].

4.1 The Mozilla Development Process

Q1: What was the process used to develop Mozilla?
Mozilla initially had difficulty attracting the level of outside contributions

that was expected. Mitchell Baker, “Chief Lizard Wrangler” of mozilla.org, ex-
pressed the view that “the public expectations for the Mozilla project were
set astoundingly high. The number of volunteers participating in the Mozilla
project did not meet those expectations. But there has been an important group
of volunteers providing critical contributions to the project since long before the
code was ready to use.” After one year, one of the project leaders quit, citing lack
of outside interest because of the large size, cumbersome architecture, absence
of a working product, and lack of adequate support from Netscape.

However, after the documentation was improved, tutorials were written, and
the development tools and processes refined, participation started slowly to in-
crease. Some documents now available address the entire range of outsider
problems (such as Oeschger and Boswell [2000]). Also, the fact that the de-
velopment tools were exported to be used in commercial software projects at
Hewlett Packard, Oracle, Red Hat, and Sun Microsystems [Williams 2000], is
evidence of their high quality and scalability. At the time of this writing, Mozilla
is approaching its first release “1.0.”

Mozilla has substantial documentation on the architecture and the technolo-
gies used, and has instructions for building and testing. It also has Web tools
to provide code cross-reference (LXR) and change presentation (Bonsai) sys-
tems. A brief point-by-point comparison of the Apache and Mozilla processes
is presented in Table VIII in the Appendix. Below we describe the necessary
details.

4.1.1 Roles and Responsibilities. Mozilla is currently operated by the
mozilla.org staff (12 members at the time of this writing) who coordinate and
guide the project, provide process, and engage in some coding. Only about 4 of
the core members spend a significant part of their time writing code for the
browser application. Others have roles dedicated to such things as community

2[Ang and Eich 2000; Baker 2000; Eich 2001; Hecker 1999; Howard 2000; Mozilla Project; Oeschger
and Boswell 2000; Paquin and Tabb 1998; Williams 2000; Yeh 1999; Zawinski 1999].
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QA, milestone releases, Web site tools and maintenance, and tools such as
Bugzilla that assist developers. Although the external participation (beyond
Netscape) has increased over the years, even some external people (e.g., from
Sun Microsystems) are working full-time, for pay, on the project.

Decision-making authority for various modules is delegated to individuals in
the development community who are close to that particular code. People with
an established record of good quality code can attempt to obtain commit access
to the CVS Repository. Directories and files within a particular module can be
added or changed by getting the permission of the module owner. Adding a
new module requires the permission of mozilla.org. Much responsibility is del-
egated by means of distributed commit access and module ownership, however,
mozilla.org has the ultimate decision-making authority, and retains the right
to designate and remove module owners, and to resolve all conflicts that arise.

4.1.2 Identifying Work to Be Done. Mozilla.org maintains a roadmap doc-
ument [Eich 2001] that specifies what will be included in future releases, as
well as dates for which releases are scheduled. Mozilla.org determines content
and timing, but goes to considerable lengths to ensure that the development
community is able to comment on and participate in these decisions.

Anyone can report bugs or request enhancements. The process and hints are
presented in Mozilla Project. The bug reporting and enhancement request pro-
cess uses the Bugzilla problem-reporting tool, and requires requesters to set up
an account on the system. Bugzilla also has tools that allow the bug reporter
to see the most recent bugs, and if desired, to search the entire database of
problem reports. Potential bug reporters are urged to use these tools to avoid
duplicate bug reports. In addition, bug reporters are urged to come up with the
simplest Web page that would reproduce the bug, in order to expedite and sim-
plify the bug’s resolution. Bugzilla provides a detailed form to report problems
or describe the desired enhancement.

4.1.3 Assigning and Performing Development Work. The mozilla.org mem-
bers who write browser code appear to focus on areas where they have expertise
and where work is most needed to support upcoming releases. The development
community can browse Bugzilla to identify bugs or enhancements on which they
would like to work. Fixes are often submitted as attachments to Bugzilla prob-
lem reports. Developers can mark Bugzilla items with a “helpwanted” keyword
if they think an item is worth doing but don’t themselves have the resources
or all the required expertise. Discussions can also be found in Mozilla news
groups, which may give development community members ideas about where
to contribute. Mozilla.org members may use the Mozilla Web pages to note
particular areas where help is needed. When working on a particular Bugzilla
item, developers are encouraged to record that fact in Bugzilla in order to avoid
duplication of effort.

4.1.4 Prerelease Testing. Mozilla.org performs a daily build, and runs a
daily minimal “smoke test” on the build for several major platforms, in order
to ensure the build is sufficiently stable to allow development work on it to
proceed. If the build fails, “people get hassled until they fix the bits they broke.”
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If the smoke test identifies bugs, they are posted daily so that developers are
aware of any serious problems in the build.

Mozilla currently has six product area test teams that take responsibility for
testing various parts or aspects of the product, such as standards compliance,
mail/news client, and internationalization. Netscape personnel are heavily rep-
resented among the test teams, but the teams also include mozilla.org person-
nel, and many others. The test teams maintain test cases and test plans, as
well as other materials such as guidelines for verifying bugs and troubleshoot-
ing guides.

4.1.5 Inspections. Mozilla uses two stages of code inspections: by module
owners who review a patch in the context of the module and by a smaller des-
ignated group (referred to as superreviewers, and highly accomplished techni-
cally) who review a patch for its interaction with the codebase as a whole before
it is checked in.

4.1.6 Managing Releases. Mozilla runs a continuous build process
(Tinderbox) that shows what parts of the code have issues for certain builds
and under certain platforms. It highlights the changes and their authors. It
also produces binaries nightly and issues “Milestones” approximately monthly.
As Baker [2000] points out, “the Milestone releases involve more than Tinder-
box. They involve project management decisions, usually a code freeze for a few
days, a milestone branch, eliminating ‘stop-ship’ bugs on the branch and a bit of
polishing. The decision when a branch is ready to be released as a Milestone is
a human one, not an automated Tinderbox process. These Milestone decisions
are made by a designated group, known as ‘drivers@mozilla.org,’ with input
from the community.”

4.2 Quantitative Results

In this section, we report results that address the same six basic questions
we answered with respect to Apache in the previous section. There are some
differences between the projects that must be understood in order to compare
Mozilla to Apache in ways that make sense.

First, Mozilla is a much bigger project. As shown in Table IV, Apache had
about 6,000 MRs, 18,000 delta, and 220,000 lines of code added. In contrast,
Mozilla consists of 78 modules (according to the Mozilla Project at the time of
this writing), some of which are much larger than the entire Apache project. The
following analyses are based on seven of the Mozilla modules (for a description of
the extraction of Mozilla data and selection of these modules, see Section 2.2).

4.2.1 The Size of the Mozilla Development Community

Q2: How many people wrote code for new functionality? How many people re-
ported problems? How many people repaired defects?

By examining all change login and comment records in CVS we found 486
people who contributed code and 412 who contributed code to PR fixes that were
incorporated. Numbers of contributors to individual modules are presented in
Table V.
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Table IV. Sizes of Apache, Five Commercial Projects, and Seven Mozilla Modules

MRs (K) Delta (K) Lines Added (K) Years Developers

Apache 6 18 220 3 388
A 3.3 129 5,000 3 101
B 2.5 18 1,000 1.5 91
C 1.1 2.8 81 1.3 17
D 0.2 0.7 21 1.7 8
E 0.7 2.4 90 1.5 16
/layout 12.7 42 800 2.6 174
/js 4.6 14 308 2.6 127
/rdf 4.1 12 274 2 123
/netwerk 3.2 10 221 1.6 106
/editor 2.9 8 203 2 118
/intl 2 5 118 1.8 87
/xpinstall 1.9 5 113 1.7 102

Table V. Population of Contributors to Seven Mozilla Modules

Number of people
whose code
submissions were
included in the code
base

Number of
people whose
fixes were
added to code
base

Number of
people who
reported bugs
that resulted in
code changes

Number of
people who
reported
problems
(estimated)

/layout 174 129 623 3035
/js 127 51 147 716
/rdf 123 79 196 955
/netwerk 106 74 252 1228
/editor 118 85 176 857
/intl 87 47 119 579
/xpinstall 102 64 141 687

Table V presents numbers of people who contributed code submissions, prob-
lem fixes, and who reported problems. Because some problem reports do not
correspond to a module in cases when the fix was not created or committed, we
provide numbers for people who reported problems resulting in a fix and esti-
mate of the total number using the overall ratio in Mozilla of the total number
of people who reported PRs divided by the number of people who reported PRs
that resulted in code changes. Based on the Bugzilla database, 6,837 people
reported about 58,000 PRs, and 1,403 people reported 11,616 PRs that can be
traced to changes to the code. To estimate the total number of people reporting
PRs for a module (rightmost column) we multiplied the preceding column by
6837/1403.

4.2.2 External Participation. Because Mozilla began as a commercial
project, and only later adopted an open source approach, in order to under-
stand the impact of this change it is essential to understand the scope and
nature of external participation. To this end, we examined the extent and the
impact of external participation in code contributions, fix contributions, and
defect reporting.
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Fig. 5. Trends of external participation in Mozilla project.

Figure 5 plots external participation over time. The measures include the
fraction of external developers and the fraction of MRs, delta, and number of
added lines contributed monthly by external developers.

Figure 5 shows gradually increasing participation over time, leveling off in
the second half of 2000. It is worth noting that outside participants tend, on
average, to contribute fewer changes and less code relative to internal partici-
pants. It might reflect the part-time nature of the external participation.

Much larger external participation may be found in problem reporting. About
95% of the 6,873 people who created PRs were external, and they reported 53%
of the 58,000 PRs.

Q3: Were these functions carried out by distinct groups of people; that is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most of
the work?

Figure 6 shows cumulative distribution contributions (as for Apache in
Figure 1). The developer participation does not appear to vary as much as
in the Apache project. In particular, Mozilla development had much larger core
groups relative to the total number of participants. The participation curve
for Mozilla is more similar to the curves of commercial projects presented in
Figure 3.

The problem reporting participation was very uniform in Apache, but con-
tributions vary substantially in Mozilla, with 50% of PRs reported by just 113
people, with the top person reporting over 1,000 PRs (compared to Apache,

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.



336 • A. Mockus et al.

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of individuals

/layout
/js
/rdf
/netwerk
/editor
/intl
/xpinstall

Fig. 6. The cumulative distribution of contributions to the code base for five Mozilla modules.

Table VI. Comparison of Productivity of the “Top” Developers in
Selected Mozilla Modules

Module KMR/Dev/Year KLOCA/Dev/Year Size of Core Team

/layout 0.17 11 35
/js 0.13 16 24
/rdf 0.11 11 26
/netwerk 0.13 8.4 24
/editor 0.09 8 25
/intl 0.08 7 22
/xpinstall 0.07 6 22

where the top reporter submitted only 32 PRs). Forty-six of these 113 PR sub-
mitters did not contribute any code, and only 25 of the 113 were external. Unlike
Apache, where testing was conducted almost exclusively by the larger commu-
nity, and not the core developers, there is very substantial internal problem
reporting in Mozilla, with a significant group of dedicated testers. Neverthe-
less, external participants also contribute substantially to problem reporting.

Given that most of the core developers work full-time on the project, we might
expect the productivity figures to be similar to commercial projects (which, when
measured in deltas or lines added, were considerably higher than for Apache).
In fact, the productivity of Netscape developers does appear to be quite high,
and even exceeds the productivity of the commercial projects that we consider
(see Table VI).

As before, we defined core or “top” developers in each module as groups
of the most productive developers that contributed 83% of MRs (in the
case of KMR/developer/year) and 88% of lines added (in the case of KLOC/
developer/year). There was one person in the “core” teams of all seven selected
modules and 38 developers in at least two “core” teams. Almost two-thirds (64
out of 102) of the developers were only in a single core team of the selected
modules.
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Although the productivity numbers might be different due to numer-
ous differences between projects, the data certainly appear to suggest that
productivity in this particular hybrid project is comparable to or better than
the commercial projects we examined.

4.2.3 Code Ownership

Q4: Where did the code contributors work in the code? Was strict code ownership
enforced on a file or module level?

For the Apache project, we noted that the process did not include any “official”
code ownership; that is, there was no rule that required an owner to sign off
in order to commit code to an owned file or module. We looked at who actually
committed code to various modules in order to try to determine if a sort of de
facto code ownership had arisen in which one person actually committed all or
nearly all the code for a given module. As we reported, we did not find a clear
ownership pattern.

In Mozilla, on the other hand, code ownership is enforced. According to
Howard [2000] and Mozilla Project, the module owner is responsible for:
“fielding bug reports, enhancement requests, patch submissions, and so on.
The owner should facilitate good development, as defined by the developer
community.” Also, “before code is checked in to the CVS Repository it must
be reviewed by the appropriate module owner and possibly peers.” To manage
checkin privileges Mozilla uses a Web-based tool called despot.

Because of this pattern of “enforced ownership,” we did not believe that we
would gain much by looking at who actually contributed code to which module,
since those contributions all had to be reviewed and approved by the module
owner. Where there is deliberate, planned code ownership, there seemed to
be no purpose to seeing if de facto ownership had arisen.

4.2.4 Defects

Q5: What is the defect density of Mozilla code?
Because Mozilla has yet to have a nonbeta release, all PRs may be considered

to be postfeaturetest (i.e., prerelease). The defect density appears to be similar
to, or even slightly lower than Apache (see Table VII below). The defect density,
whether measured per delta or per thousand lines of code, is much smaller than
the commercial projects if one counts all defects found after the feature test.
The highest defect density module has substantially lower defect density than
any of the commercial projects, postfeature test. Compared to the postrelease
defect densities of the commercial products, on the other hand, Mozilla has
much higher defect densities (see Table III).

Since the Mozilla project has yet to issue its first nonbeta release, we can-
not assess postrelease defect density at the time of this writing. Although these
Mozilla results are encouraging, they are difficult to interpret definitively. With-
out data on postrelease defects, it is difficult to know if the postfeature test
densities are low because there really are relatively few defects in the code, or
because the code has not been exercised thoroughly enough. As we report above,
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Table VII. Comparison of Post-Feature-Test
Defect Density Measures

Module #PR/KDelta #PR/KLOC Added

Apache 40.8 2.6
C 164 5.7
D 196 6.0
E 256 6.9
/layout 51 2.8
/js 19 0.7
/rdf 27 1.4
/netwerk 42 3.1
/editor 44 2.5
/intl 20 1.6
/xpinstall 56 4.0

however, over 6,000 people have reported at least one problem with Mozilla, so
we are inclined to believe that the low defect densities probably reflect relatively
low defect code, rather than code that has not been exercised.

4.2.5 Time to Resolve Problem Reports

Q6: How long did it take to resolve problems? Were high priority problems re-
solved faster than low priority problems? Has resolution interval decreased over
time?

Out of all 57,966 PRs entered in the Bugzilla database, 99% have a valid
creation date and status change date; 85% of these have passed through the
state “RESOLVED” and 46% of these have resolution “FIXED” indicating that
fix was checked into the codebase; 83% “FIXED” bugs have passed through the
state “VERIFIED” indicating that inspectors agreed with the fix.

Figure 7 plots the cumulative distribution of the interval for all resolved
PRs broken down by whether the PR resolution is “FIXED,” by priority, by the
module, and by date (made before or after January 1, 2000). All four figures
show that the median resolution interval is much longer than for Apache. We
should note that half of the “FIXED” PRs had 43% or more of their resolution
interval spent after the stage RESOLVED and before the stage VERIFIED.
It means that mandatory inspection of changes in Mozilla almost doubles the
PR resolution interval. But this does not completely account for the difference
between Apache and Mozilla intervals; half of the observed Mozilla interval is
still significantly longer than the Apache interval.

Half of the PRs that result in fixes or changes are resolved in less than
30 days, and half of the PRs that do not result in fixes are resolved in less than
15 days. This roughly corresponds to the inspection overhead (inspections are
only done for FIXED PRs).

There is a significant relationship between interval and priority. Half of the
PRs with priority P1 and P3 are resolved in 30 days or less and half of priority
P2 PRs are resolved in 80 days or less, whereas the median interval of P4 and P5
PRs exceeds 100 days. The recorded priority of PRs did not matter in the Apache
context, but the “priority” implicitly determined by affected functionality had an
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Fig. 7. Problem resolution interval.

effect on the interval. These results appear to indicate that Mozilla participants
were generally sensitive to PR priority, although it is not clear why priority P3
PRs were resolved so quickly.

There is substantial variation in the PR resolution interval by module.
The PRs have a median interval of 20 days for /editor and /js modules and
50 days for /layout and /netwerk modules. This is in contrast to Apache where
modules could be grouped by the number of users they affect. Furthermore,
/editor affects fewer users than /layout (2-D graphics), yet resolution of the lat-
ter problems is slower, unlike in Apache, where the resolution time decreased
when the number of affected users increased.

The resolution interval decreases drastically between the two periods, pos-
sibly because of the increasing involvement of external developers or maturity
of the project. We observed a similar effect in Apache.

5. HYPOTHESES REVISITED

Hypothesis 1: Open source developments will have a core of developers who
control the code base. This core will be no larger than 10 to 15 people, and will
create approximately 80% or more of the new functionality.

Hypothesis 2: For projects that are so large that 10 to 15 developers cannot
write 80% of the code in a reasonable time frame, a strict code ownership policy
will have to be adopted to separate the work of additional groups, creating, in
effect, several related OSS projects.
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These hypotheses are supported by the Mozilla data. The essential insight
that led to these hypotheses is that when several people work on the same
code, there are many potential dependencies among their work items. Managing
these dependencies can be accomplished informally by small groups of people
who know and trust each other, and communicate frequently enough so that
each is generally aware of what the others are doing.

At some point, perhaps around an upper limit of 10 to 15 people, this method
of coordinating the work becomes inadequate. There are too many people in-
volved for each to be sufficiently aware of the others. The core groups for the
various modules in Mozilla (with module size comparable to Apache in the range
of 3 to 12 K delta per year and of duration longer than one year) range from 22
to 36, and so are clearly larger than we contemplated in these hypotheses. And,
much as we predicted, a form of code ownership was adopted by the various
Mozilla teams.

There are at least two ways, however, that the Mozilla findings cause us to
modify these hypotheses. Although the size of the project caused the creation
of multiple separated project “teams” as we had anticipated (e.g., Chatzilla and
other projects that contribute code to a “/extensions” directory), we observe code
ownership on a module-by-module basis, so that the code owner must approve
any submission to the owned files. This uses ownership to create a mecha-
nism whereby a single individual has sufficient knowledge and responsibility
to guard against conflicts within the owned part of the code. There is no “core”
group in the Apache sense, where everyone in the privileged group is permitted
to commit code anywhere.

This leads to a further point that not only did the Mozilla group use ownership
in ways we did not quite expect, they used other mechanisms to coordinate the
work that are independent of ownership. Specifically, they had a more concretely
defined process, and they had a much stricter policy regarding inspections. Both
of these mechanisms serve also to maintain coordination among different work
items. Based on these additional findings, we would rephrase Hypotheses 1 and
2 as follows.

Hypothesis 1a: Open source developments will have a core of developers who
control the code base, and will create approximately 80% or more of the new
functionality. If this core group uses only informal ad hoc means of coordinating
their work, the group will be no larger than 10 to 15 people.

Hypothesis 2a: If a project is so large that more than 10 to 15 people are
required to complete 80% of the code in the desired time frame, then other mech-
anisms, rather than just informal ad hoc arrangements, will be required in order
to coordinate the work. These mechanisms may include one or more of the fol-
lowing: explicit development processes, individual or group code ownership, and
required inspections.

Hypothesis 3: In successful open source developments, a group larger by an
order of magnitude than the core will repair defects, and a yet larger group (by
another order of magnitude) will report problems.

For the modules that we report on in Mozilla, we observed large differences
between the size of core team (22 to 35), the size of the communities that submit
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bug fixes that are incorporated into the code (47 to 129), and that find and re-
port bugs that are fixed (119 to 623), and estimated the total population of
people that report defects (600 to 3,000). These differences are substantial, and
in the direction of the hypothesis, but are not as large as in Apache. In par-
ticular, the group that adds new functionality is larger than we would have
expected. This is likely due to the hybrid nature of the project, where the
core developers are operating in a more industrial mode, and have been as-
signed to work full-time on the project. Since Mozilla does not deviate radi-
cally from the prediction, and since the prediction was meant to apply only to
pure open source projects, we don’t believe that it requires modification at this
time.

Hypothesis 4: Open source developments that have a strong core of developers
but never achieve large numbers of contributors beyond that core will be able to
create new functionality but will fail because of a lack of resources devoted to
finding and repairing defects.

We were not able to test this hypothesis with the Mozilla data, since it did
in fact achieve large numbers of contributors.

Hypothesis 5: Defect density in open source releases will generally be lower
than commercial code that has only been feature-tested, that is, received a com-
parable level of testing.

The defect density of the Mozilla code was comparable to the Apache code,
hence we may tentatively regard this hypothesis as supported. In Mozilla, there
appears to be a sizeable group of people who specialize in reporting defects—an
activity corresponding to testing activity in commercial projects. Additionally,
as we mentioned above, Mozilla has a half-dozen test teams that maintain test
cases, test plans, and the like. The project also uses a sophisticated problem-
reporting tool, Bugzilla, that keeps track of top problems to speed problem
reporting and reduce duplicate reports, and maintains continuous multiplat-
form builds. Inspections, testing, and better tools to support defect reporting
apparently compensate for larger and more complex code. We must be very
cautious in interpreting these results, however, since it is possible that large
numbers of defects will be found when the product is released.

Hypothesis 6: In successful open source developments, the developers will also
be users of the software.

The reasoning behind this hypothesis was that low defect densities are
achieved because developers are users of the software, hence they have con-
siderable domain expertise. This puts them at a substantial advantage relative
to many commercial developers who vary greatly in their domain expertise. This
certainly appears to be true in the Mozilla case. Although we did not have data
on Mozilla use by Mozilla developers, it is wildly implausible to suggest that
the developers were not experienced browser users, hence, “domain experts” in
the sense of this hypothesis.

Hypothesis 7: OSS developments exhibit very rapid responses to customer
problems.
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In the hybrid Mozilla case, response times are much longer than in the case
of Apache. This may be due to the more commercial-like aspects of development,
that is, the need to inspect, to submit the code through the owner, and so on. It
also uses a 30-day release (milestone) cycle that more closely resembles com-
mercial processes than the somewhat more rapid Apache process. Furthermore,
the Mozilla product is still in the beta stage, and that might partly explain
slower response times. Hence, it is not clear that the Mozilla data bear on this
hypothesis, as long as it is taken to apply only to OSS, not to hybrid projects.

It should be noted that rapid responses to customer problems together with
low defect density may significantly increase the availability of OSS software by
minimizing the number and shortening the duration of downtime of customer’s
systems.

6. CONCLUSION: HYBRID HYPOTHESES

As we pointed out in the introduction, there are many ways in which elements
of commercial and open source processes could be combined, and Mozilla rep-
resents only a single point in that space. The essential differences have to do
with coordination, selection, and assignment of the work.

Commercial development typically uses a number of coordination mecha-
nisms to fit the work of each individual into the project as a whole (see, e.g.,
Grinter et al. [1999] and Herbsleb and Grinter [1999]). Explicit mechanisms in-
clude such things as interface specifications, processes, plans, staffing profiles,
and reviews. Implicit mechanisms include knowledge of who has expertise in
what area, customs, and habits regarding how things are done. In addition, of
course, it is possible to substitute communication for these mechanisms. So, for
example, two people could develop interacting modules with no interface spec-
ification, merely by staying in constant communication with each other. The
“communication-only” approach does not scale, of course, as size and complexity
quickly overwhelm communication channels. It is always necessary, however,
as the default means of overcoming coordination problems, as a way to recover
if unexpected events break down the existing coordination mechanisms, and to
handle details that need to be worked out in real-time.

Apache adopts an approach to coordination that seems to work extremely
well for a small project. The server itself is kept small. Any functionality beyond
the basic server is added by means of various ancillary projects that interact
with Apache only through Apache’s well-defined interface. That interface serves
to coordinate the efforts of the Apache developers with anyone building external
functionality, and does so with minimal ongoing effort by the Apache core group.
In fact, control over the interface is asymmetric, in that the external projects
must generally be designed to what Apache provides. The coordination concerns
of Apache are thus sharply limited by the stable asymmetrically controlled
interface.

The coordination necessary within this sphere is such that it can be success-
fully handled by a small core team using primarily implicit mechanisms, for
example, a knowledge of who has expertise in what area, and general commu-
nication about what is going on, and who is doing what, when. When such mech-
anisms are sufficient to prevent coordination breakdowns, they are extremely
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efficient. Many people can contribute code simultaneously, and there is no wait-
ing for approvals, permission, and so forth, from a single individual. The core
people just do what needs to be done. The Apache results show the benefits in
speed, productivity, and quality.

The benefit of the larger open source community for Apache is primarily in
those areas where coordination is much less of an issue. Bug fixes occasionally
become entangled in interdependencies; however, most of the effort in bug fixing
is generally in tracking down the source of the problem. Investigation, of course,
cannot cause coordination problems. The tasks of finding and reporting bugs
are completely free of interdependencies, in the sense that they do not involve
changing the code.

The Mozilla approach has some, but not all, of the Apache-style OSS benefits.
The open source community has taken over a significant portion of the bug
finding and fixing, as in Apache, helping with these low-interdependency tasks.
However, the Mozilla modules are not as independent from one another as the
Apache server is from its ancillary projects. Because of the interdependence
among modules, considerable effort (i.e., inspections) needs to be spent in order
to ensure that the interdependencies do not cause problems. In addition, the
modules are too large for a team of 10 to 15 to do 80% of the work in the desired
time. Therefore, the relatively free-wheeling Apache style of communication
and implicit coordination is likely not feasible. The larger Mozilla core teams
must have more formal means of coordinating their work, which in their case
means a single module owner who must approve all changes to the module.
These characteristics produce high productivity and low defect density, much
like Apache, but relatively long development intervals.

The relatively high level of module interdependence may be a result of many
factors. For example, the commercial legacy distinguishes Mozilla from Apache
and many other purely open source projects. One might speculate that in com-
mercial development, feature content is driven by market demands, and for
many applications (such as browsers) the market generates great pressure for
feature richness. When combined with extreme schedule pressure, it is not un-
reasonable to expect that the code complexity will be high and that modularity
may suffer. This sort of legacy may well contribute to the difficulty of coordi-
nating Mozilla and other commercial-legacy hybrid projects.

It may be possible to avoid this problem under various circumstances, such
as.r new hybrid projects that are set up like OSS projects, with small teams own-

ing well-separated modules;r projects with OSS legacy code; andr projects with a commercial legacy, but where modules are parsed in a way
that minimizes module-spanning changes (see Mockus and Weiss [2001] for
a technique that accomplishes this).

Given this discussion, one might speculate that overall, in OSS projects,
low postrelease defect density and high productivity stem from effective use of
the open source community for the low-interdependence bug finding and fixing
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tasks. The fact that Mozilla was apparently able to achieve defect density levels
like Apache’s argues that even when an open source effort maintains much of
the machinery of commercial development (including elements of planning,
documenting the process and the product, explicit code ownership, inspections,
and testing), there is substantial potential benefit. In particular, defect density
and productivity both seem to benefit from recruiting an open source community
of testers and bug fixers. Speed, on the other hand, seems to require highly
modularized software and small highly capable core teams and the informal
style of coordination this permits.

Interestingly, the particular way that the core team in Apache (and, we as-
sume, many other OSS projects) is formed may be another of the keys to their
success. Core members must be persistent and very capable to achieve core
status. They are also free, while they are earning their core status, to work
on any task they choose. Presumably they will try to choose something that is
both badly needed and where they have some specific interest. While working
in this area, they must demonstrate a high level of capability, and they must
also convince the existing core team that they would make a responsible, pro-
ductive colleague. This is in contrast to most commercial development, where
assignments are given out that may or may not correspond to a developer’s
interests or perceptions of what is needed.

We believe that for some kinds of software, in particular those where devel-
opers are also highly knowledgeable users, it would be worth experimenting,
in a commercial environment, with OSS-style “open” work assignments. This
approach implicitly allows new features to be chosen by the developers/users
rather than a marketing or product management organization.

We expect that time and future research will further test the above hypothe-
ses and will demonstrate new approaches that would elegantly combine the
best technologies from all types of software development environments. Even-
tually, we expect such work to blur distinctions between the commercial and
OSS processes reported in this article.

APPENDIX

Table VIII. Comparison of Apache and Mozilla Processes

Apache Mozilla
Scope The Apache project we examined

includes only the Apache server.
The Mozilla project includes the browser,
as well as a number of development tools
and a toolkit. Some of these projects are
as large or larger than the Apache server.

Roles and
Responsibilities

The Apache Group (AG) currently
has about 25 members, all of
whom are volunteers. They can
commit code anywhere in the
server. The core development
group includes the currently
active AG members as well as
others who are very active and
under consideration for
membership in AG.

Mozilla.org has 12 members, who are
assigned to this work full-time. Several
spend considerable time coding, but most
play support and coordination roles.
Many others have substantial
responsibility, e.g., owners of the
approximately 78 modules, and leaders of
the 6 test teams. Many of the
non-mozilla.org participants are also paid
to spend time on Mozilla development.
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Identifying
work to be done

Since only the AG has commit
access to the code, they control all
changes. The process is an open
one, however, in the sense that
others can propose fixes and
changes, comment on proposed
changes, and advocate them to
the AG.

Anyone can submit a problem report or
request an enhancement, but mozilla.org
controls the direction of the project. Much
of this authority is delegated to module
owners and test teams, but mozilla.org
reserves the right to determine module
ownership and to resolve conflicts.

Assigning and
performing
development
work

Anyone can submit patches,
choosing to work on his or her
own enhancements or fixes, or
responding to the developer
mailing list, news group, or
BUGDB. Core developers have
“unofficial” areas of expertise
where they tend to do much of the
work. Other core developers tend
to defer to experts in each area.

Developers make heavy use of the
Bugzilla change management tool to find
problems or enhancements on which to
work. They are asked to mark changes
they choose to work on in order to avoid
duplication of effort. Developers can use
Bugzilla to request help on a particular
change, and to submit their code.

Prerelease
testing

Developers perform something
like commercial unit and feature
testing on a local copy.

Minimal “smoke screen” tests are
performed on daily builds. There are six
test teams assigned to parts of the
product. They maintain test cases,
guidelines, training materials, etc., on the
mozilla.org web site.

Inspections All AG members generally review
all changes. They are also
distributed to the entire
development community who also
frequently submit comments. In
general, inspections are done
before commits on stable
releases, and after commits on
development releases.

All changes undergo two stages of
inspections, one at the module level, and
one by a member of the highly qualified
“super reviewer” group. Module owners
must approve all changes in their
modules.

Managing
releases

The job of release manager
rotates through experienced
members of AG. Critical problems
are identified; access to code is
restricted. When the release
manager determines that critical
problems are resolved and code is
stable, the code is released.

Mozilla has daily builds and “Milestone”
releases approximately monthly. The code
is frozen for a few days prior to a
Milestone release; critical problems are
resolved. A designated group at
mozilla.org is responsible for Milestone
decisions.
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