
Hybrid Innovation: How Does the Collaboration Between the
FLOSS Community and Corporations Happen?

Yuwei Lin
yuwei {at} ylin {dot} org

The paper will appear in the journal 'Knowledge, Technology and Policy' forthcoming in
summer year 2005. Please refer your citation to that reference.

Abstract

Unlike innovation based on a strong professional culture involving close collaboration
between professionals in academia and/or corporations, the current Free/Libre Open
Source Software (FLOSS) development entails a global knowledge network, which
consists of 1) a heterogeneous community of individuals and organisations who do not
necessarily have professional backgrounds in computer science but competent skills to
understand programming and working in a public domain; 2) corporations. This paper
highlights the importance of the hybrid form of developing and implementing software,
and also identifies several key factors shaping the collaboration between OSS firms and
the community.

Author Bio

Yuwei Lin, Taiwanese, is a research fellow based at the Department of Information
Systems, Marketing and Logistics at the Vrije Universiteit Amsterdam. She received her
PhD in Sociology from the University of York (UK) in year 2004. Her PhD research
investigated the heterogeneity and contingency in the Free/Libre Open Source Software
(FLOSS) social worlds, which is based on a constellation of hacking practices, from the
sociological perspective. Her principal research interests centre on FLOSS studies,
Science and Technology Studies (STS), virtual communities and knowledge
management. She can be reached at <ylin@feweb.vu.nl> or through her website at:
<http://www.ylin.org>.

Introduction

With the maturisation and the increased number of FLOSS-based products, the current
FLOSS development denotes a hybrid innovation model, which takes the advantage of

acquiring resources both from the communityi and firmsii. The community offers an

1

almost boundless space for experimental projects and interactions between diverse actors,
while firms stabilises and standardises the FLOSS-based products by incorporating them
together and distributing in the market or by supporting related services. Unlike working
in an informal innovation ambience where shared interests are the main concern for
volunteer developers, after joining a firm one has to engage in the operation of a more
institutionised group, working on specific projects, with certain colleagues. However,
such a formalised and institutionalised working partnership does not mean that firm-
based developers have terminated their connections with the community. By contrast,
previous (informal) cooperation on parallel community projects remains of significance
in these firm-based developers' daily practices.

The paper draws on data from my fieldwork undertaken in several OSS-related
conferences across Europe, and 10 semi-structured interviews with FLOSS developers
from the EU countries to show the dynamics of collaboration between public and private
in the FLOSS innovation system. It seeks to answer the enquiry: How do firms
collaborate with the community, and mobilise social capital (Lin et al., 2001) emerged
from this complex network to achieve their shared and/or divided goals? It raises some
qualitative questions about the meanings and values of the collaboration between firms
and the community in the FLOSS social world (Lin, 2004a). It will contribute to the
mutual understandings between the private and the public sectors, namely firms and the
community, and enhance the trust inter- and intra- users, developers and firms. The
findings will also help practitioners and regulators to recognise, facilitate and utilise the
new economy based on the hybrid innovation.

A Community of Open Source Practices (OSPs)

The history of the IT industry certainly is a wonderful vision of the evolution of
an autocatalytic knowledge set, catalysed by the actions of a diverse set of agents,
driven by a diverse set of motives, all resulting in an explosion of economic
activity and an avalanche of creation and destruction. The heart of this process of
creative destruction is the epistemic cycle of uncertainty, imagination and
innovation.

 (Jackson, Mandeville & Potts 2002: 329)

The FLOSS development works “at the organisational level, deciding includes issues of
social justices, multiple interpretations, and adjudication of conflict across social
boundaries” (Star et al. 2003: 242). These decision-making activities, usually cross-
boundary, are based on a constellation of collective open source practice (for brevity, I
refer to the open source practice as the OSP) shared amongst individuals, companies and
other organisations in the FLOSS social world. This constellation of OSP, referring to

2

practices associated with both the FLOSS consumption and production, is based on my
observation on innovation activities concerning the FLOSS development that are strongly
based on the mentality of the interest in software problems and tackling them. Some
common ones include sharing source code, trying out new releases or reporting bugs. The
idea is reflected in some of the interviews:

The need to share information stems from the need to resolve problems caused by
the multitude of proprietary systems and you need the code-breaking mentality to
take on proprietary manufacturers.

(DY011202)

I think that sharing stuffs is not so important to me, but I think it’s good to share
software when you’ve written something important [...] I do it mostly because
other people do it I have profit from that. So if everybody shares the code it’s
good for everybody. But other than that I don’t see any personal gain of sharing a
software.

(PC060209)

The FLOSS innovation system helps analyse the socio-technical dynamics of software
innovation arising from the various cross-boundary activities. Allowing boundaries of
diverse social groups to exist is crucial for sustaining the heterogeneity in the social
world, which preserves diverse innovation resources, including social capital. However,
boundaries should not stop members from travelling between groups or from
communicating with each other. As a result, the soft boundaries encircling innovation
networks in the FLOSS social world, on the one hand, allow each group to make their
claims towards their collective practices and norms within the maintained demarcation,
but on the other hand, the mobility of members and the fluidity of artefacts are prominent
in order to keep the social world dynamic and energetic.

In this paper, I will analyse the innovation dynamics specifically of the mutual shaping of
two different organisational cultures. While a contradiction seems to emerge from the
encountering of the voluntary and the capitalistic cultures, I have observed some means
through which some of the tensions between these two different ways of looking at
knowledge and of organisation might be resolved. Through examining the collective
practices of FLOSS developers residing in both the FLOSS community and OSS
corporations and how the OSP is gradually institutionalised in the computer industry, this
paper analysing the dynamics based on the socio-technical interactions will provide
alternative perspective from ordinary forms of coordination built on costs and economic
self-interest.

Working Practices in OSS Firms

3

The collaboration between the FLOSS community and OSS firms (see Bonaccorsi and
Rossi, this issue), on the one hand, institutionalises the OSP, and on the other hand
expands the FLOSS social network and brings more users into the social world. OSS
firms operate as a combination of conventional companies bearing business strategies in
mind and unconventional entities standardising the OSP. Having said that, the ubiquitous
usage of ICTs and virtual communication in the FLOSS community remains the major
channel for developers at OSS companies to communicate and to exchange innovation
resources (social capitals, tools, ideas) within and outside companies. Albeit this attribute
facilitates higher information flow than that in conventional firms, the corporate
managerial yet demands developers within the system to do some bureaucratic works,
such as attending regular meetings, dealing with paper work, or splitting iterative but
necessary jobs such as debugging. Though these unavoidable routines are annoyed,
however, working in an OSS company appears to be more liberal than in any other
commercial sectors. Brian, an interviewee working in a leading OSS firm says,

When I do the routine work I don’t always have to be at my desk. I get to decide
when I get to do the things and also I have a lot of influences on what I do
because we never get told ‘you have to do this’. It’s always we have these things
that need to be done, who can do them? Then people can just volunteer. I mean,
we always have plenty of things to do, so it’s just the question of picking the one
that is interesting to you, which is more or less the same thing you do when you
work in your free time. So there’s another freedom both in one I work and when I
work home. But still then choices are of course made by my employer. I am not
that just sponsor to sit and do whatever I want. There are some but not me.

(BO060203)

The innovation practices of developers at OSS companies follow the strategy which is a
mixture of the conventional capitalist perspective on markets and customers, and the
unconventional FLOSS innovation procedure. The innovation pattern in OSS firms
therefore entails a hybrid one that pursues profits but is deeply linked to their interactions
with the FLOSS community. In terms of the concern on profits, most interviewees have
mentioned time pressure (strict deadline), influence of the investors/clients and available
financial resources (loan) as crucial factors for firms to evaluate investment policies.
Developers in this sense can no longer take their acts as “Just For Fun” (Torvalds et al.
2002). Unlike working in an informal innovation ambience where the shared interests are
the main concern for them to work voluntarily on FLOSS projects, after joining a firm,
FLOSS developers have to engage themselves in the operation of a smaller subgroup,
working on specific projects, with certain colleagues. Regardless of that, many working
contracts appear to be extended from developers' previous (informal) contacts in the

FLOSS community. For instance, in the development of Ubuntu GNU/Linuxiii, the
developers are brought together because they all work on the Debian project and know

4

each other well. Joining a firm for developers, therefore, signifies a
formalised/institutionalised working partnership. In so doing, the trust and the tacit
understanding between developers are enhanced. As many interviewees working in firms
have said, if they have problems at hand, colleagues would be the first source they go
after for resolutions, rather than through other means such as posting questions on
newsgroups or discussion lists. This is probably because the shared goals are perceived
better among colleagues working in the same team compared with the community. The
institutional affiliation thus plays an important role in developers' daily programming
practice. As Brian states:

It’s very rare that I [post] question[s] on the Internet. Although I sign [up] for my
local Linux community at home, usually I can find the answer to my question on
the [firm's] internal mailing list.

(BO060206)

OSS companies thus often have close mailing lists for their employees. In setting up such
an internal network of employed developers, the expertise in the firm has been
centralised. The expertise of developers is concentrated in a bounded group and their
interaction and relationship is fortified formally, in so doing to enhance the trust between
colleagues and solve problems more efficiently. With such a strong developing team
(expert-oriented), a firm is also able to convince their customers of the quality of their
products and services.

It is also argued that clients and markets are the driving forces for firms to innovate. For
instance, for firms distributing desktop systems, incorporating stable applications
together for end-users is the main task. As Brian says,

[Un]like KDE developers just do it because they want to do it, we [company
employees] have clients, the potential users out there. … [T]he application
probably needs to be able to work for a lot of different people. And obviously it
must be pretty stable.

 (BO0602)

As most users would not like to change their usage habit radically and tend to stay with
existing interfaces, the key element to make a successful platform for users is to make
them “feel at home”. As Brian comments further,

It has been twenty years since we last saw a really new application. Everything
else we do is just a little variation on what we did couple of years ago. So when
you do word processor it has to feel like most of the word processors. If you do
something it’s very very differently, then you have to find something that really
it’s a much better way of doing it. Otherwise people would say ‘no I can’t figure

5

this out; I’ll use something else’. That’s the same for either graphical tool or
command line tool. People have to feel at home. It is right [that] it’s difficult to
change from one operating system to the other because you don’t feel at home
suddenly. So you need a reason for going somewhere else.

 (BO0602)

Although understanding the client’s needs and communicating with them are vital for
OSS companies to achieve in their marketplaces, if clients can understand the concept of
open source, they would appreciate the products and services even more, and
consequently fosters mutual-help between users (consumers) and developers (providers).
Brian claims that it is important to let users understand the potential of open source
software:

[We try to tell customers that] it’s always better to have open source or free
source because it gives [them] a power over the vendor that [they] can never have
when it’s close source. When it’s close source then the vendor can lock [them] in
as a user.

(BO0602)

The point that the relationship between clients and advisors would develop given their
reciprocal understandings on the concept of open source is reflected on the conversation
of James, a CEO in a FLOSS Small-Medium Enterprise (SME), about one of his clients:

He is a quite clever and open-minded. We understand [each other] perfectly and
we know why we do that. He understands that it’s better to share. In the case of
ERP, he understands that proprietary ERP means you lose complete control on
your information system and give to someone else; free software ERP means that
you share many things with others that at least you can keep control on your
information system. We both think the second case is more perfect.

 (JP060202)

Where to find such a nice customer? Linux-related conferences or virtual platforms are
good venues. Particularly at conference sites, developers or firms can spot their potential
clients or co-workers easily, either through direct face-to-face interaction, or through
snowballing contact. The social function of more informal conferences with less
commercial atmosphere turns out to be even more useful for developers or firms to build
up good relationships. In a relaxed environment, participants can establish informal
personal contacts with people, among them some will become customers and the others
will become colleagues. Paul, a founder of a OSS SME tells me, their customers are
usually found through personal connections:

[Knowing people] is extremely important, especially for a small company. It’s

6

very important that we know people in other companies who can give us projects
or who can just give us contact to more important person in another company.
That’s essential because for small companies like us, it’s very difficult to find
entirely new customers. That’s almost impossible.

(PC060205)

Conferences have become a conspicuous means for establishing social networking in the
FLOSS innovation system. Social networking is seen to be crucial because with these
contacts one is able to find whom s/he can turn to, whom s/he can cooperate with when
problems come up. In addition, conferences act for a key mechanism within the FLOSS
social world to reconcile various practices and assimilate diverse actors and
organisations. In other words, OSS conferences and meetings secure social ventures for
collaboration between firms and the community.

The Working Relationship Between the FLOSS Community and
Firms

Hitherto, I have roughly described how OSS companies operate internally and their
concerns on client-oriented issues. In the following, I will describe how OSS companies
work with the FLOSS community in general.

The private sector is one of the stakeholders in the FLOSS social world and it co-exists
with the FLOSS community. The mutually dependency between OSS firms and the
community has been emphasised in many interviewees’ conversation. Here are a couple
of quotes from the interviewees based at OSS SME, which illustrate the celebrated
community:

I think the company should go closer to the Linux community. We would like to
keep some information confidential for business, but we should not forget the
open source ideology. Because of open source, so there are we.

(SO060202)

The community is actually necessary. It is. Because that’s the form to share
interests and to communicate about to get information pass along, in a very broad
sense.

 (WP060202)

This interdependent relationship is endorsed and built on in a number of socio-technical
mechanisms. Here, I will take discuss a number of them to explain the mutual-help
model.

7

Bugs-reporting and Patches-contributing

Because software in a form of language has never been perfect and often altering when
applied to different hardware systems or infrastructure, constant restoration and maintain
are crucial to keep it in a feasible shape. Bugs-report, feature-request, patches-
contributing and related mechanisms have emerged as practical solutions in response to
this innate software problem. Since the FLOSS innovation system is more accessible
than proprietary ones, actors can download newly-developed programmes/software, try
out, spot bugs and report them back to authors or maintainers, or even write patches for
them. These patches will be incorporated into new versions of software, if they are
applicable. This mechanism of bugs-reporting and patches-contributing has evolved as a
mutual-help culture in the FLOSS community. There is tendency that authors will make
an announcement of the release of her/his experimental projects and invite downloading
and feedbacks (i.e. bugs-reports or patches). I have seen a Debian developer using an
unstable web browser Galeon which hangs often when opening up flash links. He
explains to me that he uses this programme to report bugs. In so doing, he can help
improve this imperfect programme and encourage innovation in web browser technology.
Albeit this mutual-help pattern is helpful for developing FLOSS, it does contain some
risks in innovation processes, peculiarly because of the informal working relationships. If
volunteers get detracted in their lives, or the shared goals of the project diverge, their
contributions will likely terminate.

It is estimated that around three billion dollars worth of hours have gone into this
constant upgrade process for the heart of the Linux operating system. And this figure
doesn't even take into account the millions of hours that have gone into the thousands of
applications that run on Linux (Cancilla 2003). Working closely with the community thus
can save firms time and cost in detecting bugs and writing patches (though they still have
to do this as routines to ensure qualities of their products). Unlike proprietary software
firms that deal with bugs and patches in close environments where only insiders get
involved, OSS firms do welcome and rely heavily on bugs-reports from the community.
As Paul says,

[The] Linux community makes enormous contributions to the formal of Linux
distribution for example software libraries that we can integrate into our customer
software. And that respect is very important for us. These libraries are very
helpful on Linux distributions.

(PC060208)

However, OSS firms formalise this bug-reporting and patching approach in their practice
while keeping channels to the innovation system open. It is even more standardised for
firms dealing with patches with a series of guidelines, which simplify and standardise the

8

procedure of contributing patches. In so doing, it eliminates the risk of potential
discontinuity owing to volunteer drop-outs or incompatible submissions and keeps
software products in a consistent condition. Nevertheless, this also implies that prospect
contributors have to be wary of the rules to be included. It is a process of technological
socialisation.

Social Networking

The interdependent relationship between OSS firms and the FLOSS community is
something that makes FLOSS innovation pattern different from other companies that
deliver proprietary software. The fundamental software engineering techniques are not
particularly distinctive in the FLOSS innovation. But as an interviewee states:

It’s different in the way that [in the community] you certainly have people starting
to contribute to the project that you never ask to do it, and that’s interesting
because they have the probability of giving you ideas you haven’t thought of.

(BO060208)

In this sense, social capitals created and preserved in the FLOSS development appears to
afford more innovation opportunities. It is recognised that brainstorming and
experimental practice in the community (mostly taken place on the Web) stimulate and
cultivate the FLOSS development. The social function of the community also highlighted
in James' conversation:

[From] the social point of view on free software development, writing creative
scripts and sharing them is basic. You get many friends when you do free
software. And the relation is not just sharing things on the Internet but making
friends with the whole communities of people.

(JP060204)

Identity Building

Apart from social networking, another social function of the community is to provide
socio-technical identity. While employees working for firms get recognised by their
companies' names, in the community, people identify each other by asking which projects
one is working on. If they work on the joint projects, the familiarity is therefore strongly
shared with the collective interests and common practices. The projects (the artefacts)
symbolise one’s identity and becomes metaphors in the community. If one is working for
a specific prominent project, one is easilier identified. If one contributes to more projects,
s/he gets more credits and a stronger identity showing her/his level of expertise. When
one is more famous, it is more likely for her/him to get employed by a firm, especially a
big firm. Therefore, earning credits and gaining an identity become one of the incentives

9

for developers to participate in the community. This tendency of such a reputation game
is portrayed in Eric Raymond's writing "The Cathedral and the Bazaar", and is also
delineated in the FLOSS survey of developers in 2002 (FLOSS report 2002). As a
security consultant working at Informatique CDC in France summarises his motivation to
write free software as below, the reputation game and the support from the community
are both well shown on his list.

a- build something I need for my current projects, or tech watch
b- be "fair" and share back, to thanks the community for past help... make the
system work... (If I dont reward helps, soon there will be no help)
c- get support from a community
d- (to be honnest) get some "reconnaissance" (in french), ie just be known as
competent and helpful 8)

(AC21202)

Licensing Scheme

Given the flourishing OSS business model, some software firms nowadays take adopting
OSS licences as a business strategy. Various OSS licences are invented to meet
individual organisations' commercial or technical requirements but still comply with the
collective OSP. Unlike the purpose of General Public License (GPL), which is designed
to engage users in the free software development (Lin, 2004b), many other OSS licences
are designed to lessen the social constraint. In focusing mainly on the OSP, these licences
are meant to be as flexible as possible to allow further manipulation.

Different licensing strategies embed the different meanings assigned to the idea of
morality. For a CTO at an OSS SME developing portable operating systems, the
licensing strategies they take and the legal artefacts they employ are based on practicality.
He reasons the firm’s policy behind the decisions of releasing the new version of software
under OSS licences. He gives two main reasons. The first is the commercial:

I think [our product] is quite difficult now from the commercial point of view to
compete as it is. It makes no sense that customers must pay quite serious money
to get source code and they by no means may circulate it. They could just put
examples on the web site, saying “here is our stuff, try.” Well, they could put their
own stuff but they wouldn’t put that ‘Here is the modified version of the driver’.
In fact, if they have put it, I wouldn’t worry too much about it. But the licence
said that they could only send to other people when they have licence. So it was
constrained. I think it’s quite hard to compete, now, generally speaking, if the
source code is not made available. So that’s from the commercial aspect.

(CF060803)

10

The second is the market share to get as many users as possible.

Another one has to do with you’ve brought as many people as possible if you like.
Well, you find that one of the reasons that those become popular even more
popular than some other free software such as FreeBSD, is because universities
start using it. There’s also this counter culture I suppose to which might attract to
universities or university students to use at the first place. But I think it’s
important in terms of having as many users as possible. You can do that by
intermediary for such as experts done within years licences which said, “You
could have this [new product] for research, education, and news.” But you can’t
develop politics with it. Perhaps that will do as well. But I think what we got a
decision to make certain things possible and I don’t have very good reason to
regret it. I think a right thing to do.

 (CF060803)

While his morality is rather practical, the perspective of attracting more users de facto
resembles one of the functions that many OSS licences provide. They serve as a useful
mechanism to engage actors in the FLOSS innovation. In other words, they are invented
and adopted mainly for encircling as many as actors as possible in their social networks
to mobilise innovations, albeit some of them have put restrictions on appliance with
proprietary software (e.g. GPL). Licensing thus serves as an important apparatus to
bolster the collaboration between the FLOSS community and OSS firms.

Apart from the cooperative relationships listed above, there are many others that worth of
exploring such as the mutual-learning between the public and the private sectors. The
mutual-learning activity,which can not be measured in monetary terms, is attractive to
OSS firms because of the rich tacit knowledge embedded in the doings. For instance,
admitted his contributions to the community almost acquire no direct financial gain, a
firm-based OSS developers Paul says,

It’s just experience, something you cannot get from working with Windows or
Microsoft NT servers. The most important thing is I think knowledge that comes
from personal experience with other products. So you can see what you can do
better than others.

(PC060206)

Tensions in the Hybrid Collaboration

While this type of hybrid innovation is more and more prominent in the FLOSS
development, the collaboration process is never smooth and straight-forward. In the

11

following section, I will focus on different expectations of OSS firms and the FLOSS
community on various issues to understand why tensions sometimes arise between these
two counterparts and how are they managed in the collaboration process.

Normally, firms receive manpower and ideas from the community, and the members of
the community get economic support from the firms, especially for big projects. The need
of financial support is expressed in a firm-based OSS developers' words:

Open Source software is mostly developed by nonprofit organizations or
individuals, there is usually no official support or guarantee provided. But this
may not be a problem. Often, commercial support falls short or is too expensive.

(AS010401)

However, the economic reason might also endanger the existence of the community.
Sometimes when the firms are dealing with business, complying with the OSP no longer
fits into their agenda. The financial incentive will possibly force firms to move away
from conducting the OSP and lock up their source code or concede with the proprietary
software. Though proprietary software firms may not be moral enough to release full
source codes, not all open-source developers would agree on a full-scale open source
policy either. As William, a CTO at an OSS SEM says,

When you talk about open source, not every software can be open source. It
would be Who will pay these people doing something very special? These people
who do something very special need to communicate with their users and with
people doing competitive stuffs. They need to exchange their ideas. But that
doesn’t necessary mean this thing has to be open source, why should it?

(WP060202)

When being asked does his conversation suggest that he does not support FLOSS,
William says,

It’s an interesting idea, and works well for some projects, doesn’t work for other
projects. And it doesn’t work well for software company which would have a
single product.

 (WP060203)

While morality is continuously defined and redefined differently in the FLOSS social
world, how to manage these different and sometimes contradicting voices with the
FLOSS social world is the key to maintaining and sustaining the interdependent
relationship within the community itself and also between the community and the
commercial sector.

12

The Hybrid Identity of OSS Developers

As seen above, developers in OSS companies mostly remain working closely with the
community, or deploy/employ the tools developed in the community. As the manoeuvre
in the community is different from the one in the commercial sector, developers actually
play double roles in their daily practices, which would give them hybrid identity in the
FLOSS social world. Their practices at some time have to qualify the standard of the
commercial sector for making profits and fulfil the requirements of the customers, and at
the other time their contributions made to the community projects are obligated (morally,
socially and technically). Having the hybrid identity in fact gives the developers
flexibility to play around. They can have resources both from the commercial sector (e.g.
institutional support and monetary capital) and from the community (e.g. social capitals
and technical support). They can use the community as a ground to test out their new idea
and make some experiments, but later on release their work formally on the market for
further incorporation with other applications.

For example, a programmer at a German-based OSS SME, who mainly develops software
for networking and system administration, still commits his spare time to writing scripts
of detecting software vulnerability. The scripts he was writing later on would be applied
to finding out security holes of the systems he develops for clients. The script did not
work out fully as the way he expected, but after releasing it on the Web, a few bug reports
directed him to modify the scripts and makes it better. The script now can detect security
holes more efficiently. If he did not write this script to try out his idea, he would never
find out “if certain things are possible or not” (PC060210). The experiment he has done
after sharing with the community benefits from the feedback of other members in the
community, and that turned out to be useful for developing commercial software. This
experimental manner works well to both the community and firms, if no other pressures
apply.

The private sector and the community however, represent two different manoeuvres and
approaches in producing FLOSS. Developers have different motivations for residing in a
hybrid world. Some firm-based OSS developers have shown their different motivations in
working at firms. As Brian mentions,

In the corporate world you would need the mindset that I can make money on this
because someone else needs it. That’s been driving a lot of applications, a lot of
good software. It still does. I mean that’s the way we distributions compete
against each other and write added value to the basic Linux part. It does not work
on interested people or motivated people on personal level, but does attract some
software developers.

(BO060214)

13

To support this view, the interviewee also explains his feeling on working with
commercial companies:

It’s a good feeling to have a project out and have people using it. That is
something that drives a lot of the people, including me, doing user level
application at least. Then it changes from being interested in solving a problem, to
being able to give people something that people find useful, that is something I
know that a lot of people find interesting and need it.

(BO060215)

Another developer explains his motivation to establish a commercial company as
demonstrating his ability to have “the freedom of innovation” (JP060203). The incentive
to have his owned company is to be economically independent. Having a company he
will not being exploited by big firms, and this also prevents his creativity being choked
off from big firms’ policy.

[Big firms] don’t want to create new products for new markets. And I know many
people they decided to put down a great job as an engineer in a great large
corporation to create their own small company doing free software because they
are tired of having ideas, which they could never put into practice and share with
others. And so that’s one of the reasons also why I am doing my company and the
ERP, because if I have an idea, then I can write it as a software then it becomes
quickly a product which I can share with others. And even in that new idea can be
dangerous for a very old product, I can still do it. So it’s like I have the freedom to
innovate, put my innovation on the market, and share it with others. And that
freedom does not exist in many large companies. Because there are so much
innovation actually in free software, and there are so many people who go that
way because that’s probably the only way whenever you have an idea to see in
practice used by many people and to improve it after it has been used.

(JP060203)

While some developers recognise the role of companies in the FLOSS development,
other members in the community however hold a sceptical view. For instance, Stallman
criticises the commercialisation in light of the development of GNU EMACS that

I don’t think that anything like EMACS could have been developed
commercially. Businesses have the wrong attitudes. The primary axiom of the
commercial world toward users is that they are incompetent, and that if they have
any control over their system they will mess it up. The primary goal is to give
them nothing specific to complain about, not to give them a means of helping
themselves. … The secondary goal is to give managers power over users, because
it’s the managers who decide which system to buy, not the users. If a corporate

14

editor has any means for extensibility, they will probably let your manager decide
things for you and give you no control at all. For both of these reasons, a company
would never have designed an editor with which users could experiment as MIT
users did, and they would not have been able to build on the results of the
experiments to produce an EMACS.

 (Stallman, The EMACS Full-Screen Editor)

Though firm-based innovation appears to provide a standardised and stabilised
innovation practice, the community innovation de facto affords more dynamics than the
firm-based innovation. As Stallman remarks,

[T]he standard EMACS command language was the result of years of
experimentation by many user-maintainers on their own editors … On the fateful
day when I gave users the power to redefine their own editor, I didn’t know that it
would lead to an earthshaking new editor.

(Stallman, The EMACS Full-Screen Editor)

Giving Stallman's words a second thought, instead of speaking against OSS-oriented
business, he actually highlights the non-replaced role of the FLOSS community. How to
maintain and sustain the complex co-existence of the FLOSS community and firms
remain an unanswered question.

The Heterogeneous FLOSS Social World

As open source software develops, we should expect that it becomes more and
more like other dynamic, knowledge intensive industries. In that sense, the
dynamics of software development are likely to rely on parallel processes of
commercialisation and science [e.g. the early basic scientific and commercial uses
of genetic engineering]. They will rely on both the overall production of public
knowledge as well as on the closing off of parts of knowledge production within
the firm in order to capture economic value.

(McKelvey 2001: 34)

 Through out the paper, I have discussed the interactions between the FLOSS community
and OSS firms, two of the most distinct fields in the wider FLOSS social world. The
innovations in these two domains share the OSP. The hybrid innovation of FLOSS
demonstrates the advantage of acquiring resources both from the community and the
commercial sector. The community offers space for experimental projects and informal
communications, while the commercial sector stablises and standardises the development
of these community projects by incorporating them together and putting into markets.
Connecting the public and private sectors, the collective OSP have afforded diverse

15

actors to interpret and render the concept flexibly in various means (e.g. licences) and
formed a FLOSS social world.

In this heterogeneous environment, the hybrid innovation also embodies hybrid cultures
(or possibly multiple) in the FLOSS social world. Unlike a lot of open source avant-garde
who has publicly claimed to be hackers, the identity qua hacker in the mundane FLOSS
social world seems to be implicit. Some developers tended to consider themselves as pure
programmers while some of them still regard themselves as hackers. The well-celebrated
hacker culture in the 70s and 80s has become a branch of various self-expressed cultures.
A pragmatist atmosphere has replaced with the hacker culture that is said to uphold the
FLOSS development. As Brian says,

I don’t like to word ‘hacker’, because the word has a bad opinion about it. And I
am not one of those every time someone says hacker and really mean a cracker,
then you say ‘no, no, no…’. I don’t care. It’s just a word describing the hacker
culture. And if you take the right meaning of the hacker, and yes, I am a hacker.
But I would never use that word to a journalist who wouldn’t get it. I would never
do that because there is no reason to be religious about that stupid word. It’s just a
word. … If I'd like to use a word to describe myself, I would say developer. I like
writing software. And I like helping other people to do it, too, which is my
motivation for going into management. Then it wouldn’t be me writing the
software but I would still be developing it by helping people. I am definitely a
developer.

(BO0602)

Brian's words reflects the practical view prevailing in this type of hybrid innovation
system -- because the most important thing is what you have done, rather than what you
are. The essentiality of practices again is confirmed. Having said that, it does not mean
that hacker culture has no longer been influential. The voices of good will hackers have
never been silent in the FLOSS community. The pragmatist perspective however
provides a pluralist domain to contain diverse actors. It is also the open and tolerant
social structure of the FLOSS social world, where Us and Them can live together and
cooperate, where Others have the right to express their views, that provide the highest
affordance to the technological innovation. The FLOSS innovation takes place within
such a heterogeneous field, where the local and tacit knowledge can be preserved and
borrowed as innovation resources. It is also heterogeneity in the social world that affords
the hybrid innovation coalescing the innovation resources of the firms and the
community.

For future research, this paper has not yet dealt with different types of hybrid
collaboration (Rossi 2003) considering various sizes and attributes of OSS firms, let
alone cover all topics in the hybrid innovation in the FLOSS development. It is

16

particularly pivotal to understand whether the involvement of corporations in the
community-based FLOSS projects influences (negatively or positively) the motivations
and number of voluntary participants, and whether it matters on the degree of the
corporate involvement. Further studies on hybrid innovation, both quantitative and
qualitative, are urgently required in order to map out different types of OSS-based
innovation patterns and the socio-technical dynamics in the FLOSS innovation system.

References

Cancilla, J. 2003. Open Source Software for Windows. TechSoup.org.
http://www.techsoup.org/howto/articlepage.cfm?ArticleId=523&topicid=2
Jackson, M. & Mandeville, T. & Potts, J. (2002) The evolution of the digital computation
industry. Prometheus, Vol. 20 No. 4, p. 323-336.
Lave, J. & Wenger, E. 1991. Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press.
Lin, N. & Cook, K. & Burt, R. S. (Eds.) 2001. Social Capital: Theory and Research. New
York: Aldine de Gruyter.
Lin, Y. 2004a. Hacking Practices and Software Development: A Analysis of ICT Innovat
ion and the Role of Open Source Software. Unpublished doctoral thesis. Department of S
ociology, University of York, UK.
Lin, Y. 2004b. 'Epistemologically Multiple Actor-Centered Systems: or, EMACS at wor
k!'. Ubiquity, Volume 5, Issue 1, February 25 - March 2, 2004. URL: http://www.acm.org
/ubiquity/views/v5il_lin.html
McKelvey, M. 2001. “Internet Entrepreneurship: Linux and the dynamics of open source
software”, CRIC Discussion Paper no. 44. Centre for Research on Innovation and
Competition, The University of Manchester & UMIST.
Rossi, C. 2003. The Economics of Open Source Software: Incentives, Coordination and
Diffusion. PhD thesis. SSSUP, Italy.
Stallman, R. “The Emacs Full-Screen Editor”. URL (consulted 27 November 2003):
http://www.lysator.liu.se/history/garb/txt/87-1-emacs.txt
Star, S. L., Bowker, G. C., Neumann L. J. 2003. “Transparency beyond the Individual
Level of Scale: Convergence between Information Artifacts and Communities of
Practice”, in the book Digital library use: social practice in design and evaluation, edited
by Ann Peterson Bishop, Nancy A. Van House, and Barbara P. Buttenfield. The MIT
press.
Torvalds, L. & Diamond, D. 2002. Just For Fun: The Story of an Accidental
Revolutionary. Texere Publishing.

17

i In this paper, the term 'community' refers to the sense of 'a community of practice' which is parallel to the meaning of 'a
social world' (see more discussion in the body text).

ii In this paper, 'OSS firms' are defined as those who develop, maintain/support or distribute FLOSS-based products or
services, regardless of sizes, although it is possible that OSS SMEs might have different approaches towards
collaborating with the FLOSS community compared with multinational companies.

iii http://www.ubuntu.com

