
Community, Joining, and Specialization in Open Source
Software Innovation:

A Case Study*

Forthcoming Research Policy Special Issue On Open Source Software Development (2003)

Georg von Krogh*,
Sebastian Spaeth*,

Karim R. Lakhani**

* Institute of Management
University of St.Gallen

Dufourstrasse 48
CH-9010 St. Gallen

Switzerland

**MIT Sloan School of Management
50 Memorial Drive

Cambridge, MA
USA, 02139

Tel: +41 - 71 - 224 23 63
Fax + 41 - 71 - 224 23 55

Email: georg.vonkrogh@unisg.ch
sebastian.spaeth@unisg.ch

karim.lakhani@sloan.mit.edu

Abstract

This paper develops an inductive theory of the open source software innovation process by

focussing on the creation of Freenet, a project aimed at developing a decentralized and

anonymous peer-to-peer electronic file sharing network. We are particularly interested in the

strategies and processes by which new people join the existing community of software

developers, and how they initially contribute code. Analyzing data from multiple sources on

the Freenet software development process, we generate the constructs of "joining script",

* We are grateful to helpful comments from two anonymous reviewers. We also thank Chris Argyris, John Seely
Brown, Eric von Hippel, Stefan Haefliger, Petra Kugler, Heike Bruch, Simon Gächter, Simon Peck, and Hari
Tsoukas for helpful comments and suggestions. Ben Ho and Craig Lebowitz provided technical assistance with
data importation and parsing. We would like to thank Ian Clarke and the Freenet developers for their willingness
to participate in our study and providing key insights into the open source development process. Karim R.
Lakhani would like to acknowledge the generous support of The Boston Consulting Group and Canada’s Social
Science and Humanities Research Council doctoral fellowship. Georg von Krogh and Sebastian Spaeth
acknowledge the generous support from the Research Foundation at the University of St.Gallen.

 - 1 -

"specialization", "contribution barriers", and "feature gifts", and propose relationships among

these. Implications for theory and research are discussed.

Keywords: Open source software, innovation, community, collective action, virtual teams

 - 2 -

1.0 Introduction

 The production of open source software1 (OSS) results in the creation of a public good

that is non-rival, i.e. users’ utility from the software are independent, and non-exclusive, i.e.

no individual or institution can be feasibly withheld from its usage (Lerner & Tirole, 2002) .

OSS development represents a "private-collective" model of innovation where developers

obtain private rewards from writing code for their own use, sharing their code, and

collectively contributing to the development and improvement of software (von Hippel & von

Krogh, 2003) . This model explains the existence of the open source phenomenon, but leaves

open a number of questions about the innovation process that requires in-depth empirical

research. An assertion in the private-collective model, and much of the writing on OSS is that

the success of a project in terms of producing the software relates to the growth in the size of

the developer community; people who contribute to the public good of open source software

by writing software code for the project (Moody, 2001; Raymond, 1999; Sawhney &

Prandelli, 2000; Wayner, 2000) . However, joining a developer community may not be

costless. Software development is a knowledge-intensive activity that often requires very high

levels of domain knowledge, experience, and intensive learning by those contributing to it

(Pliskin, Balaila, & Kenigshtein, 1991; Waterson, Clegg, & Axtell, 1997). Fichman and

Kemerer (1997) found that in commercial software development, complex technologies can

erect significant barriers of understanding and contribution, to both users and developers of

the software, and the integration of newcomers can be arduous. As the technology grows

more complex, only a few people who have been actively involved its development over a

certain period of time might fully understand the software architecture and effectively

contribute code to its development, and new contributors might find it too costly to join the

project (Kohanski, 1998) . Therefore, a theory of open source software innovation needs to

explain how people sign up for the production of the public software good, under conditions

 - 3 -

where the cost of contributing vary. This paper intends to contribute to a theory of open

source software innovation by examining joining behavior in a developer community.

Since the immanent puzzle of open source software innovation is the creation of the

public good (Lerner and Tirole, 2002), research also has to uncover how joiners become

newcomers, that is, how they make their initial contribution to software. In particular, it is

important to understand what benefits newcomers derive from belonging to an existing

developer community (e.g.: Olson, 1965) According to the private-collective model (von

Hippel and von Krogh, 2002), newcomers share with existing developers, greater benefits of

revealing their innovations, than those outside the community (see also Callhoun, 1986;

Taylor & Singleton, 1993). This is so because their ideas, bug reports, viewpoints, or code can

be reviewed and commented upon by other developers and users, and in terms of learning

benefits, the group’s feedback can be direct and specific to the newcomer. Additionally, the

formal acceptance of new code, the fixing of bugs or incorporation of feature requests results

in direct benefits to the newcomer as their concerns regarding the software program now

become the responsibility of the entire developer community.

 The literature on commercial software development suggests that "modularization"

(Baldwin & Clark, 2000) of the software code in specific components of software files with a

clear purpose, may increase a project’s transparency, lower barriers to contribute, and allow

for specialization by enabling efficient use of knowledge (Khoshgoftaar, Allen, Jones, &

Hudepohl, 2001; Meyer & Seliger, 1998). Furthermore, efficiency in the innovation process

requires that individuals specialize in certain areas of knowledge (Grant, 1996; Simon, 1991).

Therefore, specialization in the developer community, by distinct software modules, could

benefit the development process, and due to the barriers of understanding and contribution,

this could be especially true for newcomers. Research is still lacking on the benefits of

specialization in open source software innovation, and this paper attempts to contribute to a

 - 4 -

theory of open source software innovation, by uncovering if newcomers specialize and what

may cause this specialization.

The lack of research on joining, contributing and specialization by newcomers, and the

overall lack of a theory of open source software innovation, suggest a qualitative grounded

approach to develop analytical categories and propositions (Glaser & Strauss, 1967; Meyers,

1997; Strauss & Corbin, 1990). We base our theory development on Freenet, an open source

software project for decentralized and anonymous peer-to-peer electronic file publishing and

retrieval over the Internet.

The paper is organized as follows; we firstly review the research method employed in our

study (Section 2). We then provide a history of Freenet and related development data

(Section 3). We then proceed to theory induction (Section 4) by our analysis of joining and

contributing behavior exhibited by those who became developers in Freenet. We conclude the

paper by discussing implications of our study for theory and research (Section 5).

2.0 Research Method

In this section we describe the research method employed in our study. Our research

proceeded in three phases: Sampling of case, data gathering, and data analysis. We selected

one case in order to increase the depth of the analysis, acquire and report experience with the

gathering of new and unfamiliar data (see Numagami, 1998)2. Freenet was sampled for three

reasons: Firstly, in contrast to the Linux operating system (which is based on Unix) and most

other open source projects, there is no pre-existing template software architecture3 for

Freenet. Developers in the Freenet community engaged in denovo design and development

making it a radical innovation in distributed file sharing software systems (Oram, 2000).

Consequently joiners should have to put in considerable effort before they can contribute, and

newcomers should not be able to realize immediate benefits from specializing in module

 - 5 -

development according to an official and pre-defined modular software architecture. In

contrast to projects emulating existing applications, Freenet contributors also do not know if

their efforts will result in a suitable working product. Secondly, Freenet was launched not on

the basis of workable code (see Lerner and Tirole, 2002), but on a master thesis in computer

science written by its founder Ian Clarke outlining the theoretical principles of such a

software system. This further compounds the practical considerations of writing code as most

early developers will not have an initial software kernel to build upon (Raymond, 1999).

Thirdly, Freenet is a young project in comparison to the more established OSS projects like

the Linux operating system that has been in operation since 1991 or the Apache web server

project which was founded in 1995. Our data covers the first year (2000) of the Freenet

project, which was a critical phase in establishing sufficient momentum for the project by

mobilizing newcomers. These three characteristics make Freenet a unique pilot case

compared to the ones we know, with respect to joining, contributing and specialization of

newcomers (Stake, 1995; Yin, 1994).

We gathered data from four different sources. Firstly, we conducted thirteen telephone

interviews4 in two rounds with eight Freenet developers identified from the developer list on

the project’s web page homepage. Each interview took between one and two hours and was

recorded and transcribed to facilitate easy data analysis. The rounds occurred between

October, 2000 to January, 2001 and March to May, 2001. All interviews were semi-structured

with guidelines including developer background information, overall structure of the project,

reason for joining and working on the project, specialization, and particular challenges in the

project. In the first round of interviews basic understanding was gained of such factors as the

technical characteristics of the project, critical events, and philosophy. Analysis of the first

round of interviews indicated that one of the central issues of concern to the developers was

the joining and specialization of newcomers. In the subsequent round we identified central as

opposed to peripheral categories by obtaining information on the personal reasons for joining,

 - 6 -

how developers deal with joiners and others in the project, what type of contributions are

made to projects, typical work-load, and specialization in the project. The interview

guidelines provided a comparison across interviewees' arguments.

 Secondly, we collected the project’s public email conversations stored in the projects’

mailing lists which is archived on Freenet’s website5. Since we focused on the contribution to

technical development of Freenet, we gathered e-mail data from the ‘development’ list where

the discussion centers on topics pertaining to the next release of Freenet, its design, emerging

architecture and other technical aspects. The project also had three other mail lists pertaining

to user support, technical discussions and announcements. Analysis of those lists showed

them to be used infrequently during the time-frame of our study and thus not selected for

analysis. This choice was also confirmed by our interviews of Freenet developers who

indicated that the development list was the only place where any significant discussion took

place. All the core developers also mentioned that the development list was the primary

means of communication in the development team. Private e-mails to particular individuals or

groups was not a standard practice for Freenet development and rarely occurred. We created a

database of all messages including contributor identity, date and time for posting a message,

mails responding to the message, and mail content for the period January 1 – December 27,

2000. The database included 11,210 single email contacts covering issues such as

implementation details or code contributions. Similar to the method used by Mockus,

Fielding, and Herbsleb (2002) each contributor to the discussion list was given a unique

identification code based on an automated process of matching e-mail addresses. We removed

“Spam” mail from the list and obvious repetitions of mails. Contributors with multiple e-mail

identities were reconciled in one unique identity by the basis of manual examination of e-mail

name field and signature in the text of the e-mail message which lead to a total number of 356

unique participants6 on the Freenet development e-mail list.

 - 7 -

The third source of data included the history of changes to the software code available

via the project’s software repository within the CVS (‘Concurrent Versioning System’) source

code management tool. CVS is a public ‘version control’ tool, designed to synchronize work

and keep track of changes in the source code performed by developers working on the same

set of files. CVS stores its version-control information in a directory hierarchy on a central

server, called ‘the repository’, which is separate from the user’s working directory on his own

personal computer. This allows developers to add or remove files easily, or to ask for

versioning information of files. In addition to storing the project’s source code, the CVS

retains developers’ comments that additionally document their work. CVS allows anybody to

check out code from the repository. However, committing code, i.e. making changes to the

source code, is restricted to those individuals that have been given permission by the

administrator(s) of the CVS repository which in our case was the project founder and some

early developers. Source code commits served as a major pool of data because progress of the

project is reflected by the progress of source code modifications. The data we retrieved from

the period January 1 – December 27, 2000 included 1, 244 source code commits from 30

different developers. This comprised in total 54,000 lines of software code added, not

counting the initial revisions of files.

Fourthly, in order obtain contextual understanding of the project we collected publicly

available documents related to open source in general and to the project in particular. Among

the most important sources were the Freenet project web pages (e.g. the Frequently Asked

Questions (FAQ)7), Ian Clarke’s master thesis (1999), newspaper interviews with the core

developers, and a technical paper (Clarke, Sandberg, Wiley, & Hong, 2000) describing the

Freenet project written by some of the developers. In the case of doubt, ambiguity, or lack of

data, clarification with individuals in the project was obtained via e-mail or internet chat.

The data analysis covered all 356 participants in the development list. We created four

categories of participation in Freenet based on different roles played in the project. Members

 - 8 -

of the e-mail list (326 individuals) that did not submit any source code to the CVS repository

were classified as “list participants” or non-developers The remaining 30 individuals were

assigned three temporal coding roles: 1)Joiner – someone who is on the email list but does

not have access to the CVS repository; 2)Newcomer – someone who has just begun to make

changes to the CVS repository and 3)Developer – someone who has moved beyond

newcomer stage and is contributing code to the project8. Based on the development e-mail list

database, we firstly created descriptive statistics on posting frequencies, the number of active

participants over time and communication patterns among developers vs. non-developers (list

participants). This served to gain insight into the community size, ‘life span’ of developers

and activity measures in order to identify patterns for joining. We backtracked the evolution

of the whole project, and explored the developers’ efforts of joining, contributing and

specializing. These results were then used for in-depth qualitative content and process

analysis in order to verify, complement, and extend the findings and our inductive theory

building exercise.

Using open coding (Strauss et al., 1990), we developed a coding scheme for joining,

by analyzing e-mails on the development list, and coding the first e-mail (First Mail) of a

prospective joiner, and the following e-mails (Subsequent Mail) from list participants,

existing developers and the joiner, before a joiner was given CVS access. “First Mail” was

based on message contents, and as well the responses from the community to the first mail

(Response Mail). This provided a coding scheme of 31 different first mail message types,

covering items such as bug fixes9, technical questions, and general comments on

development, as well as 17 subsequent mail response types. We further grouped these into 14

broader items and analyzed their frequencies10. Two people separately coding the messages

contributed to inter-coder reliability. Analysis of the “Subsequent Mail” was done for all 25

joiners until they were granted CVS access. The First Mail and Subsequent Mail of five

developers was not available for examination as they had obtained CVS access and developer

 - 9 -

status prior to the start of the study period. The average number of messages until joiners

became newcomers (23) served as a basis for examining the mails of all 326 list participants

in the project who did not obtain CVS commit access Confidence intervals were used in order

to test whether the type of activity was significantly different from the two groups of people

 We analyzed developer activity over time by analyzing the frequency of source code

commits11, as well as their specialization in different areas of the software code. Recall that,

although seasoned developers might have tacit knowledge of Freenet’s evolving architecture,

no explicit model was available. In order to capture the type of source code modifications to

identify specialization of newcomers and existing developers, we created a reference model of

Freenet by examining all 1,244 source code modifications and clustering them according to a)

the file structure within the code repository on the CVS and b) the different tasks of the

software. In order to enhance the validity of the reference model, we followed Jorgenson’s

(1989) advice by discussing and reviewing it in three iterations with developers, including the

project founder Ian Clarke.

3.0 Freenet History and Development Characteristics

 In this section we provide a brief history of the Freenet project, its objectives and an

overall characterization of the development process. The Freenet software enables a peer-

to-peer network designed to allow for the distribution of information over the Internet in an

efficient and anonymous manner. Ian Clarke started the Freenet project when he was a

fourth year student at the University of Edinburgh, and completed the basic design in 1999.

The overall design goals are (Freenet.sourceforge.net, 2000); “Freenet is a large-scale

peer-to-peer network which pools the power of member computers around the world to

create a massive virtual information store open to anyone to freely publish or view

information of all kinds. Freenet is: 1) Highly survivable: All internal processes are

 - 10 -

completely anonymized and decentralized across the global network, making it virtually

impossible for an attacker to destroy information or take control of the system. 2) Private:

Freenet makes it extremely difficult for anyone to spy on the information that you are

viewing, publishing, or storing.3) Secure: Information stored in Freenet is protected by

strong cryptography against malicious tampering or counterfeiting. 4) Efficient: Freenet

dynamically replicates and relocates information in response to demand to provide efficient

service and minimal bandwidth usage regardless of load.

The first basic ideas and design of Freenet were outlined in Ian Clarke’s master thesis

(1999) entitled “A distributed decentralized information storage and retrieval system”, which

was published on an OSS community website (freshmeat.net) for people to comment on.

Clarke was particularly interested in contributions that could turn these ideas and design into a

workable software. The original document received limited attention, and Clarke sent an e-

mail to the subscribers on the mailing list around Christmas 1999 announcing that he planned

to step down as project leader due to personal reasons. Nobody volunteered to take over his

position, but a number of people on Freenet’s mailing list came to realize that there was a

minimal amount of programming going on at the time. This mobilized efforts, and in early

2000 several people made an active contribution to Freenet.

Consistent with Freenet’s philosophy of a widespread diffusion among users, the Java

programming language was chosen as the development language for its ability to operate on

heterogeneous computer platforms. Java also has strong network support facilities, a high

integrated security level (e.g. against certain attacks) and it is said to be easier to debug than

other computer languages like C or C++ (Freenet.sourceforge.net; Kohanski, 1998).

However, Java also occasionally erected barriers for joiners. Many contributors to open

source software innovation still have limited knowledge of Java and are confronted with the

 - 11 -

need to learn the programming language before contributing (Emurian, Hu, Wang, &

Durham, 2000).

 Our reference model (Table 1 and Figure 1; see appendix for a full description12 of the

model) revealed that the Freenet software architecture evolved via 16 main modules. We

assigned developers’ efforts to the various parts of the architecture and discerned patterns of

contributions and specialization form their activity in the model. On an even more detailed

level of analysis, 53 ‘features’ were identified as subcategories of these modules, that serve

different tasks for the function of the module, however for the sake of simplicity we will limit

our analysis and discussion to the 16 main modules.

Insert Table 1here

Insert Fig. 1 here

 The first beta13 release of the Freenet software occurred in March 2000. Table 2 indicates

that the Freenet developers followed Raymond’s (1999) dictum of “release early, release

often,” with nine official code releases during our study period. Table 2 also shows there was

a considerable amount of interest in the project with over 650,00014 copies of the software

downloaded by users over the Internet15. The download statistics indicate a large potential

base of developers available to be mobilized for Freenet, since users are the primary source

of developers in OSS projects (Moody, 2001; Raymond, 1999; von Hippel, 2001).

Insert Table 2 here

 - 12 -

 The development in a project like Freenet entails intense discussions on the software

development e-mail list and the ongoing authoring and submission of source code as shown

by changes made to the CVS repository. Overall, the project is characterized by temporary

efforts, i.e. there is a high turnover in the developer community, confirming the findings from

interviews that there is a need for understanding joining and contribution of newcomers and

those that eventually become a developer. Figure 2 shows the overall number participants on

the developer e-mail list over the year and the number of people entering and leaving16 the

list.

Insert Fig. 2 here

On average the project consisted of 45 (sd:21) active participants per week. This

number was achieved and stabilized around the first public release date week 15. As

mentioned earlier, 356 unique individuals participated in the Freenet developer discussion list.

They generated 1, 714 message threads consisting of 11, 210 e-mail messages. A message

thread is given by responses to an initial e-mail, covering a specific subject such as code

which is required to get a Freenet node up and running, what is needed to enable a convenient,

user-friendly installation of Freenet on a user’s computer and any other development related

topic. The mean number of messages per thread was 6.5 (sd:10.4). Significance testing

indicated no difference in the means for messages per threads initiated by developers

(regardless of temporal role) and list participants (p=0.11, t=1.56)17. This indicates that there

was an active community of participants and status in the development community (i.e. who

has CVS access) did not impact the day-to-day technical conversations. Developers and list

participants were equally likely to be responded to an initial e-mail. Figure 3 shows the

weekly distribution of e-mail messages and message threads over the year. On a weekly basis

 - 13 -

there were an average of 211 (sd:106.1) messages and 32.34 (sd: 16.75) new message threads

initiated. The solid lines on the graph indicate weeks where a major new release of Freenet

was announced. The dashed lines indicate weeks where minor releases were announced to the

development list. According to Table 2 the first release of Freenet (0.1 Beta) was made in

week 15. This resulted in a steep increase in e-mail messages, and as shown in Figure 3, it

sparked the interest and entry of new participants on the mailing list. Although the Freenet

project initially did not start with a working code base, the presence of code, however early or

defective, mobilized new contributors (Raymond, 1999; Lerner and Tirole, 2002).

Insert Fig. 3 here

A high 78% of the population of development list participants attempted to initiate

dialogue, via starting a new thread, at least once. Of these attempts only 29 (10.5%)

participants did not receive any reply to their initial posting and subsequently did not appear

on the developer list again.

The character of the discussion activity shows that the behavior of the Freenet

community resonates that of other open source communities (see e.g.:Herrman, Hertel, &

Niedner, 2003). A “critical mass” of contributors sustained the development in the project.

Participation in the development list was highly concentrated with four individuals, all of

them developers, or 1.1% of the population accounting for 50% of the e-mail list traffic. The

GINI coefficient for message authorship was 0.89 confirming this concentration of activity.

Figure 4 shows the pattern of code commits to the project CVS repository over the

year. On average there were 24 (sd:18) commits per week

 - 14 -

Insert Fig. 4 here

Altogether 30 individuals (8.4% of total e-mail list population) had CVS commit access18 for

the project. There was a high degree of concentration in the code writing task with 4

developers (13%) making 53% of the code commits to the CVS repository (GINI coefficient

= 0.77) . Code commits culminated shortly before and remained for two weeks after the first

public release (0.1 Beta) took place in week 15. As developer #38919 commented:

“A public release always leads to increased testing by new users, which in turn leads to the discovery of

new bugs in the software, and commit of debugged code”.

 In summary we observe that although many people participate in the development

discussion e-mail list for Freenet, code writing task is concentrated in a relatively smaller set

of individuals who become developers for the project. Understanding the mechanisms by

which these developers join the project and the areas in which they contribute and specialize

are crucial elements towards developing a theory of the open source software innovation

process.

4.0 Theory Induction

 In this section we develop propositions towards a theory of open source software

innovation process. The propositions are grounded in observed behavioral strategies of

newcomers attempting to join the developer group and their choices of the technical areas

within the existing software code where they contribute.

 - 15 -

4.1 Joining

Scholars have observed that newcomers joining technical projects must demonstrate

some level of technical expertise as well as understanding of what the community expects in

terms of behavior, in order to make a contribution to technical development (Lovgren &

Racer, 2000; Wenger, 1998). In studying the formation of collective action, Charles Tilly

(1999) underscored that "Joining" is a behavioral script that provides a structure for the

activity of becoming a member of a collective action project. In our context, a joiner is a

person who is eventually given CVS access, and thus becomes member of the developer

community. Joiners emerge from the much larger group of list participants in the development

e-mail list. We define a joining script as the level and type of activity a joiner goes through to

become a member of the developer community. And therefore, joining scripts represents a

cost to any would-be developer in the project.

Level of activity: One dimension of the joining script is the level of activity, that is the

intensity of effort until a joiner is granted developer’s status. Messages posted on the

development mailing list and interviews with core developers indicated that often a significant

period of observation (lurking), ranging from a couple of weeks to several months, was

needed before someone felt they could contribute to the technical discussion:

Participant #83: “I've been lurking on this list for a while, so I thought I'd share some
ideas about this […].”

Developer #187: “I'm been lurking on freenet-dev for a while, but this is my
first post to freenet-dev […..].”

Participant #78: “I wanted to spit out a very quick introduction to everyone. I just
joined the freenet-dev list today, and I'm very eager to get involved in the project. I think the
concept is absolutely brilliant! I'm a software developer with about three years of experience
in the commercial world writing Java (1.1 and 1.2) for my day to day living.
My most recent project lasted two years, and involved a distributed architecture based on
RMI with cryptography provided by the Sun JCE…… … Hopefully, similar skills are needed
somewhere in the FreeNet project. I'll be happy to look through the code and help out where
needed, whether it's heads-down coding, debugging, writing JavaDoc, or authoring

 - 16 -

whitepapers. Whatever. Until then, I'll shut up and just absorb the culture a little bit
and get my bearings!”

Since the lurking period was unobserved in our study, the level of activity of joiners

was measured in terms of the number mails to the developers list, prior to them getting access

to the CVS repository. In the case of Freenet the average value of mails needed before a joiner

became a developer was 23.4. However, the standard deviation was quite high (sd: 37.8) due

to the fact that one of the 2520 joiners actually needed 194 mails before being granted CVS

access. Average time between first post and first commit on CVS was 40.8 days Other

participants over the whole year on average contributed only 9.8 mails (sd: 21.6).

Type of activity: The type of activity is also central to a joining script. In a study of

software development, Glass, Vessy and Conger (1992) found differences in activities ranging

from clerical to highly intellectual, complex and time consuming. Inspired by this study, we

searched for differences activities, proceeding in two stages: First Mail, and the type of

activity a joiner underwent before being granted developer status (Subsequent Mail).

Analyzing the First Mail of all participants using the open coding technique we identified 14

non-disjunctive first e-mail contact categories21.

 In 10% of the cases, people made personal introductions indicating level of skills,

without necessarily providing any evidence of mastery in coding. Most commonly, in 40% a

first e-mail posted a message to an already ongoing technical discussion on the developer list.

By participating in a technical discussion a new participant can learn about the specific

technical challenges of Freenet or important choices made by the community members in the

emerging software architecture, and as well demonstrates both interest and knowledge by

active participation. As developer (#297) confirmed:

“If you wanted to join an open-source project, the first thing you do is get on the mailing list”.

 - 17 -

 However, no joiner started out by unsolicited ‘new’ technical suggestions, perhaps

indicating that it might be wise to start out humbly and not to boldly announce “great ideas”

for solving problems. In fact none of the 12.3% who suggested technical solutions without

accompanying software code in their first post were joiners. In 16.7% of the cases, joiners

started by offering source code for a bug fix, or an additional feature, in the form of actual

software code submission, in the evolving software architecture. Only 4.6% of all non-

developers did so (mostly the announcement of external client projects).

A critical category we found is “Express interest to join as a coder”. In 16.7% of the

cases, this worked as an element of a joining script and in 9.5% it did not. By coding the

responses from the community of developers (16 items), we further analyzed unsuccessful

joining. In 36.7% of all cases, new participants on the development list stated they would like

to join as coders, but got no response. However, in 56.7% of the cases members of the

community encouraged the new participants to find some part of the software architecture to

work on that would match with their specialized knowledge. In only 16.7% of the cases new

participants were both encouraged to join and given specific technical tasks to work on. Given

that Freenet, at the time of our study, did not have a well-defined and transparent architecture,

general encouragement for newcomers to find something to work on might not have made the

joining script less costly.

Given an average message thread-length of 6.5, and some threads exceeding 50

messages, joiners can contribute to an ongoing discussion, which in turn is likely to provide

them with a better knowledge of the emerging software architecture and technical issues

facing the project. Overall, the community welcomed people who announced their interest

and indicated their skill levels, but they expected new participants to find their own tasks to

work on. As we reasoned above, because a significant level of knowledge is often needed for

 - 18 -

entry, of both the emerging architecture as well as programming (Java), we also observed that

many of those who announce their interests never become developers.

Next, we performed an analysis of all 564 e-mails of joiners until they were granted

CVS access (with an average of 23.4 mails(sd: 37.9) before they were granted access to the

developer community) and of 1189 mails of non-developers. The average number of joiners’

mails we used as a base for the examination of the other contributors’ mails, so only the first

23 mails or the total message volume if less than 23, were taken into account. Of the resulting

22 categories of mails (see Appendix A for a complete list with example mail excerpts), nine

categories turned out to be significant in distinguishing joiners' from non-developers’ type of

activity. Table 3 provides an overview of these categories and the descriptive statistics on

joiner and non-developer types of activities. The numbers represent the relative percentage

frequency of the occurrence of specific activity categories in the examined mails22.

Insert Table 3 here

 There are differences in behavior of joiners and non-developers . Non-developers ask

more general questions about Freenet, and more frequently request help to get the software up

and running on their own computer. They would also more frequently request resources such

as documentation and articles. The interviews revealed that a joiner would typically lurk

silently on the developer list and learn as much as possible in order to make a technical

contribution, rather than entering into the development list asking general questions. Having

learnt about the technical details of the project, joiners would contribute more actively, than

other contributors, to an ongoing technical discussion as a way of increasing their recognition.

A developer (#334) stated:

 - 19 -

“Actually, I just started getting involved. There would be a discussion about something, and I would

just throw in my two cents about it. After a while, I was contributing to the discussion so much that

everybody knew who I was and what I was doing there.”

 Joiners would more frequently report technical bugs in the software than other

contributors, making developers aware of important “construction sites” in the project (see

Kohanski, 2000). However, non-developers would give more general user feedback, without

a specific bug-reports, than joiners. These reports, for example, would thematize the lack of

quality of the down-load functions for the software, or complain about the status of Freenet’s

graphical interface.

Interestingly, whereas joiners in their first e-mail rarely indicated an interest to join the

project, during the period that followed, they would more frequently than other contributors,

repeat their interest to become a developer. The interview with developer #405 provides

further interpretation of these findings:

“There are probably three kinds of people. One is, ‘I started working with it. I saw these problems. I

fixed them. Here they are.’ That person gets in. There is the person who says, ‘I am a JAVA engineer

from Dallas, Texas. I’ve been working for five years, and I really would like to help. Give me

something to do.’ That person tends not to do anything. They tend to volunteer some expertise that

doesn’t get exploited yet. […]The third type of person is the visionary, who says, ‘I think Freenet is

great, but it needs permanent storage, announcements, and broadcasting.’ They tend to start fighting

with the core architects, if they’re lucky, who are actually making the decisions not to do that. Usually,

they fight with lower-down people on the totem pole who are given the party line. They tend to never

get in.”

 The quote indicates that there are implicit, but nevertheless important joining scripts in

the Freenet project (no script has been written down). It shows the developer favors hand-on

 - 20 -

solutions to technical problem, and that demonstration of technical knowledge in the form of

software code submission matters more than signaling of interest and experience.

The categories “technical discussions” also covers technical activities and reflects a

joiners' technical and computational knowledge (e.g. Sonnentag, 1995). Either a message

contains written software code, and/or it provides a technical contribution to the design and

implementation of Freenet. Hence a joining script of Freenet is to undertake technical

activities (Lovgren and Racer, 2000), providing concrete example to the community of a

joiner’s technical and computational knowledge (See Sauer, Jeffrey, Land, & Yetton, 2000)

Based on the data, analysis, and foregoing discussion, we conclude with the following

proposition:

Proposition 1: Participants behaving according to a joining script (level and type of

activity) are more likely to be granted access to the developer community than those

participants that do not follow the project’s joining script.

4.2 Contributing

In our analysis of Freenet, the transition from “joiner” to “newcomer” occurs when the

joiner is given CVS access and makes a first contribution to the software. As reasoned above,

there are private and collective benefits pertaining to community membership discussed in the

literature (von Hippel et al., 2003; von Krogh, 2002; Wenger, 1998) , but as well, there might

be collective benefits resulting from specialization and division of labor in a project.

Specialization. In order to examine specialization of newcomers, we firstly needed to

track the overall specialization in the developer community. The “specialization” construct is

measured by the address of code submissions: i.e. to which module of the software a

particular contribution is made. “High” specialization indicates that the same modules within

 - 21 -

the code base were changed over time by a developer, while “generalization” indicates

multiple modules were changed by a developer. The construct's dimension is the accumulated

number of modules a developer created or changed over time. As we described above,

modularity in the Freenet project was not explicit or visible. Our construction of the modules

in the reference model (see Figure 1 and Table 1) was based on an ex-post examination of

source code areas and interviews with developers. However, this lack of explicit modularity

did not deter specialization by modules as indicated by developer # 4:

„I think we recently have specialized. Because [...] there are people like [developer #6] and they are working

most with the client. And then [developer #101] and I have been doing the core stuff. And even with that,

[developer #101] has been doing most of [...] the actual cryptography modules. [...] There is a guy who is

working on graphical user interfaces.“

Applying the reference model for the analysis of code commits to modules, we found

evidence of high specialization. In average developers contributed to 4.6 (sd: 4.1) modules,

however, 43% of all developers only contributed to up to two modules.

A similar high specialization can be shown for each of the 666 source code files23: Roughly

80% of all files were created and/or modified by a maximum of two developers during the

period of analysis, with a mean value of 1.88 contributors per file. This finding matches

astonishingly well with the research of Koch and Schneider (2002) who found a mean value

of 1.8 contributors per file in the Gnome project24. Ian Clarke comments:

“It’s … like, “I’ll do this and I’ll do this.” Basically people throw ideas onto the mailing list and then

people say: “I’ll do that… I’ll do that… I’ll do that.” You’ve got all of these tasks floating around and

then people take tasks that they want to do. I think what makes the core programmers special is that

they’re willing to do the tasks that no one else does because I think they take a greater sense of personal

responsibility and a more long-term approach. So some of the people who are not so active in the

development will take the easy or the interesting stuff where the core-developers are willing to do

anything that needs to be done in order to further the progress of the project”.

 - 22 -

This quote supports the notion that developers specialize in coding modules because it

is personally rewarding (von Hippel and von Krogh, 2003) they can apply their domain

knowledge to modules and features in the emerging software architecture at low cost. Yet,

three developers showed “generalization” or low specialization by contributing broadly to

more than 13 modules. These are what Ian Clarke refers to as “core-developers” with a long-

term commitment to the project. The following quote from an interview with developer #101

provides a further interpretation:

“ … well one of the problems we have right now that we are working on is cryptography (Module 3).

We are adding a public key to the cryptography to the entire system, and unfortunately, any change you

make in that affects just not only the protocol, which is what I am working on right now, but it affects

how the keys are handled (Module 4), how the client interprets the keys (Module 8), how data is

verified. Basically, that little change affects pretty much everything in Freenet and, therefore, the kind

of people making those changes, myself and (developer #6) mainly, have to understand everything that

happens in Freenet in order to do it”.

As the emerging software architecture becomes increasingly complex, modules and features

increasingly intertwined, some developers need to spread their efforts more broadly across the

software. While high specialization allows for efficiency in innovation, there are also benefits

to rotating people among jobs, in particular to broaden the understanding of a project, the

increased sensitivity to coupling of tasks, and better management of interfaces (Cosgel &

Miceli, 1999; Lindbeck & Snower, 2000). A small set of core-developers therefore derived

utility from working on many modules and ensured integration across the project as changes

were made to modules that had other dependent modules.

In terms of newcomers’ specialization, Figure 5 shows the total number of developers

that contribute to each module in the reference model, and how this related to newcomer’s

 - 23 -

contributions. This comparison is done across the population of newcomers making the first

commits, rather than across time for each developer.

Fig. 5 here

There were 30 contributors during the examined timeframe, so that e.g. a value of 22 in

module 7 (“Clients”) means that 73% of all contributors have changed the component

“clients” at least once. The “first contribution” bars shows to which module new developers

contributed during their first day. The base number for this figure is 26, since four out of the

total of 30 contributors had already been developers prior to the timeframe we examined. Two

modules are clearly predominating for joining behavior and shows high specialization. 65% of

new developers enter by either modifying the “build and install scripts” (module 9) or by

modifying existing or adding new clients (module 7).

Contribution barrier. What can explain this high specialization of newcomers? Based on

the interview findings, and the literature in commercial software development (e.g. Fichman

et al., 1997; Kohanski, 1998), we propose a construct of “contribution barrier” erected by

complex open source software technologies, where the following four items pertain:

1. Ease of modifying and coding Module (developer #101, #389)

2. The extent to which the potential developer can choose the computer language used to

code for the module can vary (developer #389)

3. Ease with which to “plug” the module into the architecture (developer # 36)

 - 24 -

4. The extent to which a module is intertwined or independently working from the main

code (developer #36)

We illustrate the salience of the contribution barrier items by comparing, in all four

instances, the impact of creating/modifying build and install module and the cryptography

module (see table 1). As figure 5 indicates, 31% of all first contributions occurred in the build

and install module (#9), whereas none of the first contributions occurred in the cryptography

and security module (#3).

The first item, “Ease of modifying and coding” refers to the complexity of the source code

and the level of difficulty of the used algorithms in order to achieve the desired goals. The

level of ‘difficulty’ seems to be relative to the professional education and prior domain

knowledge and expertise of the developers. It varies across all developers and newcomers and

cannot be adequately captured in a single global measure. Nevertheless it is possible to

indicate some generic differences across modules. Using the two modules, cryptography and

build and install , we found that the installer, which mainly performs simple tasks like

copying files, uses much simpler routines than the cryptography module which contains

complex algorithms and requires e.g. in-depth knowledge of mathematics.

The second item concerns the computer language of a module. Some languages are

complex and difficult to learn, while others, i.e. simple script languages25 can be mastered

fairly easily. Additionally, some computer languages are wide spread and can attract a large

number of potential contributors, while others are known by few , and thus raise contribution

barriers. Developers’ personal preferences might be an additional reason why barriers to

contribution is tied to language. One list participant stated i.e. the dislike of having to use a

proprietary software in order to be able to run the open source software :

However, by principle, I will not install any Java product until the language becomes non-

proprietary. I would like to start a C version of the server, ... (list participant #33)

 - 25 -

In Freenet, the cryptography module is part of the core of the software architecture, i.e.

successful Freenet operation depends on this module, which written in Java, therefore

requiring all cryptography algorithms to be written in Java as well. This poses a restriction on

this module in contrast to e.g. the build and install part, which is not part of the core and can

be written in any programming language, allowing developers to use the language of their

preference . We found at least five different types of programming languages used to code

this module.

The third item of contribution barriers is the ease with which new modules can be

‘plugged into’ the existing software architecture. Clearly defined interfaces between the

modules allow developers to use existing functionality without having to understand the rest

of the specific algorithms used by Freenet. Also unwanted side effects are prevented by such

an architecture, which allows to plug in modules easily. E.g. the build and install module with

its functionality can be plugged into the main Freenet architecture without affecting it in any

way. Also the “build and install” module uses predefined interfaces to communicate with the

rest of Freenet, thus lowering the contribution barrier erected by the need for a detailed

understanding on how Freenet itself works. The cryptography module stands in sharp

contrast to the build and install module. Cryptography is closely intertwined with other

modules in the architecture, thus requiring both a broad understanding of the overall

functionality of Freenet, as well as detailed understanding of more than one module. Two

interview quotes illustrate how the ease with which to plug a module into the software

architecture matters for the choice to contribute:

“Oh, well because at that time I felt I didn’t know too much about technology. So, … I didn’t really

want to mess too much with what was going on inside the node. So, on the user-interface side, there’s

really no specialized knowledge (of the emerging architecture – authors’ addition) needed. […] And I

 - 26 -

saw that Freenet didn’t have this and so that I could do something that I could just put in and it wouldn’t

be too controversial” (Developer #36)

“Yes. I think that what he [Ian Clarke] is saying there is that the node itself is so complicated and,

unfortunately, so inter-tangled that it’s not easily modularized and to do development on. Freenet, at

least now, requires an understanding of fully everything that happens in the Freenet node. So that’s why

I think there are so few developers that actually work on the core node right now. There’s a lot of

learning curve there”. (Developer #101)

Developer #36 mentions the relative benefit of specializing in the user interface, build

and install, before more knowledge could be gained about the emerging software architecture.

Developer #101 contrasts this with the core node functionality, including cryptography, where

the “learning curve” for newcomers is very high because it requires thorough understanding

of modules and features and their interconnectedness. As we reasoned, those modules are

highly intertwined and specific to the project and require significant past investment in

learning about the architecture, thus erecting contribution barriers for newcomers.

The fourth item of contribution barriers concerns the extent to which a module is

intertwined or independently working from the main code . Modules that work independently

from the Freenet architecture, can be used optionally and/or alternatively, and breaking them

does not prevent the whole system from working Such modules can be added or removed at

any point, often without having to recompile the whole source code. For example, the build

and install module is optional, because the Freenet software can also be installed and run

without a proper installation utility. Developers consider the barriers lower for contributing to

such modules because they do not risk breaking the whole system. .This is not the case with

all components If the cryptography module is broken, Freenet will cease to work and might

compromise the security and anonymity of its users.

 - 27 -

The data, foregoing analysis and discussion leads us to formulate:

Proposition 2: In an evolving software architecture of open source software projects,

contribution barriers of modules (modifying and coding, variation in computer

language, plug-in, and independence are related to the specialization of newcomers.

 Feature gifts We further analyzed instances where newcomers had provided whole

modules or features (sub modules) to the software, rather than contributing to existing

modules and features. The construct “Feature gift” is measured by whether the first

contribution is an extension or feature in the reference model. Table 4 shows that there were

nine such features added during the first week of a newcomers participation in the Freenet

developer community .

Table 4 here

In social exchange one can assume that individuals form relationships to maximize

rewards and minimize costs, and that gifts are a part of this process. Our findings and analysis

confirm an evolving idea in the literature; open source software innovation hinges on

contributors giving gifts in the form of code (Raymond, 1999)26, in this case features.

Bergquist and Ljungberg (2001) suggest that the gift giving is an important mechanism for

organizing relationships between people. In their view, the open source software innovation

process hinges on gift giving as a way of getting new ideas and prototypes out into

circulation, and test their quality. In addition to the learning benefits incurred by contribution

 - 28 -

(von Hippel and von Krogh, 2003), in Freenet we found gift giving to increase early

specialization of newcomers. The 12 features given allowed newcomers to make a specialized

contribution from the outset, and also allowed for specialization among other contributors.

Hence we formulate:

Proposition 3: Feature gifts by newcomers are related to their specialization in open

source software projects.

An important element of the feature gift giving was that the cost of creating and giving

the gift was relatively low to the newcomers. Our interviews with the developers revealed that

those that had contributed feature gifts did so on the basis of prior knowledge and experience

they had acquired and refined in other circumstances. As developer #36 told us

I guess (Developer # 101) had some thread-pooling code that he’d previously written, which was just

lying around, essentially. And he said, “Freenet needs thread pooling,” so he just sort of imported that

whole stuff in.

In these circumstances, developers simply modified ready-at-hand code they had

developed and used for other purposes, to the Freenet framework and then submitted their

feature gift . The early feature gift is thus a way to quickly contribute code to the project. This

finding is consistent with studies of the innovation process where pre-existing domain

knowledge or direct experience is a source of new product ideas (Luthje, Herstatt, & von

Hippel, 2002; von Krogh, Ichijo, & Nonaka, 2000) and source of user support (Lakhani &

von Hippel, 2003). This leads us to posit:

Proposition 4: In open source software projects, feature gifts by newcomers emerge

from the newcomers’ prior domain knowledge and user experience.

 - 29 -

Our findings and analysis of feature gifts also shows another point related to

contribution barriers. The Windows installer, a gift given by newcomer #389 to the “build and

install” module, allowed other newcomers to make a fruitful contribution to Freenet in the

area of Windows programming, although they may not have had intimate understanding of

the evolving architecture of Freenet and perhaps lacked proficiency in Java programming.

This gift seemed to have significantly lowered the contribution barriers of those that came

after (see Proposition 3 and Figure 5). Hence, we formulate:

Proposition 5: Feature gift by newcomers are related to contribution barriers in an

open source software project.

5.0 Conclusion and Implications
.

We studied joining and early contribution to the collective action of open source

software innovation. Using data from Freenet, we inductively generated theory on the phases

of joining a developer community and making the initial contributions to the software. In the

first phase, we developed the construct of “joining script”, and proposed that contributors who

follow joining scripts in terms of level and type of activity are more likely to obtain access to

the developer community. The transition from joiner to newcomer is achieved when a person

is granted such access to the developer community, and to a privileged commit regime. We

developed the constructs of specialization, contribution barriers , and feature gifts, and

proposed that newcomers derive benefits from specializing in their contributions, that

specialization of newcomers will be related to the contribution barriers in the project, that

feature gifts given by newcomers will be related to their specialization in the project, that

feature gifts will be based on the newcomers prior direct experience and finally, that feature

 - 30 -

gifts are related to contribution barriers and create new entry points for those developers who

follow.

Some limitations confront our research. Firstly, the constructs and propositions are

developed based on data from one case only. Although care was exercised to make the

categories non-disjunctive and the constructs operational, measures, items, and the external

validity of our propositions must be verified across a wider sample of cases. Secondly,

although we could refine and eventually verify the reference model with the field, its validity

could be compromised by the allocation of files to the model. Research on projects with overt

software architectures will not be subject to this limitation, but probably researchers could

loose the benefits ensuing from studying a young project where mobilization of joiners and

newcomers is critical. Thirdly, we studied an open source project where the commit regime

was restricted to 30 people. Although similar regimes are known to hold for other projects,

such as Linux, there may be projects that are fully open and where joining scripts are either

more difficult or near costless. Fourthly, this research assumed that joiners expressing their

intention to become a contributor actually intend to contribute to the project. Further research

could reveal that for some reasons joiners frequently state their interest to join without real

intentions to do so, which would bias the number of people not succeeding in becoming a

developer.

The study has implications for research on open source and commercial software

innovation. Firstly, it is important to recall that open source software development has

characteristics of collective action aimed at producing a public good. This calls for an

extended theory of innovation (von Hippel and von Krogh, 2003). Current theorizing builds

on the premise that all or most innovation will be supported by private investment and that

private returns can be appropriated from this (e.g. Demsetz, 1967). To encourage such

investment, society grants innovators intellectual property protection (Grandstrand, 1999).

The situation is different in open source where the protection mechanisms partly or fully

 - 31 -

guarantee the rights of the user, by sustaining free revealing of software code (Stallman,

1999) . An extended theory must explain why, what, and how expert developers contribute for

free to the production of a public good. The premise of such a theory, as shown by this study,

should be that contributions are not costless and that significant costs are associated with

joining a project. A joining script of a project implies significant levels of technical activities

conferred upon joiners before they are granted the access to the commit regime. Future

research should explain not only variance in joining scripts across a population of projects,

but also the motives of joiners and how they change over time as they work their way into the

project. This will help get a more complete picture of those factors enabling growth and

continuation of projects.

Secondly, in line with existing theory, we found that there are community-related

benefits available to newcomers (von Hippel and von Krogh, 2003; Raymond, 1999), but

added that specialization in the project incur benefits for newcomers. More research should be

devoted to test if the same patterns of newcomer specialization can be identified across a

population of projects. Future studies should also investigate whether or not developers

change their degree of specialization over time, as they “move down the learning curve” in

the software architecture.

Thirdly, one might have the impression of open source software innovation as a

market where contribution equals participation. If Freenet is representative, this is not so. On

the one hand, the market for a technical solution might matter less for an entry into a

developer community, than the knowledge and interest demonstrated through a sustained

level of high quality technical activity27. On the other hand, some anecdotal information

available in our data revealed that joining script relates to concerns in the community about

software architecture, but the method did not give sufficient substance to further develop this

line of inquiry. Theorists of collective action have suggested the concept of “non-redundant

groups”, in which the contributions of all members of a certain type is needed for the

 - 32 -

production of a specific public good (see Cortazar, 1997). The analysis of specialization in

Freenet indicates the community could be redundant to some extent, but also that newcomers

were attracted to those modules where entry points were present and visible and contribution

barriers were low. The problem, therefore, is for the community as well as the joiner to

understand whether the contributions of joiners is essential to the project, and also how this

relates to the contribution barriers. Future research should attempt to uncover how the

evolution of the software architecture changes joining scripts, so that for example, the joining

script is less costly for people who demonstrate high level of technical knowledge in areas

vital to the project, than for those joiners whose technical knowledge is significantly

overlapping with that of the existing developer community.

Fourthly, a pressing issue of concern to researchers interested in both technical and

social aspects of software innovation is whether or not there are linear or non-linear

production relationships between developer input (team size) and the project’s productivity.

For example, in commercial software development Banker, Chang and Kemerer (1994) found

non-linear effects: there are both increasing and decreasing economies of scale. Future

research should attempt to investigate the production relationships between developer input

and productivity. There might be a critical size of a developer team, 30-40 people, that can

produce open source software in an efficient manner (see Wayner, 2000), but we clearly need

more research on factors, such as the costs and mechanisms of coordination impacting on

critical size. Studies should compare the productivity of the private-collective model of

innovation with traditional commercial software innovation.

Fifth, MacCormack, Verganti, and Iansiti(2001) found evidence in commercial

internet software development that higher performance of the development project was

associated with the use of development teams with greater knowledge from several releases of

a particular software (generational experience). Open source software development is a

voluntary activity, and as can be inferred from the analysis of development activity in Freenet,

 - 33 -

a high turn over among developers and other contributors may reduce generational

experience. Intuitively, transparent development processes and software architecture could

outweigh the loss of generational experience in producing high levels of a project's

productivity (also by reducing contribution barriers), but this needs examination in further

research. Research should investigate if projects differ much in terms of turnover among

various contributors, and as well what factors impact on turnover. Moreover, the sharing of

knowledge among ingoing, outgoing, and remaining developers needs more attention, and

also how turnover impacts on the performance of an open source software project

Solid theory building and empirical studies on the social aspects of software

development is still lacking (Nambisan & Wilemon, 2000; Swanson, 1994). In commercial

software projects the technical aspects of innovation are often obscured by lack of access to

the source code. For this reason, Kemerer and Slaughter (1999) noted that it is

methodologically challenging to capture incremental changes in the software architecture, and

their causes. This study shows that the open source software development process is

transparent, both with regards to the social and the technical aspects. As a research setting, an

open source software project permits empirical work on innovation issues such as choices of

design, architectural development and modularization, activities preceding and following

software release, user feedback, quality improvement, social dynamics in innovation

communities, integration of newcomers into a project, and leadership. Eventually, work on

open source software development and its commercial counterpart will mutually benefit from

exchange of results, and jointly they will contribute to an extended theory of private-

collective innovation.

 - 34 -

References

Baldwin, C. Y. & Clark, K. B., 2000, Design Rules: Volume 1. The Power of Modularity,

(The MIT Press, Cambridge, MA).

Banker, R. D., Chang, H., & Kemerer, C. F., 1994, Evidence of economies of scale in

software development, Information and Software Technology, 36(5), 275-282.

Bergquist, M. & Ljungber, J., 2001, The power of gifts: organizing social relationships in

open source communities, Information Systems Journal, 11(4).

Callhoun, C., 1986, The radicalism of tradition: Community strength or venerable disguise

and borrowed language?, American Journal of Sociology, 88(6), 886-924.

Clarke, I., 1999, A distributed decentralised information storage and retrieval system,

Unpublished Masters Thesis, University of Edinburgh, Edinburgh.

Clarke, I., Sandberg, O., Wiley, B., & Hong, T. W., 2000, Freenet: A Distributed Anonymous

Information Storage and Retrieval System, Paper presented at the Designing Privacy

Enhancing Technologies:

International Workshop on Design Issues in Anonymity and Unobservability, Berkeley, CA.

Cortazar, R., 1997, Non-redundant groups, the assurance game, and the origin of collective

action, Public Choice, 92(1-2), 41-53.

Cosgel, M. M. & Miceli, T. J., 1999, Job Rotation - Cost, Benefits and Stylized Facts, Journal

of Institutional and Theoretical Economics, 155(2), 301-320.

Demsetz, H., 1967, Towards a theory of propety rights, American Economic Review, 57(2),

347-359.

Emurian, H. H., Hu, X., Wang, J., & Durham, A. G., 2000, Learning Java - A programmed

instruction approach using applets, Computers in Human Behavior, 16(4), 395-422.

Fichman, R. G. & Kemerer, D. F., 1997, The assimilation of software process innovations: An

organizational learning perspective, Management Science, 43(10), 1345-1363.

 - 35 -

Glaser, B. & Strauss, A., 1967, The discovery of grounded theory: Strategies for qualitative

research, (Aldine de Gruyter, New York, NY).

Glass, R. L., Vessey, I., & Conger, S. A., 1992, Software tasks: Intellectual or clerical,

Information and Management, 23(4), 183-192.

Grandstrand, O., 1999, The Economics and Managment of Intellectual Property: Towards

Intellectual Capitalism, (Edward Elgar, Cheltenham).

Grant, R. M., 1996, Towards a knowledge-based theory of the firm, Strategic Management

Journal, 17, 109-123.

Herrman, S., Hertel, G., & Niedner, S., 2003, Motivation of software developers in open

source projects: An Internet-based survey of contributors to the Linux kernel, Research

Policy, Special Issue On Open Source Software Development.

Jorgenson, D. L., 1989, Participant observation: A methodology for human studies, (Sage,

Newbury Park, CA).

Kemerer, C. F. & Slaughter, S., 1999, An Empirical Approach to Studying Software

Evolution, IEEE Transactions on Software Engineering, 25(4), 493-509.

Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., & Hudepohl, J. P., 2001, Cost-Benefit

Analysis of Software Quality Models, Software Quality Journal, 19(1), 9-30.

Koch, S. & Schneider, G., 2002, Effort, Cooperation and Coordination in an Open Source

Software Project: GNOME, Information Systems Journal, 12(1), 27-42.

Kohanski, D., 1998, Moths in the machine, (St. Martin's Press, New York, NY).

Lakhani, K. R. & von Hippel, E., 2003, How Open Source Software Works: Free User to

User Assistance, Research Policy, forthcoming.

Lerner, J. & Tirole, J., 2002, Some Simple Economics of Open Source, Journal of Industrial

Economics, 50(2), 197-234.

Lindbeck, A. & Snower, D. J., 2000, Multitask learning and the reorganization of work -

From Tayloristic to Holistic organization, Journal of Labor Economics, 18(3), 353-376.

 - 36 -

Lovgren, R. H. & Racer, M. J., 2000, Group-dynamics in projects: Don't forget the social

aspects, Journal of Professional Issues in Engineering Education and Practice, 126(4), 156-

165.

Luthje, C., Herstatt, C., & von Hippel, E., 2002, The dominant role of "local" information in

user innovation: The case of mountain biking, MIT Sloan School of Management Working

Paper, #4377-02.

MacCormack, A., Verganti, R., & Iansiti, 2001, Developing products on "Internet Time": The

antaomy of flexible development process, Management Science, 47(1), 133-150.

Meyer, M. H. & Seliger, R., 1998, Product platforms in software development, Sloan

Management Review, Fall 1998, 40(1), 61-74.

Meyers, J. D., 1997, Qualitative Research in Information-Systems, MIS Quarterly, 21(2),

241-242.

Mockus, A., Fielding, R., & Herbsleb, J., 2002, Two case studies of open source software

development: Apache and mozilla, ACM Transactions on Software Engineering and

Methodology, 11(3), 1-38.

Moody, G., 2001, Rebel Code: Inside Linux and the Open Source Revolution, (Perseus Press,

New York).

Nambisan, S. & Wilemon, D., 2000, Software developmetn and new product development:

Potential for cross-domain knowledge sharing, IEEE Transactions on Engineering

Management, 47(2), 211-220.

Numagami, T., 1998, The infeasiblity of invariant laws in management studies: A reflective

dialog in defense of case studies, Organization Science, 9(1), 2-15.

Olson, M., 1965, The Logic of Collective Action, (Harvard University Press, Cambridge,

MA).

Oram, A.; Gnutella and Freenet Represent True Technological Innovation;

http://www.openp2p.com/pub/a/208; 05/12/2000, 2000.

 - 37 -

http://www.openp2p.com/pub/a/208;

Pliskin, N., Balaila, I., & Kenigshtein, 1991, The knowledge contribution of engineers to

software development: A case study, IEEE Transactions on Engineering Management, 38(4),

344-348.

Raymond, E., 1999, The Cathedral and the Bazaar: Musings on Linux and Open Source from

an Accidental Revolutionary, (O'Reilly and Associates, Sebastapol: CA).

Sauer, C., Jeffrey, D. R., Land, L., & Yetton, P., 2000, The effectiveness of software

development technical reviews: A behaviorally motivated program of research, IEEE

Transactions on Software Engineering, 26(1), 1-14.

Sawhney, M. & Prandelli, E., 2000, Communities of creation: Managing distributed

innovation in trubulent markets, California Management Review, 42(4), 24-35.

Simon, H., 1991, Bounded rationality and organizational learning, Organization Science, 2(1),

125-134.

Stake, R. E., 1995, Case Studies, In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of

Qualitative Research, (Sage,Thousand Oaks,CA) pp. 236-247

Stallman, R., 1999, The GNU Operating System and the Free Software Movement, In C.

DiBona & S. Ockman & M. Stone (Eds.), Open Sources: Voices from the Open Source

Revolution, (O'Reilly,Sebastapol, CA) pp. 53-70

Strauss, A. & Corbin, J., 1990, Basics of qualitative research, (Sage, Thousand Oaks, CA).

Swanson, E. B., 1994, Information systems innovation among organizations, Management

Science, 40(9), 1069-1092.

Taylor, M. & Singleton, S., 1993, The communal resource: Transaction cost and the solution

to collective action problems, Politics and Society, 21(2), 195-214.

Tilly, C., 1999, Durable Inequality, (University of California Press, Berkeley, CA).

von Hippel, E., 2001, Innovation by User Communities: Learning from Open -Source

Software, Sloan Management Review, 42(4), 82-86.

 - 38 -

von Hippel, E. & von Krogh, G., 2003, Open Source Software and the Private-Collective

Innovation Model: Issues for Organization Science, Organization Science, forthcoming.

von Krogh, G., Ichijo, K., & Nonaka, I., 2000, Enabling Knowledge Creation, (Oxford

University Press, New York, NY).

von Krogh, G., 2002, The communal resource and information systems, Journal of Strategic

Information Systems, forthcoming.

Waterson, P. E., Clegg, C. W., & Axtell, C. M., 1997, The Dynamics of Work Organization,

Knowledge and Technology During Software Development, International Journal of Human-

Computer Studies, 46(1), 81-103.

Wayner, P., 2000, Free For All: How Linux and the Free Software Movement Undercuts the

High-Tech Titans, (HarperBusiness, New York).

Wenger, E., 1998, Communities of Practice: Learning, Meaning and Identity, (Cambridge

University Press, Cambridge, UK).

Yin, R. K., 1994, Case Study Research: Design and Methods Second Edition, (Sage,

Thousand Oaks, CA).

 - 39 -

List of figures and tables

Component Name Description

1 Routing Which node to contact in order to request or
insert data from or into Freenet

2 Data Store How data is stored on the local harddisk
3 Cryptography and Security Everything related to encryption
4 Keys Keys represent a pseudo-unique ID for each

file in Freenet and are used to identify data
5 Network Joining How new nodes can be hooked up into the

Freenet network
6 Protocol and Metadata The internode protocol through which nodes

are communicating
7 Clients Clients are the interface which people use to

communicate with their node and can fulfil
several tasks (message boards, file
sharing,...)

8 Client Library Commonly shared libraries among most
clients to avoid duplicated code

9 Build and Install Scripts to compile the source code and to
enable a convenient, user friendly installation
of Freenet

10 Performance Increasing the performance of the Freenet
node

11 Search How searching for files should be done. No
source code exists in that area but it has been
a frequently topic of its own

12 Testing and Simulation Code to test the functionality of Freenet and
to simulate its behavior on a large scale

13 Documentation Concerns all documentation which is written,
like technical specifications, manuals,...

14 Node operation Code which is required to get the Freenet
server (node) up and running

15 GUINode & Configurator A graphical interface to the Freenet node and
a graphical configurator (written in Java)

0 Miscellaneous Everything not fitting into other components
Table 1, The Reference Model of the Freenet architecture28

 - 40 -

Release Release
date

week Downloads Accum.
downloads

0.1beta 9.4.2000 15 236573
0.2 1.5.2000 18 203562
0.3 17.9.2000 38 2191
0.3.1 19.9.2000 38 56595
0.3.2 1.10.2000 40 24245
0.3.3 9.10.2000 41 26674
0.3.4 31.10.2000 44 33660
0.3.5 18.11.2000 47 26827
0.3.6 24.12.2000 52 42461 652788

Table 2, Release dates and download numbers

 - 41 -

Activity category Joiner List
contributor

 Significantly different activities:
Freenet question 0.018 0.087
offer bugfix (code) 0.048 0.014
General technical discussion 0.430 0.276
Report bug 0.096 0.033
Repeated interest to contribute 0.016 0.003
usage feedback (no bugreport) 0.014 0.099
request for resources (documentation, articles) 0.000 0.014
request for help (to get freenet running) 0.000 0.022
point to technical resources/refer to other projects 0.000 0.043
 Not significant lydifferent activities:

Express interest to contribute 0.053 0.075
suggestion for improvements 0.126 0.153
Propose/Outline bugfix (no code) 0.025 0.008
Coordination & organisation discussion 0.028 0.028
User support 0.014 0.017
Answer (technical) Freenet question 0.032 0.016
Self introduction 0.007 0.014
announcing "external" contribution 0.044 0.047
point out theoretical weaknessess of FN 0.018 0.007
give Feedback on others contribution 0.011 0.010
ask for a task to work on 0.005 0.003
off topic discussion 0.082 0.072
discuss legal/philosophical implications/matters 0.014 0.015

Table 3, List of differences between types of activity

 - 42 -

Developer Module Feature Gift(s)
9 Cryptography

and Security
Test to ensure that files are properly encrypted

101 Cryptography
and Security

Three algorithms for encrypting files and better random
number generator

101 Performance Thread pool system for parallel processing
101 Testing and

simulation
System to model overall Freenet network response

296 Cryptography
and Security

Safe operation while using web browser

297 Clients Graphical interface for client
345 Clients Address consistency in web browser
351 GUINode &

Configurator
Graphical interface for operation of Freenet server

389 Build and
Install

Microsoft Windows operating system build and install

Table 4 – Feature Gifts made by newcomers during their first week as developers

 - 43 -

Figure 1, The Freenet reference model – graphical overview

 - 44 -

Project Size, Joins and Leaves

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Weeks (2000)

N
um

be
r o

f P
ar

tic
ip

an
ts

Project Size
Cumulative Joins
Cumulative Leaves

(Vertical lines indicate weeks in which a release occurred)

Figure 2, Project size based on e-mail activity

 - 45 -

Freenet Messages and Threads

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Week Number (2000)

Messages/week
Threads/week

Freenet Messages and Threads

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Week Number (2000)

Messages/week
Threads/week

Figure 3, E-mail messages and threads per week

 - 46 -

Code Commits Per Week

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Weeks (2000)

C
od

e
C

om
m

its

(Vertical lines indicate weeks in which a release occurred)

Figure 4, Number of code commits per week

 - 47 -

0

5

10

15

20

25

Component

N
um

be
r o

f c
on

tri
bu

to
rs

contributors 9 11 10 9 3 6 6 22 4 19 3 3 5 9 14 4
First contribution 0 1 2 0 0 0 0 9 1 8 1 0 0 1 2 1
% first contribution 0.00 3.85 7.69 0.00 0.00 0.00 0.00 34.6 3.85 30.7 3.85 0.00 0.00 3.85 7.69 3.85

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5, Number of contributors per component and where they contribute on joining

 - 48 -

Appendix A: List of activity categories with excerpts of a typical email

Express interest to contribute:
“Hi all, I'd like to contribute to the development of Freenet. I've found that the best way for me personally to understand the code is to
document it. So I guess the first thing I'd like to do is go through all the code and document it.” (part. #253)

Freenet question:
“How will people find a document when it is first uploaded into freenet? The only nodes that can find it are the ones that are closer to it's
pocket in keyspace than to any other pocket. The document can't spread if nobody can find it. (pockets must occur, because inserts are
done to proximal keys, and pockets are a Good Thing anyways)” (part. #7)

Suggestion for improvements:
“I agree that adding special routing tables for every single situation is just asking for confusion.[...] I would like to propose a flexible plan
that might get around these issues. There is no doubt that there is some importance to a node knowing the "quality" of its surrounding
neighbours. This could include ping time, node uptime, node cpu load, available bandwidth and could be passed back and forth to nodes
through the handshaking mechanism (a mechanism which has amazing application potential for future freenet development ... for all
those people questioning "why do we bother with a handshake?"). This quality data could be stored in a single table mapping various Ips
to their associated vitals. This data would be useful to many different parts of the code but here I would single in on routing ...” (part. #46)

Offer bugfix (code):
“I hacked around the problem by putting
 private static class RequestAbortException extends Request.RequestAbortException {}
in classes DataRequest and InsertRequest. Obviously a kaffe bug, though.” (part. #76)

General technical discussion:
“I know the planned hash function for CHK but by e.g. modifying one word in a document I assume you could more likely get tha same
key with fatal consequences. Anyhow, the chances exist, in which case two different versions of one CHK in Freenet exist. Now, tell the
people the CHK where your important human rights messages are, and they'll retrieve some porn pictures...
The chances two insert two different docs with the same key despite the checking mechanism still exist, but are much smaller (I would
think). So we shouldn't disable that feature that makes Freenet more reliable in terms of consistent keys.“ (part. #389)

Propose/Outline bugfix (no code):
“Yes, that's it. If you run out of entropy reading /dev/random on FreeBSD, /dev/random stops returning bytes (i.e., the read() is short) until
more entropy appears from the interrupt channels. Oops, and I don't have any interrupt channels but the keyboard...

/dev/urandom always returns data; you might want to make it try to open that before /dev/random.” (part. #76)

Report bug:
“I am seeing evidence of message ID corruption, the following illustrates
[...]
Mar 24, 2000 2:29:43 PM:client/RequestClient:Minor:The request got stuck on a broken node but has been restarted at a depth of 0
Mar 24, 2000 2:37:13 PM:MessageFactory.java:Normal:Unknown messagetype - java.lang.ClassNotFoundException: Freenet.message.

I noticed in the code that the ID is handled as a long integer. Is there a type mismatch somewhere in the code?” (part. #45)

Coordination & organisation discussion:
“I second this motion. It's so hard to read up on this list and try and follow all of the discussions: sometimes people have good points;
other times people's points seem valid but have some flaws. It would be nice if at the conclusion of a discussion authors of ideas would
write-up their proposals and posted them to the website. More specifically, I'm still uncertain about the conclusion of the following
discussions:
a. Mechanism for updating documents
b. Search and metadata
c. Subspace partitioning (the language spec is a good start)
d. Exact protocol for trusting your neighbors and discovering rogues.” (part. #208)

User support:
“> I read Oskar's response to your problem and wasn't sure if he was saying that port forwarding would work or not.
Port forwarding works just fine. I ran Freenet behind an ISDN router (Zyxel 100IH)OK. This is set up to forward ports to a particular PC. I
used a version of W2K, and did not have to do anything special. If Netmeeting work for you, then Freenet should as well.” (part #116)

Answer (technical) Freenet question:
“>What is the current status of metadata implementation in Freenet, and how do I get at this metadata from the comand line client?
> Can I get a MIME content type?
The -metadata [FILE] option will do it. I assume you're not using an output file. The client'll output something like this to stdout: [...]”
(part. #345)

Self introduction:
“My name is [XXX]. I live and work in Cheltenham, England. I work in a small computer shop called [XXX], fixing and building computers.
I study in a nearby city called Gloucester. Other than computers and Free Software my mail interrests are the sciences, language (though
not in the science that you might expect) and drama. Really I have know idea what I want to do with the rest of my life, but Brandons
"company programming dynamic non-linear multi-user virtual reality worlds" sounds like the type of thing I'd hope to be doing!” (part. #9)

Announcing "external" contribution:
“My pet project for this month - a freenet library and client in c - is now in a previewable state. There's still a lot of code cleanup and big
changes to the client in store and the library still needs a lot of work. I've tested the client with Snapshot 4-27 and it worked.
So take a look: XXX [removed URL to project]” (part. #52)

Point out theoretical weaknessess of FN:
“I just want to point out one potential danger of this mapping idea, It would cause people who request data to have both a descriptive key
and the actual message on their node whereas the routing of data would normally split the two up. So you get a record of what you
request and one of the nice things about Freenet is that requested data and data routed through your node are indistinguishable.” (part.
#19)

 - 49 -

 - 50 -

Repeated interest to contribute:
“Lads, Would you be prepared to let me loose on it? I can do a nice job of it, and you're welcome to inspect my code before I check it
back in. If you could decide now it would be good, because my evening is just beginning. [...]” (part. #297)

Give Feedback on others contribution:
“> OK, I have added the code in these two places. Hopefully things will be better in tomorrow's snapshot. Unless of course we have to
> wait another week for people to start running the new code.

Nah, just applied your patches and restarted the server. I think you are truly the Orkin man :-) [...]” (part. #45)

Ask for a task to work on:
“I have about 5 years coding experience in C, 3 in C++, and about 1.5 in Java. I can do Perl pretty well too. I have a spring break coming
up, so maybe if someone could point me to a little part where I could contribute?” (part. #56)

Usage feedback (no bugreport):
“I put up a node on piclab.com:800 and it seems to be working. InsertClient is a bit inelegant: it seems to have inserted the file correctly,
but then timed out and killed itself. I don't yet know the code well enough to decide whether that's OK.” (part. #26)

Off topic:
“OK Since I'm on AOL I'm an EVIL and stupid, one sided asshole who doesn't know the first thing about computers, the Internet, or how
big money works!...right? I don't like the way the corporate is shaping the world wide web (note not the Internet) for their own, and only
their own benefit (I.E., fuck the costumer...we control the horizontal and the vertical therefore we control THEM). I think capitalism is a
good system except it is fatally flawed in that: once you have most or everything of monetary ($) value what else is there to have? there
is control - your first and last goal.” (par. #314)

Request for resources (documentation, articles):
“Hi, I was wondering if someone could be good enough to send a copy of Freenet.ps to XXX [removed email address]; this is the paper
"A Distributed Decentralised Information Storage and Retrieval System" by Ian Clarke.” (part #7)

Request for help (to get freenet running):
“Hi, I have just down loaded your program and I cant seem to get it to open. I saved it to desk top and along with the freenet software i
also downloaded the java software. I even unzipped both downloads and when i click on any of the folders in them it asks you to choose
which program to use to open the program, and Im not quite sure which to open it in. I tried it in explorer and it doesnt work. Im very
anxious to begin using your software, so please help me. Thank you.” (part. #325)

Discuss legal/philosophical implications/matters:
“However, it's clear to me (and many others) that Freenet is likely the singularly most interesting and powerful piece of software currently
in development. So powerful, in fact, that I doubt that by the time the platform becomes quite feature-comprehensive, easy-to-use, and
popular (I'd give ~1-2 years for 5 million nodes?) that the governments of the world are going to do all they can to stop it, legally and
technically.

Therefore, it seems to be prudent for someone to give a legal analysis as to the probability that Freenet could be outlawed. Beyond that
(and I am sure that this has at least been somewhat discussed), if it is, in a given region, illegal to run a Freenet node, are there
mechanisms in the network to participate quietly, using masking and other steganographic techniques?” (part. #37)

Point to technical resources/refer to other projects:
“Hmmm, All these talk of multicasting jogged my memory and what popped out was this article appearing on DDJ #312, May 2K,
"Scalable Multicasting File Distribution".
Sounds familiar? You can get it at http://www.ddj.com/articles/2000/0005/0005i/0005i.htm. No doubt this was written by a researcher in
MS (horrors!:), but was done quite professionally. There are code available but... in C/C++. Another article on general multicasting is
http://www.ddj.com/articles/1997/9710/9710b/9710b.htm?topic=communications.” (part. #152)

1 Software that comes with source code and a usage license that allows for modification and futher redistribution
of the source code by any user.
2 Because the empirical setting of open source software innovation might be new and unfamiliar to many readers
of Research Policy, we use a higher level of detail in our description of research methods than normal.
3 The architecture of software characterizes the functionality of specific modules within the software and the
interdependencies and interactions among these.
4 Eric von Hippel participated in the interviews of some of the developers.
5 See at http://freenetproject.org/cgi-bin/twiki/view/Main/Lists
6 Participants were numbered by an automated script according to the sender’s email address. A manual analysis
of the mails was performed in order to remove spam mails as well as to merge duplicate e-mail addresses. As the
original numbering has not been changed, the 365 unique participants are not numbered sequentially and higher
values are possible.
7 http://freenet.sourceforge.net/

8 No attempt was made to gather and analyze data on “lurkers”; passive but listening subscribers to the
development mailing lists (Nonnecke and Preece, 2000)
9 A bug is a programming defect or error that causes the software to malfunction.
10 The full list of categories is available from the authors.
11 A first attempt involved a cluster analysis of modified files by the each developer, but this was rejected as too
imprecise for our purposes. A descriptive analysis of the number of touched files per developer indicated a high
degree of specialization, but needed to be complemented by a qualitative analysis. In short, this first analysis did

http://freenetproject.org/cgi-bin/twiki/view/Main/Lists
http://freenet.sourceforge.net/

 - 51 -

not tell us much about the distinctions between parts of Freenet critical to its purpose and performance, and those
less critical.
12 Analyzing data with such a reference model deviates from previous methods. Koch and Schneider (2000)
accessed publicly available data on the GNOME project in the CVS repository and in discussion groups. Their
variables included demographic data of developers, and the project’s productivity measured as lines of code
(LOC) per hour, lines of code added or deleted, or number of postings to the mailing list. However, the validity
of their “productivity” construct could be compromised because the metrics and results were not verified with
developers (Glaser and Strauss, 1967). LOC is generally a weak proxy for a software development project’s
productivity (e.g. Caban et al. 2001 Rauscher and Smith, 1995), since it does not inform if code or or a file is
critical to the software’s functionality. A very high number of LOC added does not necessarily mean a higher
quality of code (e.g. bloated software). The “productivity” of 30 lines of a user manual file might not compare
well with 30 lines introducing a new encryption algorithm Besides LOC fails with binary documents (images,
WinWord, compiled programs). In addition, since the source code also includes the contributors’ comments to
the code, LOC additionally distorts the projects’ quantitative changes (see also discussions in Koch, Schneider
2000; Humphrey, 1995). Being tested with the field, and by identifying and distinguishing central modules of the
architecture, the use of a reference model remedies these weaknesses.

13 A release that has working software code but may have many defects and many features missing.
14 This number shows the cumulative number of downloads for all releases, the point release statistic, i.e. 42461
downloads for release 0.3.6 provides an estimate of the user base for the project.
15 Data for 2001 indicated a similar level of interest amongst users with an additional 618,000 downloads.
16 A join was recorded when a new participant posted their first message to the e-mail list. Content analysis of
the messages showed that participants never gave notice of leaving, rather, they just stopped posting. Thus a
leave was recorded based on the date of the last message of a participant. For each participant. we examined the
forward week’s of e-mails to determine their leave date. Our data may suffer from “right censoring” effects as
we did not have information on developers that posted initially in 2000 and then also continued participation in
2001.
17 26% of threads contained only one message with no further public response from the developer list. 56% of
those non-response threads were initiated by 21 developers and the remaining were initiated by 118 other
participants.
18 The project did not normally have a separation between CVS commit access and writing code for the project,
i.e. those writing code for the project would send their code to a specific person who had CVS commit access.
Our analysis revealed only one e-mail list participant who modified the source code and then asked a developer
with CVS access to commit the code in their name.
19 The developer number is higher than the total number of developers reported because some participants would
post via multiple e-mail accounts. We manually combined those participants that exhibited such behavior,
however we collapsed the coding such that the e-mail address and the corresponding unique ID associated with
the highest number of posts was used as default.
20 Recall that five developers had access to CVS prior to the start of our study (pre-2000), one of which was Ian
Clarke, the project founder. Two others were also very active developers.
21 We do not give the full details of this analysis here, but summarize some of the results. The complete analysis
can be obtained by the authors.
22 A clarifying example: A value pair of 0.5 resp. 0.3 for joiner and other contributors in a certain activity would
mean that 50%of all joiners mails and 30% of all other contributors‘ mails fall into that specific category.
23 As of 31December, 2000. This number increased constantly over time
24 http://gnome.org
25 A script is a list of commands to the computer that can be executed without the interaction of a user. A
scripting language is a very simple computer language used to write scripts.
26 Eckstein (2001) notes that gift giving can be based on voluntary action in a community where norms and
values give rise to such behavior. However, our data are weak on the social norms of the community, and we can
only speculate that gift giving is related to the evolving sense of collective fate and obligation among developers.
27 Bidault and Fischer (1994) made a similar observation regarding technology transactions between firms.
Rather than buying a superior technology in the market, firms tend to engage in technology transactions with
partners about which they possess information, that is, whose “identity” is known.
28 A more detailed description of the software architecture can be requested from the authors.

	Abstract
	2.0 Research Method
	
	3.0 Freenet History and Development Characteristics

	4.0 Theory Induction
	4.1 Joining

