
Diskussionspapiere zum Tätigkeitsfeld Informationsverarbeitung und Informationswirtschaft, Hans R. Hansen und Wolfgang
H. Janko (Hrsg.), Nr. 22, Wirtschaftsuniversität Wien, 2000.

Results from Software Engineering Research into Open Source Development
Projects Using Public Data
Stefan Koch and Georg Schneider

Department of Information Business

Vienna University of Economics and BA, Augasse 2-6, A-1090 Vienna, Austria

{stefan.koch|georg.schneider}@wu-wien.ac.at

Abstract-This paper presents first results from research into
open source projects from a software engineering perspective.
The research methodology employed relies on public data
retrieved from the CVS-repository of the GNOME project and
relevant discussion groups. This methodology is described in
detail and some of the results concerning the special
characteristics of open source software development are given.

I. INTRODUCTION

Open source software development [21], [6] has generated
much interest in the last years, especially following the rise of
Linux. As several similar projects like GNU project's utilities
and libraries including the gcc compiler and Emacs editor, the
Perl and Tcl languages, the Apache WWW server, and the
FreeBSD operating system exist, research from a software
engineering perspective on this decentralized form of
software development should be intensified. As a first step, it
seems necessary to assess the differences and characteristics
of such projects and their special organisational form [23].
Therefore quantitative research into this form of collaborative
development is necessary, which today is very scarce [8],
[10].

Open source software is characterized by several
differences to traditional software development and
distribution, including the free redistribution, the inclusion of
the source code, the possibility for modifications and derived
works, which must be allowed to be distributed under the
same terms as the original software, and some others [18].
One example for a licence that fits these criteria is the well-
known GNU General Public Licence (GPL). The guiding
principle for open source software development is that by
sharing source code, developers cooperate under a model of
rigorous peer-review and take advantage of "parallel
debugging" that leads to innovation and rapid advancement in
developing and evolving software products [8], [19].

In this paper we present a methodology for software
engineering research into open source projects using data
retrieved from a publicly available CVS-repository and
discussion lists. This methodology is then applied to the
GNOME project and results concerning the programmers and
files constituting this development effort together with the
progression of the project over time are described.

II. RESEARCH METHODOLOGY

The main idea for this research into open source software
development was to use existing data on the projects
available to the public [7]. Therefore the CVS-repository of

the GNOME project was used for data collection. It was
assumed that several important aspects of a large scale
software project in this special form of organisation could be
checked using this source [2].

CVS (Concurrent Versions System) is a version control
system which is being used extensively in the free software
community. Access is accomplished via a client which
requires a password authentification. In order to access CVS-
archives in a more convenient way the Mozilla project
developed Bonsai which allows to connect to a particular
archive via a web-based interface.

GNOME, the GNU Network Object Model Environment, is
an open source software project building a desktop
environment for users and an application framework for
software developers. This vendor neutral project includes a
set of standard desktop tools and applications, e.g. the well-
known GNU Image Manipulation Program (GIMP), and uses
the Common Object Request Broker Architecture (CORBA).

To provide for further refinement, additional sources of
data, e.g. discusssion lists and bug-tracking archives, were
also identified. As all data retrieved needed to be managed,
storage in a database was chosen. Therefore, a data model of
an open source software project was developed to include all
publicly available data (see Fig. 1).

The following notes seem to be necessary for
understanding the entity-relationship model presented: There
exist both coders (or programmers) that actually do work on
the project by submitting (“checking in”) files. On the other
hand, there are posters that participate in discussions
pertaining to the software. One real-world person can fulfill
both roles, as will be most common, but the possibility exists
for people to only post messages in discussion lists or
programmers who do not participate in discussions. A file, as
identified by a filename and a directory path (which is
necessary as some filenames are duplicates, e.g. a file named
“makefile” exists in several directories) can be checked in to
the CVS-system by one and only one programmer. The CVS-
repository then stores this checkin with the changes in the
lines-of-code (LOC) and further data. A posting is a separate
message to a discussion list pertaining to the GNOME
project, maybe in reply to a prior posting. A module consists
of several files and constitutes a self-contained part of the
GNOME project (e.g. gnome-core, gnumeric, gimp). A
module can therefore also be viewed as a separate sub-
project. A release is a complete and public version of a
predefined set of modules of the GNOME project.

- 2 -

Fig. 1. Entity-relationship model of data available concerning the GNOME project.

As a first step, the web interface of the CVS-repository was
used to retrieve the necessary data concerning checkins. This
data included programmer, file, date, lines-of-code added and
deleted, revision number and some comment given by the
programmer for every checkin. This was done with a Perl-
script which generated successive queries simulating a
browser-based input form. Each query concerned a particular
day in the history of the CVS archive. The requests were
distributed over a four day period in order to distribute the
load. The result of each individual query was a HTML page
which was subsequently parsed extracting the necessary
attributes conforming to the data model exposed above and
fed into a database (Postgresql under Linux). The necessary
queries were then performed and the output analysed using a
statistical package. Of course, the data concerning
programmers was strictly anonymized.

Also retrieved by a Perl-script were the postings to the
relevant discussion lists including the sender, the subject,
time and complete text. For the analysis of the posting
behaviour of the programmers, the short name each
programmer uses for checkins had to be matched to the full
name or e-mail adress used for posting. For 175 persons this
has been possible using several regular expressions with
human check-up.

This approach of using existing information publicly
available eliminated one of the most pressing problems in
software engineering research, the lack of data, especially
concerning the past history of projects. In addition, this
approach does not intrude on the software project under
consideration and is inexpensive [7], [2].

III. RESULTS

This section details the results from analysis of the CVS-
repository data and the discussion lists. For the most part,

these results concern the programmers, e.g. their
participation, and the files composing the software
development effort. In addition, the changes in the project
over time are explored. Before these results are presented, the
metrics used in the analysis are described.

A. Metrics used

The metrics described here were either derived directly from
the CVS-repository or have been computed from this data.
Some of these can also be directly seen on the data model
presented above (see Fig. 1).

The first metric to be used is the number of lines-of-code
(LOC) added to a file. The definition of this often disputed
metric LOC [11], [16] is taken from the CVS-repository and
therefore includes all types of lines-of-code, e.g. also
commentaries. In addition, any LOC changed is counted as
one line-of-code added and one line-of-code deleted. The
grand total of LOC added was 6 300 000 for the whole
project and all programmers. The next metric is defined
analogous and pertains to the LOC deleted. For the whole
project, 4 500 000 LOC have been deleted.

The difference between the LOC added and the LOC
deleted therefore gives the change in size of the software
artefact under consideration in the corresponding time period.
These changes can be cumulated over time to give the size at
any moment.

The metric of checkin refers to the submission of a single
file by a single programmer. Overall, 220 000 checkins have
been made for the project.

The time spent on the project is defined for every
programmer as the difference between his first and his last
checkin. As this therefore includes all time elapsed, not
necessarily only time spent actually working on the project,
this measure can only give an upper bound for actual time
spent working (and no time sheet data as in [2] are available).

- 3 -

In addition, a programmer is defined as being active in a
given period of time if he performed at least one checkin
during this interval. The total time spent by all programmers
on this project equals 74 000 days, roughly 200 years. When
the results from a questionnaire to Linux developers [10] are
taken, which give a mean of 13.9 hours per week spent on
development, this translates to about 145 000 person-hours of
effort (or 954 person-months). As the following comparisons
of results will show, this measure can indeed be taken. For
each file, the time worked on is also defined as the time
elapsed between the first and the last checkin. The same
considerations of course apply as for programmers, i.e. this
measure can also only be taken as an upper bound.

Further metrics computed from those described above are
the LOC added per checkin and the LOC added per hour.
Both are derived from division of the corresponding values.

In addition, the postings made to mailing lists pertaining to
the GNOME project were analysed. The most important
metric derived is the number of postings. The grand total of
postings made during the observed time period was 19 909. A
posting concerning another posting made earlier in time is
defined as a reply.

B. Data on persons involved in the project

Open source software development is assumed to be
performed by more people than traditional development, as
these do not spend all their time working on the project. In
the GNOME project, 301 programmers were identified that
currently work, or have worked upon, this software. As will
be shown, these programmers differ significantly in their
effort for this software project. For additional data on
contributors to open source development, including their
country of origin, see [8] and [10].

The mean LOC added in total by a given programmer was
found to be 21 000 with a standard deviation of 67 000. The
corresponding values for LOC deleted were 15 000 and 48
000. The maxima were 931 000 for LOC added and 621 000
for LOC deleted. Fig. 2 shows the values of LOC added for
all programmers sorted by this value and Fig. 3 the
corresponding histogram. As one can see from these results,
there are indeed significant differences between the
programmers, with a majority contributing a quite small
amount, a result also found in [8]. In [10] the Linux kernel
developers reported a mean contribution of 2 648 LOC with a
standard deviation of 9 268 (see Fig. 4). Again, the
distribution within the population is similar to the results
from other sources. Also the number of patches submitted to
the kernel reinforces this finding [10].

Case Number

289

273

257

241

225

209

193

177

161

145

129

113

97

81

65

49

33

17

1

V
al

ue
 L

O
C

_A
D

D

1000000

800000

600000

400000

200000

0

Fig. 2. LOC added for each programmer (sorted by LOC
added).

LOC_ADD

950000,0

900000,0

850000,0

800000,0

750000,0

700000,0

650000,0

600000,0

550000,0

500000,0

450000,0

400000,0

350000,0

300000,0

250000,0

200000,0

150000,0

100000,0

50000,0

0,0

300

200

100

0

Fig. 3. Histogram of LOC added per programmer.

- 4 -

LOC_KERN

70000.0

65000.0

60000.0

55000.0

50000.0

45000.0

40000.0

35000.0

30000.0

25000.0

20000.0

15000.0

10000.0

5000.0

0.0

60

50

40

30

20

10

0

Fig. 4. Histogram of LOC per Linux kernel developer [10].

The number of checkins performed by a programmer was
in the mean 731 with a standard deviation of 1 857 and a
maximum of 23 000 (see Fig. 5 for the number of checkins
for each programmer, Fig. 6 for the corresponding
histogram).

Case Number

289

273

257

241

225

209

193

177

161

145

129

113

97

81

65

49

33

17

1

V
al

ue
 C

H
E

C
K

IN
S

30000

20000

10000

0

Fig. 5. Number of checkins for each programmer (sorted by
number of checkins).

CHECKINS

22000,0

20000,0

18000,0

16000,0

14000,0

12000,0

10000,0

8000,0

6000,0

4000,0

2000,0

0,0

300

200

100

0

Fig. 6. Histogram of number of checkins per programmer.

The time spent on the project had a mean of 246 days, a
standard deviation 213 and a maximum of 993. In [10], Linux
kernel developers reported a mean time of 17.2 months
(standard deviation of 22.3) of involvement (but of course
this project has been in existence for a longer period of time).
The LOC added per single checkin had a mean of 28, the
LOC deleted of 20. The standard deviations were 38 and 35
respectively, and the maxima 287 and 238. The productivity
as measured in LOC added per hour (again taking the mean
value of working hours per week from [10]) had a mean of 53
with a standard deviation of 166. Fig. 7 shows the total time
spent on the project for each programmer, Fig. 8 gives the
corresponding histogram. Compared to the data concerning
the number of LOC added and deleted, the differences
between the programmers seem much smaller. This finding
will be explored further later on.

Case Number

289

273

257

241

225

209

193

177

161

145

129

113

97

81

65

49

33

17

1

V
al

ue
 T

IM
E

1200

1000

800

600

400

200

0

Fig. 7. Time spent on the project for each programmer (sorted
by time spent on the project).

- 5 -

TIME

1000,0

900,0

800,0

700,0

600,0

500,0

400,0

300,0

200,0

100,0

0,0

80

60

40

20

0

Fig. 8. Histogram of time spent on the project for each
programmer.

Next, possible relations between these variables were
explored. Fig. 9 shows a scatterplot for total of LOC added
plotted against LOC deleted, Fig. 10 for LOC added against
checkins and Fig. 11 for LOC added against the time spent on
the project.

LOC_DEL

700000

600000

500000

400000

300000

200000

100000

0

-100000

LO
C

_A
D

D

1000000

800000

600000

400000

200000

0

-200000

Fig. 9. LOC added against LOC deleted for each
programmer.

As one can easily see, these variables seem to correlate
strongly. In fact, a Pearson correlation of 0.985 was found in
further analysis. As these measures include any single LOC
changed as one LOC added and one LOC deleted, this
correlation does not seem to be surprising, and might hint at
the existence of a high number of changes in the source code.

CHECKINS

3000020000100000-10000

LO
C

_A
D

D

1000000

800000

600000

400000

200000

0

-200000

Fig. 10. LOC added against number of checkins for each
programmer.

There is also a high degree of correlation to be found between
the LOC added and the number of checkins. The Pearson
correlation is 0.894, so it can be said that programmers that
add more LOC also use more checkins. As the correlation
between this total LOC added and the LOC added per
checkin is not high (Pearson correlation of 0.166) there is no
relation stating that very active programmers use bigger
checkins, i.e. those containing more LOC. This could be
taken as an indication that there is no significant difference in
programming style between programmers.

TIME

120010008006004002000-200

LO
C

_A
D

D

1000000

800000

600000

400000

200000

0

-200000

Fig. 11. LOC added against time spent on project for each
programmer.

As the scatterplot suggests (see Fig. 11), there is no strong
relation between time spent on the project and the total
number of LOC added, used as a measure of output. The
Pearson correlation between these variables is 0.349, so it can
not be said that programmers who stay on the project longer

- 6 -

also contribute significantly more. In [10], a similar
correlation coefficient of 0.405 is found. It is to be assumed
that this constitutes a difference to commercial software
development, where people spend all their (working) time on
the project, thereby constantly generating output, while
participants in open source development only donate some of
their spare time, most often irregularly, to this effort.

Data on the postings made to discussion lists pertaining to
the GNOME project shows 19 909 postings made to several
discussion lists out of which 6 903 had been replies to other
postings. 1 881 different posters have been identified. The
mean number of postings per person therefore is 11.

Data on the postings made by programmers was also
explored (see Fig. 12). Each programmer did post a mean of
43 messages with a standard deviation of 116. These
programmers in sum contributed 7 455 messages out of the
total of 19 909 messages retrieved from the discussion lists.
The mean of programmers with 43 messages per person is
therefore higher than the mean of all different 1 881 posters
identified. For the group of programmers, as the scatterplot
indicates (see Fig. 13), a correlation of 0.691 could be found
between number of postings and sum of LOC added, showing
that more productive programmers are also more active
participants in the discussion lists.

POSTINGS

1100,0

1000,0

900,0

800,0

700,0

600,0

500,0

400,0

300,0

200,0

100,0

0,0

160

140

120

100

80

60

40

20

0

Fig. 12. Histogram of postings made by each programmer.

LOC_ADD

10000008000006000004000002000000-200000

P
O

S
T

IN
G

S

1200

1000

800

600

400

200

0

-200

Fig. 13. LOC added against postings made for each
programmer.

A cluster analysis was performed to discover groups of
programmers with similar characteristics and observe the
associated distribution in the population. The analysis was
based in a first step on the total of LOC added and set to
produce five clusters. The first cluster had a center of 931 000
LOC and contained only one programmer. The second cluster
had a center of 255 000 LOC and contained five
programmers, an equal amount to the third cluster with a
center 159 000 LOC. The fourth cluster cointained 41
programmers and had a center of 50 000 LOC. The fifth and
last cluster contained 249 programmers with a center of 5 000
LOC. A reduction to 3 clusters did not change this result
significantly, as the clusters two and three and four and five
were pooled, therefore resulting in a distribution of 1, 10 and
290 programmers. A clustering using both LOC added and
time spent on the project produced the same clusters with
time spent on the project decreasing between the groups in
accordance with the total of LOC added, but not as sharply.
These results clearly show that there is a minority of
programmers that produce most of the output, as has also
been visible from Fig. 2 and Fig. 3. The existence of such an
“inner circle” can be assumed to be another difference to
traditional forms of software development, where the effort
will be in most cases split more evenly between a smaller
group of people.

C. Data on files

Since the beginning of the GNOME project 38 634 files
have been worked on. Of course, these files differ
significantly in size and complexity. The total of LOC added
to any file was taken as a metric for it’s size, the number of
checkins was used to gain an understanding for complexity,
as more changes and therefore checkins were postulated to be
necessary for more complex files.

The mean for LOC added in total for a given file was 163
with a standard deviation of 1 136 and a maximum of 60 000
(see Fig. 14 for the histogram). The LOC deleted were found
to have a mean of 117, standard deviation of 984 and a
maximum of 60 000.

- 7 -

LOC_ADD

60000,0

55000,0

50000,0

45000,0

40000,0

35000,0

30000,0

25000,0

20000,0

15000,0

10000,0

5000,0

0,0

40000

30000

20000

10000

0

Fig. 14. Histogram of LOC added per file.

The number of checkins for a given file had a mean of 6
with a standard deviation of 18 and a maximum of 1 583. Fig.
15 shows the corresponding histogram.

CHECKINS

1600,0

1500,0

1400,0

1300,0

1200,0

1100,0

1000,0

900,0

800,0

700,0

600,0

500,0

400,0

300,0

200,0

100,0

0,0

50000

40000

30000

20000

10000

0

Fig. 15. Histogram of checkins per file.

The time worked on a given file had a mean of 95 days
(standard deviation 152, maximum 971, see Fig. 16). The
number of LOC added with a single checkin for a file had a
mean of 15 with standard deviation of 152 and maximum of
20 000.

TIME

950,0

900,0

850,0

800,0

750,0

700,0

650,0

600,0

550,0

500,0

450,0

400,0

350,0

300,0

250,0

200,0

150,0

100,0

50,0

0,0

30000

20000

10000

0

Fig. 16. Histogram of time worked on each file.

Again, the possible relations between these variables
described above were explored using scatterplots (see Fig. 17,
18 and 19).

LOC_DEL

700006000050000400003000020000100000-10000

LO
C

_A
D

D

70000

60000

50000

40000

30000

20000

10000

0

-10000

Fig. 17. LOC added against LOC deleted for each file.

The correlation between the number of LOC added to and
deleted from a given file is again very high with a Pearson
correlation of 0.933. Of course, the same comments as for
programmers apply.

- 8 -

CHECKINS

200010000-1000

LO
C

_A
D

D
70000

60000

50000

40000

30000

20000

10000

0

-10000

Fig. 18. LOC added against number of checkins for each file.

A correlation between the LOC added and the number of
checkins exists but is not very strong (Pearson correlation of
0.341). As a stronger correlation of 0.602 can be found
between the total LOC added to a file and the LOC added per
single checkin, this seems to indicate that larger files are
checked in using greater chunks. In addition, the measure of
total number of checkins taken as indicator for complexity
does not correlate strongly with size as taken from the total of
LOC added. This is in contrast to the findings of [13], who
have found a high correlation between size and complexity
measures, and [3], whose results have shown the size as
having a significant impact on maintenance costs.

TIME

10008006004002000-200

LO
C

_A
D

D

70000

60000

50000

40000

30000

20000

10000

0

-10000

Fig. 19. LOC added against time worked on each file.

As for programmers, the relation between time and total
effort (as measured in the sum of LOC added) is not very
strong. This Pearson correlation of 0.196 indicates that the
time spent between first and last checkin of a single file is not
a good predictor for the total effort spent on this file. This

also corresponds to the relation that larger files are checked in
using larger checkins, as therefore the time worked on large
files need not be longer than for smaller ones (assuming
constant time intervals between checkins).

A cluster analysis was also performed on the files to gain
an understanding for groups with common features and their
distribution in the total population. The first cluster analysis
was based on the total of LOC added and set to produce five
clusters. The first cluster contained two files and had a center
of 57 000 LOC. The second cluster had a center of 34 000
LOC and contained seven files, the third cluster 18 000 LOC
with 65 files. The fourth cluster contained 226 files and had a
center of 6 600 LOC. The fifth and last cluster contained the
vast majority of files (38 000) and had a center of 86 LOC. A
change to 3 clusters did not produce any significant changes.
Using both the total number of LOC added and the number of
checkins for production of five clusters showed some
differences. The first cluster contained three files with a
center of 53 000 LOC and 9 checkins. The second cluster
contained nine files with 30 000 LOC and 161 checkins, the
third cluster 77 files with 16 000 LOC and 71 checkins. The
fourth cluster had a center of 5 800 LOC and 66 checkins and
contained 246 files. The last cluster again consisted of the
majority of 38 000 files and had a center of 83 LOC and 5
checkins. These results show that there is a vast differnce
between the files in both size as given by total of LOC added
and number of checkins. The vast majority of files is quite
small and is not changed very often.

D. Data on programmers’ work on single files

Preliminary analysis was also performed for the relations
of programmers with files. In the mean, 1.8 distinct
programmers work together on a single file. A given
programmer added in the mean 90 LOC to a given file he
worked on (standard deviation of 658, maximum of 60 000).
He deleted a mean of 64 LOC with standard deviation of 595
and maximum of 60 000. The number of checkins a single
programmer performed for a given file was 3 (standard
deviation 7 and maximum 492). The size of a single checkin
for a given file was in the mean 22 with a standard deviation
of 208 and a maximum of 20 000. Further analysis is
prepared to explore the association between programmers and
files, e.g. if there is a chief programmer for each file adding
most of the LOC, if more complex files are worked on by
more programmers and so on.

E. Data on progression of the project over time

The progression of the GNOME project over time was also
explored to gain an insight into the evolution of this software
(see Fig. 20 and 21). The term software evolution refers to
the dynamic behaviour of software systems as they are
maintained and enhanced over their lifetimes [12]. A paucity
of empirical studies in this area to this date has been reported,
while most of the existing studies suffered from small sample
size due to focusing on system releases as unit of analysis
[12].

- 9 -

TIME

NOV 1999

SEP 1999

JUL 1999

M
AY 1999

MAR 1999

JAN 1999

NOV 1998

SEP 1998

JUL 1998

M
AY 1998

MAR 1998

JAN 1998

NOV 1997

SEP 1997

JUL 1997

M
AY 1997

MAR 1997

JAN 1997

V
al

ue
 L

O
C

_A
D

D
700000

600000

500000

400000

300000

200000

100000

0

Fig. 20. Total of LOC added in each month.

TIME

NOV 1999

SEP 1999

JUL 1999

M
AY 1999

MAR 1999

JAN 1999

NOV 1998

SEP 1998

JUL 1998

M
AY 1998

MAR 1998

JAN 1998

NOV 1997

SEP 1997

JUL 1997

M
AY 1997

MAR 1997

JAN 1997

V
al

ue
 K

U
M

2000000

1000000

0

-1000000

Fig. 21. LOC difference in each month cumulated.

As can be seen, the total size of the GNOME project has
experienced a steady increase over time, with the cumulated
LOC difference over time taken to gain an understanding of
this progression. In accordance with [15], [20] and [17] the
development is assumed to become more slow towards the
end of the life cycle. A flattened end of the plotted curve is
therefore a hint that the project is nearing completion. This
point does not seem to have been yet reached for the
GNOME project.

For each module, the progression over time was also
analysed, i.e. viewing each one as a separate project (see Fig.
22 - 28). This analysis was undertaken to uncover if there
were differences in the projects in their progression in the life
cycle. It is possible that the total growth of the GNOME
project is in different time periods supported by different
projects, i.e. that the life cycle of the GNOME project is
composed of several sub-cycles of projects whose starting

points are shifted in time. The cumulated LOC difference
over time was again taken to gain an understanding of the
growth of the size of any module with flattened end of the
plotted curve as a hint for completion.

As can be seen, there are indications that several of these
modules has already progressed to a later stage in the life
cycle. For example, the size of the module gnome-core (see
Fig. 24) seems to have stabilized at this time. The same
progression can be seen for gtk (see Fig. 25) and ORBit (see
Fig. 27). As these modules constitute a basis for several
others, this shift in time can be explained by the resulting
dependencies. These results provide support for the notion
presented above that the GNOME project is composed of
several sub-projects who start at different points in time and
proceed at different speed.

DATE2

W
ed Sep 01 00:00:00

Sun Aug 01 00:00:00

Thu Jul 01 00:00:00

Tue Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

Fri Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

Thu Oct 01 00:00:00

Tue Sep 01 00:00:00

Sat Aug 01 00:00:00

W
ed Jul 01 00:00:00

M
on Jun 01 00:00:00

V
al

ue
 K

U
M

300000

200000

100000

0

Fig. 22. LOC difference in each month for gnumeric
cumulated.

DATE2

W
ed Sep 01 00:00:00

Thu Jul 01 00:00:00

Sat M
ay 01 00:00:00

M
on M

ar 01 00:00:00

Fri Jan 01 00:00:00

Sun Nov 01 00:00:00

Tue Sep 01 00:00:00

W
ed Jul 01 00:00:00

Fri M
ay 01 00:00:00

Sun M
ar 01 00:00:00

Thu Jan 01 00:00:00

Sat Nov 01 00:00:00

V
al

ue
 K

U
M

200000

100000

0

-100000

Fig. 23. LOC difference in each month for gimp cumulated.

- 10 -

DATE2

W
ed Sep 01 00:00:00

Thu Jul 01 00:00:00

Sat M
ay 01 00:00:00

M
on M

ar 01 00:00:00

Fri Jan 01 00:00:00

Sun Nov 01 00:00:00

Tue Sep 01 00:00:00

W
ed Jul 01 00:00:00

Fri M
ay 01 00:00:00

Sun M
ar 01 00:00:00

Thu Jan 01 00:00:00

Sat Nov 01 00:00:00

V
al

ue
 K

U
M

120000

100000

80000

60000

40000

20000

0

Fig. 24. LOC difference in each month for gnome-core
cumulated.

DATE2

W
ed Sep 01 00:00:00

Thu Jul 01 00:00:00

Sat M
ay 01 00:00:00

M
on M

ar 01 00:00:00

Fri Jan 01 00:00:00

Sun Nov 01 00:00:00

Tue Sep 01 00:00:00

W
ed Jul 01 00:00:00

Fri M
ay 01 00:00:00

Sun M
ar 01 00:00:00

Thu Jan 01 00:00:00

Sat Nov 01 00:00:00

V
al

ue
 K

U
M

300000

200000

100000

0

Fig. 25. LOC difference in each month for gtk cumulated.

DATE2

W
ed Sep 01 00:00:00

Sun Aug 01 00:00:00

Thu Jul 01 00:00:00

Tue Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

Fri Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

V
al

ue
 K

U
M

60000

50000

40000

30000

20000

10000

0

Fig. 26. LOC difference in each month for glade cumulated.

DATE2

W
ed Sep 01 00:00:00

Sun Aug 01 00:00:00

Thu Jul 01 00:00:00

Tue Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

Fri Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

Thu Oct 01 00:00:00

Tue Sep 01 00:00:00

Sat Aug 01 00:00:00

W
ed Jul 01 00:00:00

M
on Jun 01 00:00:00

Fri M
ay 01 00:00:00

W
ed Apr 01 00:00:00

Sun M
ar 01 00:00:00

Sun Feb 01 00:00:00

V
al

ue
 K

U
M

30000

20000

10000

0

Fig. 27. LOC difference in each month for ORBit cumulated.

- 11 -

DATE2

W
ed Sep 01 00:00:00

Thu Jul 01 00:00:00

Sat M
ay 01 00:00:00

M
on M

ar 01 00:00:00

Fri Jan 01 00:00:00

Sun Nov 01 00:00:00

Tue Sep 01 00:00:00

W
ed Jul 01 00:00:00

Fri M
ay 01 00:00:00

Sun M
ar 01 00:00:00

Thu Jan 01 00:00:00

Sat Nov 01 00:00:00

V
al

ue
 K

U
M

140000

120000

100000

80000

60000

40000

20000

0

-20000

Fig. 28. LOC difference in each month for gnome-libs
cumulated.

The most important aspect in open source development
projects is the participation of programmers, as a higher
number of contributors will also likely lead to more output
(this relationship can be confirmed as will be shown in the
following). As can be seen (see Fig. 29), the number of active
programmers has seen a staggering rise between November
1997 and the end of 1998. During the year 1999 this number
has been roughly constant at around 130 persons. The factors
resulting in this development can not be seen from the data
retrieved for this research, but it can be assumed that
marketing-like instruments like press coverage in the open
source community (mostly on the WWW) have played an
important role. Also many developers will be likely to join an
open source project in the beginning (or during take-off) than
at the end, as development will be more highly regarded than
maintenance and the influence on the whole project could be
greater if joined early on. In [10], 43.1 percent of the Linux
kernel developers questioned had joined the project during
first draft. Another reason for this development could be seen
from the research of [15], [20] and [17] who argue that only a
given amount of persons can be working on a project in a
productive manner at a given time (in relation to the problems
ready for solution at this point). In the light of this
interpretation, the peak manning of the project has already
been reached and will only see a downfall from now on. It is
also possible that the organisation of more programmers than
the number active in 1999 is not feasible given the structures
in place at the moment (e.g. the CVS-system), i.e. that this
boundary is not inherent in the problem worked on. This
would lead to the conclusion that more effective
organisational structures would allow more programmers to
work on the project and thus lead to higher output. More
work should than be invested in the design of such structures.

TIME

NOV 1999

SEP 1999

JUL 1999

M
AY 1999

MAR 1999

JAN 1999

NOV 1998

SEP 1998

JUL 1998

M
AY 1998

MAR 1998

JAN 1998

NOV 1997

SEP 1997

JUL 1997

M
AY 1997

MAR 1997

JAN 1997

V
al

ue
 A

N
Z

_P
R

O
G

160

140

120

100

80

60

40

20

0

Fig. 29. Number of active programmers each month.

A correlation of 0.932 was found between the total of LOC
added and the number of active programmers each month
(see Fig. 30). This confirms the intuitive relationship between
these two variables and therefore leads to the conclusion, that
the aim of each open source project needs to be to attract as
many contributors as possible. In spite of this, the striking
differences in productivity between the programmers that
have been detailled above need to be considered, so pure
mass of participants is not enough to sustain such a project
but a certain quality needs also to be present.

ANZ_PROG

160140120100806040200-20

LO
C

_A
D

D

600000

500000

400000

300000

200000

100000

0

-100000

Fig. 30. Total of LOC added against active programmers in
each month.

For each programmer, the cumulated LOC difference in
each month was analysed to see if any patterns in the
contribution to the project exist (see Fig. 31 – 38). As can be
seen, a clear pattern does not emerge for the programmers
examined.

- 12 -

DATE2

Sun Aug 01 00:00:00

Tue Jun 01 00:00:00

Thu Apr 01 00:00:00

M
on Feb 01 00:00:00

Tue Dec 01 00:00:00

Thu Oct 01 00:00:00

Sat Aug 01 00:00:00

M
on Jun 01 00:00:00

W
ed Apr 01 00:00:00

Sun Feb 01 00:00:00

M
on Dec 01 00:00:00

V
al

ue
 K

U
M

400000

300000

200000

100000

0

Fig. 31. LOC difference in each month for programmer 1
(ordered by total of LOC added) cumulated.

DATE2

Sun Aug 01 00:00:00

Tue Jun 01 00:00:00

Thu Apr 01 00:00:00

M
on Feb 01 00:00:00

Tue Dec 01 00:00:00

Thu Oct 01 00:00:00

Sat Aug 01 00:00:00

M
on Jun 01 00:00:00

W
ed Apr 01 00:00:00

Sun Feb 01 00:00:00

M
on Dec 01 00:00:00

V
al

ue
 K

U
M

100000

80000

60000

40000

20000

0

Fig. 32. LOC difference in each month for programmer 2
(ordered by total of LOC added) cumulated.

DATE2

W
ed Sep 01 00:00:00

Sun Aug 01 00:00:00

Thu Jul 01 00:00:00

Tue Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

Fri Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

Thu Oct 01 00:00:00

Tue Sep 01 00:00:00

Sat Aug 01 00:00:00

V
al

ue
 K

U
M

20000

10000

0

-10000

-20000

-30000

-40000

-50000

Fig. 33. LOC difference in each month for programmer 3
(ordered by total of LOC added) cumulated.

DATE2

Tue Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

Fri Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

Thu Oct 01 00:00:00

Tue Sep 01 00:00:00

Sat Aug 01 00:00:00

W
ed Jul 01 00:00:00

V
al

ue
 K

U
M

70000

60000

50000

40000

30000

20000

10000

0

Fig. 34. LOC difference in each month for programmer 4
(ordered by total of LOC added) cumulated.

- 13 -

DATE2

W
ed Sep 01 00:00:00

Sun Aug 01 00:00:00

Thu Jul 01 00:00:00

Tue Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

Fri Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

Thu Oct 01 00:00:00

Tue Sep 01 00:00:00

Sat Aug 01 00:00:00

W
ed Jul 01 00:00:00

M
on Jun 01 00:00:00

Fri M
ay 01 00:00:00

V
al

ue
 K

U
M

10000

0

-10000

-20000

-30000

-40000

-50000

Fig. 35. LOC difference in each month for programmer 6
(ordered by total of LOC added) cumulated.

DATE2

Sun Aug 01 00:00:00

W
ed Jun 01 00:00:00

Thu Apr 01 00:00:00

M
on Feb 01 00:00:00

Tue Dec 01 00:00:00

Thu Oct 01 00:00:00

Sat Aug 01 00:00:00

M
on Jun 01 00:00:00

W
ed Apr 01 00:00:00

Sun Feb 01 00:00:00

M
on Dec 01 00:00:00

V
al

ue
 K

U
M

80000

60000

40000

20000

0

Fig. 36. LOC difference in each month for programmer 14
(ordered by total of LOC added) cumulated.

DATE2

W
ed Sep 01 00:00:00

Sun Aug 01 00:00:00

Thu Jul 01 00:00:00

Sat Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

Fri Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

Thu Oct 01 00:00:00

Tue Sep 01 00:00:00

Sat Aug 01 00:00:00

W
ed Jul 01 00:00:00

M
on Jun 01 00:00:00

Fri M
ay 01 00:00:00

W
ed Apr 01 00:00:00

Sun M
ar 01 00:00:00

V
al

ue
 K

U
M

10000

8000

6000

4000

2000

0

Fig. 37. LOC difference in each month for programmer 43
(ordered by total of LOC added) cumulated.

DATE2

W
ed Sep 01 00:00:00

Sun Aug 01 00:00:00

Thu Jul 01 00:00:00

Tue Jun 01 00:00:00

Sat M
ay 01 00:00:00

Thu Apr 01 00:00:00

M
on M

ar 01 00:00:00

M
on Feb 01 00:00:00

W
ed Jan 01 00:00:00

Tue Dec 01 00:00:00

Sun Nov 01 00:00:00

Thu Oct 01 00:00:00

W
ed Sep 01 00:00:00

W
ed Aug 01 00:00:00

W
ed Jul 01 00:00:00

M
on Jun 01 00:00:00

Fri M
ay 01 00:00:00

W
ed Apr 01 00:00:00

V
al

ue
 K

U
M

10000

8000

6000

4000

2000

0

Fig. 38. LOC difference in each month for programmer 85
(ordered by total of LOC added) cumulated.

The number of new postings made each month was also
explored to gain an understanding for the development of
activity on the discussion lists over time. As can be seen the
activity was strongest in the year 1998 which coincides with
the build-up in active programmers (see Fig. 39). A possible
explanation would be that more communication is necessary
to accomodate for new programmers joining the project [5],
[1]. After they have joined, less interaction is necessary
between them. Therefore the correlation between the total of
postings for each month and the difference in active
programmers was also explored which yielded a result of
0.366 (see Fig. 40).

- 14 -

TIME

NOV 1999

SEP 1999

JUL 1999

M
AY 1999

MAR 1999

JAN 1999

NOV 1998

SEP 1998

JUL 1998

M
AY 1998

MAR 1998

JAN 1998

NOV 1997

SEP 1997

JUL 1997

M
AY 1997

MAR 1997

JAN 1997

V
al

ue
 P

O
S

T
IN

G
S

4000

3000

2000

1000

0

Fig. 39. Total of postings made in each month.

POSTINGS

40003000200010000-1000

D
IF

F
_P

R
O

20

10

0

-10

-20

Fig. 40. Total of postings made in each month against
difference in active programmers.

The correlation of the number of postings as a measure for
activity on the discussion lists with the total of LOC added in
each month as a measure of programming effort was also
explored (see Fig. 41).

POSTINGS

40003000200010000-1000

LO
C

_A
D

D

600000

500000

400000

300000

200000

100000

0

-100000

Fig. 41. Total of postings made against total of LOC added in
each month.

A correlation of 0.227 was found, not supporting a
relationship between activity on the discussion lists and
programming effort expanded for the GNOME project
overall.

F. Effort Estimation

In this section, a first approach to estimating the effort for the
GNOME project is detailed based on [15] and [20].
According to this approach, a development project is
modeled as a series of problem-solving efforts by the
manpower involved to reach a set of objectives constituting
technological progress. The number of problems is assumed
to be unknown but finite. Each solving of a problem removes
one element from the list of unsolved problems. The
occurrence of such an event is random and independent, it is
assummed to follow a Poisson distribution. The number of
people usefully employed at any given time is assumed to be
approximately proportional to the number of problems ready
for solution at that time. Therefore, the manpower usefully
employed towards the end of a project becomes smaller as the
problem space is exhausted. The learning rate of the team is
modeled as a linear function of time

p(t) = 2 a t

which governs the application of effort. Therefore the
cumulative manpower effort C(t) in person-years is null at the
start of project and grows monotonically towards the total
effort K. The rate of variation of the cumulative manpower
involved, dC/dt represents the number of persons involved in
the development at any time, m(t), and is given by:

dC(t)/dt = p(t) [K - C(t)]

Using the learning rate defined above, the cumulative effort
at any given time t becomes

C(t) = K [1 – exp (- a t2)],

and the manning of the project can now be calculated by
differentiating the cumulative cost function relative to the
time:

- 15 -

m(t) = 2 K a t exp (- a t2).

This function represents a Rayleigh-type curve governed by
the parameter a which plays an important role in the
determination of the peak manpower m0. By deriving the
manpower function relative to the time and finding the zero
value, the relationship between time of peak manning td and a
can be found:

td
2

 = 1 / (2 a)

Furthermore, the value of the peak manning m0 can be
obtained by substituting the value of a in the manpower
function:

m0 td e = K

Using this relationship, the total manpower required can be
determined once peak manning has been reached.

As the manpower distribution for the GNOME project has
been retrieved from the data (see Fig. 29) and seems to follow
a Rayleigh-type curve, this information can be used for
estimating the total effort. The peak manning seems to have
been reached between November 1998 and September 1999.
Therefore the time elapsed between the beginning of the
project (in January 1997) and the peak manning, td, is set to
2.25 years, taking the middle of this range. The peak manning
m0 is set to 131.8 persons, the mean of the manning in these
months. The next step necessary is to convert the peak
manning to full-time employees, as this type is assumed in
the model used. For this conversion, some value for the time
actually invested in the project is necessary. As has been
shown, the study of [10] shows at several points similar
characteristics of the programmers questioned to the data
retrieved from the GNOME project. Therefore it is possible
to use the resulting value of 13.9 hours per week spent on the
project. This results in a conversion to a peak manning of
45.8 persons. Using these values in the model of [15] and
[20], a total effort K of 169.9 person-years is obtained. Again
using the figure for time spent on the project from [10], to
this date 79.5 person-years have already been invested. A
further characteristic of the curve proposed is the manpower
build-up which is related to the nature of the software being
developed (also called the difficulty gradient) and empirically
seems to remain constant around the values of 8 for entirely
new software with many interactions and interfaces with
other systems, 15 for new stand-alone systems and 27 for
software rebuilt from existing software. The manpower build-
up for the GNOME project obtained from the previous results
is 14.9, a value strikingly close to one of the values proposed.
As this project in fact is stand-alone, this result seems
reasonable. Several of the sub-projects, if these were to be
considered separately, might in contrast have many
interactions with other sub-projects and therefore result in a
different manpower build-up closer to 8.

IV. CONCLUSION

The area of open source software development has become
very important to the software industry. Therefore research
into this field from the perspective of software engineering
also gains importance, especially quantitative data on this
collaborative form of development is needed [8]. This paper
has presented a methodology that can be applied to several

other open source software development projects. First results
showed that insights into this kind of development can indeed
be gained.

In open source development, more people are involved
than in traditional organisational forms, but the data shows
the existence of a relatively small “inner circle” of
programmers responsible for most of the output. Those
programmers are also more active participants in the
discussions pertaining to the project, although all
programmers show a higher than average activity in the
mailing lists compared to other participants. There is no
relation to be seen between the time between first and last
activity for the project and the output produced. This seems
another striking difference to traditional software
development. There is only a small number of programmers
working together on a file, indicating a high degree of
division of labour.

It has been shown that the project under consideration has
seen a steady increase in size as measured in LOC over the
time inspected. There is no indication that the end of the life
cycle has yet been reached. Analysis of the sub-projects has
given support to the theory that some of these have already
progressed to a later stage in their evolution while others lag
behind. Therefore the growth of the GNOME project is in
different time periods supported by different projects, i.e. the
life cycle of the GNOME project is composed of several sub-
cycles of projects whose starting points are shifted in time.

The number of active programmers has seen a staggering
rise during a prolonged time period, but has for the last year
been relatively stable. The reasons for this might be inherent
in the problem worked on or may indicate deficiencies in the
form of cooperation employed. Also more psychologically
motivated factors might have contributed to this effect. It
seems interesting that the highest amount of activity on the
discussion groups has been seen during the time of the
manpower build-up, hinting at a more pressing need for
communication and coordination. The intuitive relationship
between the number of active programmers and the output
produced for the project was confirmed. The attraction of
participants is therefore identified as one of the most
important aspects of open source development projects.

A first attempt at estimating the effort for this open source
project has been made. The results seemed to give realistic
numbers for this project and therefore indicated that the
theory of [15] and [20] is applicable to this type of software
development, although some conversions are necessary. The
results can of course only give some indication at the effort
necessary, the time to completion depends mostly on
programmers participation, as has been shown above, and is
not controlled by any central management.

Further research is to be undertaken using the data collected
to this point, and further sources of data still need to be
explored. For example, content analysis of the postings
retrieved can yield further important information concerning
interactions between software developers [5], [22], the
diffusion of information, different programming styles, the
evolution of the software products and several other
communication metrics [9]. The bug-tracking archive can
supply data on software quality. Following this, the data from
these different sources can be integrated. In addition, the
source code for each file could be retrieved and analysed

- 16 -

using measures like cyclomatic complexity [14]. These
results could be correlated with e.g. LOC or number of
checkins to gain insights into the relationships between size,
complexity and maintenance effort [3]. The conceptual and
concrete architecture of the software system can also be
extracted [4].

In a next step, the methodology presented needs to be applied
to other open source software development efforts to allow
for comparison between projects and the discovery of
common features. This profile can then be compared to data
from commercial software development projects. To ensure
the validity of this comparison, the necessary metrics of
course need to be available for several of these traditional
software projects. As almost certainly some sort of versioning
control system will also be used in this organisational form of
software development, the same methodology can again be
applied to some extent, of course given the consent of the
controlling organization.

REFERENCES

[1] T. Abdel-Hamid and S.E. Madnick, Software Project
Dynamics: An Integrated Approach, Englewood Cliffs,
New Jersey: Prentice-Hall, 1991.

[2] D. Atkins, T. Ball, T. Graves and A. Mockus, “Using
Version Control Data to Evaluate the Impact of
Software Tools,” Proceedings of the 21st International
Conference on Software Engineering (ICSE 1999), pp.
324-333, 1999.

[3] R.D. Banker, S.M. Datar, C.F. Kemerer and D. Zweig,
“Software Complexity and Maintenance Costs,”
Communications of the ACM, vol. 36, pp. 81-94,
November 1993.

[4] I.T. Bowman, R.C. Holt and N.V. Brewster, “Linux as a
Case Study: Ist Extracted Software Architecture,”
Proceedings of the 21st International Conference on
Software Engineering (ICSE 1999), pp. 555-563, 1999.

[5] F.P. Brooks jr., The Mythical Man-Month: Essays on
Software Engineering, Anniversary ed., Reading,
Massachusetts: Addison-Wesley, 1995.

[6] C.B. Brown, “Linux and decentralized development,”
first monday, vol. 3, March 1998.

[7] J.E. Cook, L.G. Votta and A.L. Wolf, “Cost-effective
analysis of in-place software processes,” IEEE
Transactions on Software Engineering, vol. 24, pp. 650-
663, August 1998.

[8] B.J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “A
quantitative profile of a community of open source
Linux developers,” Technical Report TR-1999-05,
School of Information and Library Science, University
of North Carolina at Chapel Hill, October 1999.

[9] A.H. Dutoit and B. Bruegge, “Communication metrics
for software development,” IEEE Transactions on
Software Engineering, vol. 24, pp. 615-628, August
1998.

[10] S. Hermann, G. Hertel and S. Niedner, “Linux Study
Homepage,” avaible online:
http://www.psychologie.uni-kiel.de/linux-study/, 2000.

[11] W.S. Humphrey, A Discipline for Software Engineering,
Reading, Massachusetts: Addison-Wesley, 1995.

[12] C.K. Kemerer and S. Slaughter, “An Empirical
Approach to Studying Software Evolution,” IEEE
Transactions on Software Engineering, vol. 25, pp. 493-
509, July/August 1999.

[13] H.F. Li and W.K. Cheung, “An Empirical Study of
Software Metrics,” IEEE Transactions on Software
Engineering, vol. 13, pp. 697-708, June 1987.

[14] T.J. McCabe, “A complexity measure,” IEEE
Transactions on Software Engineering, vol. 2, pp. 308-
320, December 1976.

[15] P.V. Norden, “On the anatomy of development
projects,” IRE Transactions on Engineering
Management, vol. 7, pp. 34-42, March 1960.

[16] R.E. Park, “Software size measurement: A framework
for counting source statements,” Technical Report
CMU/SEI-92-TR-20, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, 1992.

[17] F.N. Parr, “An alternative to the rayleigh curve model
for software development effort,” IEEE Transactions on
Software Engineering, vol. 6, pp. 291-296, May 1980.

[18] B. Perens, “The Open Source Definition,” C. DiBona et
al., eds., Open Sources: Voices from the Open Source
Revolution, Cambridge: O’Reilly & Associates, 1999.

[19] J.M. Perpich, D.E. Perry, A.A. Porter, L.G. Votta and
M.W. Wade, “Anywhere, Anytime Code Inspections:
Using the Web to Remove Inspection Bottlenecks in
Large-Scale Software Development,” Proceedings of
the 19th International Conference on Software
Engineering (ICSE 1997), pp. 14-21, 1997.

[20] L.H. Putnam, “A general empirical solution to the
macro software sizing and estimating problem,” IEEE
Transactions on Software Engineering, vol. 4, pp. 345-
361, July 1978.

[21] E.S. Raymond, The Cathedral and the Bazaar,
Cambridge: O’Reilly & Associates, 1999.

[22] C.B. Seaman and V.R. Basili, “An Empirical Study of
Communication in Code Inspection,” Proceedings of the
19th International Conference on Software Engineering
(ICSE 1997), pp. 96-106, 1997.

[23] P. Vixie, “Software Engineering,” C. DiBona et al.,
eds., Open Sources: Voices from the Open Source
Revolution, Cambridge: O’Reilly & Associates, 1999.

