
A Dataset of Feature Additions and Feature Removals from
the Linux Kernel

Leonardo Passos
∗

University of Waterloo
Canada

lpassos@gsd.uwaterloo.ca

Krzysztof Czarnecki
University of Waterloo

Canada
kczarnec@gsd.uwaterloo.ca

ABSTRACT
This paper describes a dataset of feature additions and re-
movals in the Linux kernel evolution history, spanning over
seven years of kernel development. Features, in this context,
denote configurable system options that users select when
creating customized kernel images. The provided dataset is
the largest corpus we are aware of capturing feature additions
and removals, allowing researchers to assess the kernel evolu-
tion from a feature-oriented point-of-view. Furthermore, the
dataset can be used to better understand how features evolve
over time, and how different artifacts change as a result.
One particular use of the dataset is to provide a real-world
case to assess existing support for feature traceability and
evolution. In this paper, we detail the dataset extraction pro-
cess, the underlying database schema, and example queries.
The dataset is directly available at our Bitbucket repository:
https://bitbucket.org/lpassos/kconfigdb

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement
]: Version control

General Terms
Management

Keywords
Linux, Version Control History, Evolution, Traceability

1. INTRODUCTION
Highly-configurable software systems allow users to config-

ure the target software according to their own preferences
and needs. Configurability is achieved by having variable
software artifacts, meaning that they can be restructured
to suit a particular configuration [7]. Different software sys-
tems fit into such description (e.g., database management

∗Funded by CAPES, grant BEX 0459-10-0.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

systems [3, 8, 11], SOA-based applications [2], and operating
systems [1, 4, 5]), and the Linux kernel is probably the most
well-known case.

In the Linux kernel, variability is captured in system fea-
tures (configurable system options), which are explicitly de-
clared in variability models written in the Kconfig language
[9]. Features in variability models are then referenced in
build files and C code. Figure 1 conceptually illustrates how
features appear in these three artifact types and how they
bind such artifacts. The variability model contains feature
declarations, including drivers, file systems, scheduling poli-
cies, network protocols, etc. In the figure, feature FB is a
driver providing support for framebuffer devices.1 Through
a configuration process over the declared features (step 1),2

users state which features should be part of the final kernel,
and which should be excluded. Upon a feature selection,
specific build rules are triggered to compile corresponding
C files. For example, selecting FB triggers the compilation
of fb.c (step 2). Compilation, however, first requires pre-
processing target source files to remove any compile-time
variability introduced by C pre-processor directives (step 3),
such as ifdefs. In our example, the pre-processing of sti core.c,
another framebuffer-related feature, shows that under the
presence of FB, the post-processed sti select fbfont function
has a non-NULL return. After pre-processing target files, the
resulting directive-free files are compiled (step 4).

As the kernel evolves, new features are introduced, retired,
split, merged and renamed. These evolution changes are
expressed by two basic operations in the variability model:
feature additions and feature removals (e.g., the split of a
feature f into fi and fj is given by the removal of f followed
by the addition of fi and fj). By processing the Linux kernel
version control history, we extract a dataset of feature addi-
tions and removals to the variability model, linking them to
their specific commits, changed files (Kconfig, build system,
and C files), contributors and associated releases. Commits
that do not change the variability model are also stored, but
with less detail. The dataset, kept as a relational database,
allows different types of queries, including the retrieval of the
commit that adds/removes a particular feature, the release
in which an addition/removal occurs, which contributors

1A framebuffer device is an abstraction for the graphic hard-
ware. It represents the framebuffer of some video hardware,
and allows application software to access the graphic hard-
ware through a well-defined interface [6].
2Different tools exist to configure the kernel, including xcon-
fig, menuconfig, and gconfig. These tools render the Kconfig
model as a hierarchy of features, from which users select
those of interest and set their values accordingly.

menuconfig FB
 tristate "Support for frame buffer devices"

(drivers/video/Kconfig)

if FB is selected
 then compile fb.c into fb.o

(drivers/video/Makefile)

(drivers/video/fb.c) (console/sticore.c)

#ifdef CONFIG_FB
static struct sti_cooked_font __devinit
*sti_select_fbfont(struct sti_cooked_rom *cooked_rom,
 const char *fbfont_name)
{
 ...
}
#else
static struct sti_cooked_font __devinit
*sti_select_fbfont(struct sti_cooked_rom *cooked_rom,
 const char *fbfont_name)
{
 return NULL;
}
#endif

1

Feature selection

Triggering of applicable
build rules

Pre-Processing

Compilation

2

3

4

Figure 1: Example of variability in the Linux kernel

add more features, the places (directories) where most fea-
tures belong, etc. Our dataset allows researchers to assess
the evolution of the kernel from a feature-oriented point-of-
view, in addition to providing concrete test cases for feature
traceability and evolution techniques. The dataset contains
over 300,000 commits, covering the kernel development from
v2.6.12 (year 2005) to v3.9 (year 2013). In our own previous
work [10], we have used a small subset (≈ 500 commits in
the v2.6.26–v3.3 release range) of a simplified version of this
dataset (not all tables and attributes were captured by the
previous version) for collecting patterns of the coevolution
of the Linux kernel variability model, Makefiles and C code.

In the following, we present the data extraction process
(Sec. 2), the database schema of our dataset (Sec. 3), exam-
ple queries (Sec. 4), and a discussion of current limitations
(Sec. 5).

2. DATA EXTRACTION
To extract our dataset, we follow the process depicted

in Fig. 2. The process starts by first collecting the release
versions of the kernel by enumerating the release tags in
the kernel repository. The collected tags are then ordered
from oldest to newest, and output as ordered pairs (release i,
release i + 1). Step 1 in Fig. 2 comprises these two tasks. At
step 2, we iterate over the ordered release pairs and inspect
the commits between the releases of each pair, and at step
3 we parse their associated patches, extracting various data
(see Sec. 3). After parsing (step 4), we store the collected data
in a relational database, currently managed by PostgreSQL
RDBMS.

The process in Fig. 2 is fully automated and has been
implemented in a custom-made tool (kdb), whose source code
is publicly available at https://bitbucket.org/lpassos/

kdb. As the implementation of kdb requires connectivity
with git, we have also implemented a thin IPC library (gitlib)
to retrieve information from the Linux kernel git repository.
Again, the library is released under GPL, and its source
code can be downloaded from Bitbucket.3 It is worth noting
that the database does not store data relative to the content
of patches changing non-Kconfig artifacts (e.g., Makefiles
and C code). However, as we record all files changed in
a given commit, any complementary information can be
programmaticallly obtained with the use of gitlib.

3https://bitbucket.org/lpassos/gitlib

(v2.6.12, v2.6.13-rc1)
(v2.6.13-rc2, v2.6.13-rc2)

...
(v2.6.13-rc7, v2.6.13)

...
(v3.9-rc8, v3.9)

2. Collect
commit patches per

release pair

(Commit patches)(Kernel git repository) (Ordered pairs of tags)

(Extracted DB)

3. Parse each
commit patch

(Parsed commit patch)

4. Insert parsed
patch into database

1. Collect ordered
tags

Figure 2: Data extraction process

3. SCHEMA
The database storing the collected data from each parsed

commit follows the schema in Fig. 3. The database stores
information relative to all commits, saving which files are
modified, the release interval that a commit takes place, and
who is the committer and who is the author of the change,
as given by the corresponding tables in the schema. Changes
(table file change) are also specialized into file renames (in
that case we also store the similarity degree (%) to the
original file), file copies, file additions, file deletions and file
modifications. In the case of feature changes in Kconfig
files, we also record which features are added and which are
deleted, as given in feature change unit. Thus, the type of
a feature change, given in table feature change unit type, is
either an addition (id = ’A’) or removal (id = ’D’).

4. EXAMPLE QUERIES
In the following, we provide some example queries that

can be answered by our database. Our examples are given in
terms of a particular framebuffer-related feature: FB IMAC.

EQ. 1) What is the commit that adds/removes a
given feature?

This query applies when it is known that the kernel has
removed a feature, but the associated commit is unknown.
The SQL-select bellow retrieves such a commit:

select commit.hash as commit_hash,
file_change.file as file

from
file_change, feature_change_unit, feature, commit

where
file_change.fk_commit = commit.id and
feature_change_unit.fk_file_change = file_change.id and

Figure 3: Database schema

feature_change_unit.fk_feature_change_unit_type = ’D’
and feature_change_unit.fk_feature = feature.id and
feature.name = ’FB_IMAC’

Running the query indicates that FB IMAC is removed from
drivers/video/Kconfig in commit 7c08c9ae0c145.
EQ. 2) At which release is a given feature added or
removed?

This query builds on the previous one, and allows re-
trieving the latest release in which the feature still exists
(from release), and the immediate release in which it is no
longer present (to release):

select release_pair.r1 as from_release,
release_pair.r2 as to_release

from
file_change, feature_change_unit, feature, commit,
release_pair

where
commit.fk_release_pair = release_pair.id and
file_change.fk_commit = commit.id and
feature_change_unit.fk_file_change = file_change.id and
feature_change_unit.fk_feature = feature.id and
feature.name = ’FB_IMAC’ and
feature_change_unit.fk_feature_change_unit_type = ’D’

The query result indicates that release v2.6.27 is the last
stable one to contain FB IMAC, and the next immediate
release (v2.6.28-rc1) no longer has it in the variability model.4

EQ. 3) What are candidate changes where feature
additions/removals are likely to denote something
else (e.g., a merge, a rename, a split, etc)?

This query allows identifying situations where feature ad-
ditions and removals are composed to achieve more complex
changes, such as the merge or split of features. There are
many ways on how to write such a query. As a heuristic-
based criteria for finding merges, stated in the SQL-select
in the following, we filter commits that necessarily remove
a single feature (lines 17–22), but do not add any new ones

4In the Linux kernel, unstable releases are suffixed with rc,
whereas stable ones are not.

(lines 22–28). Our strategy is to search for features that are
removed from the variability model, but are merged with ex-
isting features by changes in other artifacts. Hence, we state
that target commits must modify at least an implementation
file (.c), a header file (.h), or a Makefile (lines 10–17):
1 select commit.hash as commit_hash,
2 feature.name as feature_name
3 from
4 commit, file_change, feature_change_unit, feature
5 where
6 file_change.fk_commit = commit.id and
7 feature_change_unit.fk_file_change = file_change.id
8 and feature_change_unit.fk_feature = feature.id and
9 feature_change_unit.fk_feature_change_unit_type = ’D’

10 and (select count(*)
11 from file_change as fc, file_modify as fm
12 where (fc.file like ’%.c’ or
13 fc.file like ’%.h’ or
14 fc.file like ’%Makefile’) and
15 fc.fk_commit = commit.id and
16 fm.fk_file_change = fc.id
17) > 0 and (select count(*)
18 from file_change as fc, feature_change_unit as fcu
19 where fc.fk_commit = commit.id and
20 fcu.fk_file_change = fc.id and
21 fcu.fk_feature_change_unit_type = ’D’
22) = 1 and (select count(*)
23 from file_change as fc,
24 feature_change_unit as fcu
25 where fc.fk_commit = commit.id and
26 fcu.fk_file_change = fc.id and
27 fcu.fk_feature_change_unit_type = ’A’
28) = 0

One of the commit hashes returned by this query lists
the commit hash of the commit removing FB IMAC. The
inspection of that commit shows that, while FB IMAC is re-
moved from the variability model, part of its implementation
is copied to another existing feature (FB EFI), characterizing
a merge between the two (for a full discussion of this case,
the reader is referred to [10]). In this case, the functionality
provided by FB IMAC is still supported, although now in a
different feature. Thus, running such a query allows us to

provide concrete cases for assessing techniques supporting
feature evolution and traceability.

For example, techniques that reason on the evolution of
the variability model only (e.g., [12]) would not be able
to capture this case adequately, since removal of FB IMAC
from the variability model does not imply that support for
FB IMAC has been dropped.

Other Queries. Examples of other queries include:

• Which contributors add more features in the kernel?
This query can be answered by looking the contribu-
tors’ records associated with file changes that neces-
sarily add features, provided that the same features
are not excluded in the same commit (e.g., if features
are relocated in their Kconfig file, the database keeps
two records in the file change table; one for removing
the feature declaration, and another for adding it in a
different place in the same file).

• Where are most of the features located in the kernel? As
the database keeps the location of each feature that is
added, we can group feature additions according to the
top-level directory where their Kconfig files belong (e.g.,
inside the drivers folder of the kernel source code tree).
This can point to places where the kernel contains most
of its features.

• What is the average time for staging5 features to be
merged into the main kernel, or removed from it? To
write such a query, one must filter commits whose
files belong to the staging subfolder inside drivers, as
recorded in the path of changed files (column file, table
file change).

• To what degree changes in Kconfig files are accompanied
by changes in other artifacts?

Due to limited space, we omit the SQL-select statement of
these queries.

5. DATASET LIMITATIONS
Our dataset has some limitations. Although it stores all

commits, the database does not hold all patch changes, as
we do not parse the addition/removal of functions in C code,
build rules in Makefiles, etc. Rather, we restrict to parsing
Kconfig files that necessarily add/remove features, and store
associated data. In the case of changes in other artifacts,
we only save which files are changed, and whether they are
copied, renamed, added from scratch, deleted, or had their
content modified.

Moreover, we do not automatically identify situations in
which the addition or removal of features in the variability
model indicate a richer change semantics, such as the merge of
features or a split situation. This limitation can be overcome
if ones uses the database, together with extra queries directly
issued to git. In such cases, gitlib can be used. The dataset,
as is, already allows researchers to query specific situations to
evidence such cases, but requires manual analysis to discard
false-positives.

5Staging features in the kernel are features that are not fully
functional, or that are not mature for official inclusion. These
features are contained in the kernel to allow users to have
early support for a given functionality (e.g., a driver).

Another limitation of our dataset is that it concerns the
evolution of a single system: the Linux kernel. We aim to
overcome this limitation in the near future, as our custom-
made tool (kdb) can already be applied to different systems,
provided they rely on the Kconfig language for encoding
variability models and use git as their version control system.
Other variant-rich software systems satisfy such criterion,
specially in the systems software domain [5].

6. REFERENCES
[1] S. Apel, D. Batory, C. Kstner, and G. Saake.

Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer, 2013.

[2] L. Baresi, S. Guinea, and L. Pasquale. Service-Oriented
Dynamic Software Product Lines. Computer,
45(10):42–48, 2012.

[3] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith,
K. Tsukuda, B. C. Twichell, and T. E. Wise.
GENESIS: An Extensible Database Management
System. IEEE Transactions on Software Engineering,
14(11):1711–1730, 1988.

[4] T. Berger, S. She, R. Lotufo, K. Czarnecki, and
A. W ↪asowski. Feature-to-code Mapping in Two Large
Product Lines. In Proceedings of the 14th International
Conference on Software Product Lines: Going Beyond,
pages 498–499. Springer, 2010.

[5] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. A Study of Variability Models and
Languages in the Systems Software Domain. IEEE
Transactions on Software Engineering,
39(12):1611–1640, 2013.

[6] A. Buell. Framebuffer HOWTO.
www.tldp.org/HOWTO/Framebuffer-HOWTO/, 2008. Last
seen: February 16th, 2014.

[7] J. V. Gurp, J. Bosch, and M. Svahnberg. On the
Notion of Variability in Software Product Lines. In
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture, pages 45–54. IEEE, 2001.

[8] C. Kästner, S. Apel, and D. Batory. A Case Study
Implementing Features Using AspectJ. In Proceedings
of the 11th International Software Product Line
Conference, pages 223–232. IEEE, 2007.

[9] Kconfig. The Kernel Configuration Language (Kconfig).
www.kernel.org/doc/Documentation/kbuild/, 2008.
Last seen: February 16th, 2014.

[10] L. Passos, J. Guo, L. Teixeira, K. Czarnecki,
A. W ↪asowski, and P. Borba. Coevolution of Variability
Models and Related Artifacts: A Case Study from the
Linux Kernel. In Proceedings of the 17th International
Software Product Line Conference, pages 91–100. ACM,
2013.

[11] M. Rosenmüller, N. Siegmund, H. Schirmeier,
J. Sincero, S. Apel, T. Leich, O. Spinczyk, and
G. Saake. FAME-DBMS: Tailor-made Data
Management Solutions for Embedded Systems. In
Proceedings of the 2008 EDBT Workshop on Software
Engineering for Tailor-made Data Management, pages
1–6. ACM, 2008.

[12] T. Thüm, D. Batory, and C. Kastner. Reasoning about
edits to feature models. In Proceedings of the 31st
International Conference on Software Engineering,
pages 254–264. IEEE, 2009.

