
Westfälische Wilhelms-Universität Münster

MICE Economic Research Studies

Vol. 4

Open-Source Software

An Economic Assessment

Stefan Kooths, Ph. D.

Markus Langenfurth, Ph. D.

Nadine Kalwey, Diplom-Volkswirtin

DRAFT TRANSLATION

Muenster

December 2003 MICE
Muenster Institute for

Computational Economics

University of Muenster

mice.uni-muenster.de

MICE Economic Research Studies – Vol. 4

Editors:

Prof. Gustav Dieckheuer, Ph. D. / Stefan Kooths, Ph. D.

Kooths, Stefan / Langenfurth, Markus / Kalwey, Nadine:

Open-Source Software – An Economic Assessment

http://mice.uni-muenster.de/mers/mers4-OpenSource_en.pdf

MICE Economic Research Studies

ISSN 1612-9032

© MICE 2003

Westfälische Wilhelms-Universität Münster

Muenster Institute for Computational Economics

Fliednerstrasse 21

D-48149 Muenster/Germany

http://mice.uni-muenster.de

All Rights Reserved

Printed in Germany

University of Muenster 3
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Management Summary
Open-Source Software: An Economic Assessment

1. No Market at the Core – Open-Source Development

Open-source software is deliberately developed outside of market

mechanisms, as the main purpose of making the source code freely available is

to prevent a price-controlled software market from evolving in the first place.

This is a fact that commercial open-source business models cannot alter,

especially not in the packaged software sector. The business transactions of such

models take place in complementary markets and have at most an indirect effect

on open-source software development. However, in any economy based on the

division of labor, the market fulfills important information, coordination and

incentive functions: it creates an equilibrium between customer wants and

product supply (customer sovereignty), steers scarce resources towards their

best-possible use (optimum allocation of resources), generates income and

distributes it as warranted by performance (productivity-oriented factor

compensation) and provides innovation incentives (progressive function). In

such a market, prices are the main information medium for suppliers and

demanders; without prices, the markets are unable to fulfill the above functions.

When software is distributed free of consideration (“free”), however, it lacks this

key price component, which results in the substantial economic and functional

deficits of the open-source model.

2. “Happy Engineering”

- Developer Orientation Is Not Customer Orientation

Open-source developers are involved in projects that fit in well with their

personal preferences: they derive most of their motivation from an individual

interest in solving a problem, the excitement of a technological challenge or the

hope of building a reputation for themselves. Thus, the interests of developers

greatly determine the type and scope of the software supply. Because of this

incentive mechanism, developers produce mostly sophisticated solutions for

advanced users. However, software supply should not be determined by what is

technically possible but by what the user actually wants and is able to use and

pay for. It is the customer who, as a sovereign in the market process, ultimately

determines supply with his or her product decision. Suppliers of proprietary

University of Muenster 4
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

software can only survive in an efficient market if their product supply matches

the customers’ wants. Their market-research investments serve to identify

customer wants and, by extension, to contribute to their own survival in the

market process. The pricing of their products (based on realizable selling prices

and volume (sales) on the one hand and on the calculation of the resources

utilized in the development of the product on the basis of factor prices and

volume (costs) on the other) generates profit or loss signals that software

suppliers can use as guides in an efficient market. If, however, there is no

market, then there is no reliable mechanism to steer the interests of developers

towards the actual wants of customers, either. Customer sovereignty cannot be

accomplished without product prices – software users who do not write programs

turn into passive recipients of what the open-source developer community puts

out.

3. Not for Nothing, but Sometimes for Naught

- Regulating Open-Source Resources

Economizing means utilizing available, scarce resources in a way that, in the

customers’ estimation, uses these resources in the best-possible fashion. If

software is available free of consideration, then the work invested in its

development cannot be directly compensated for monetarily. This lack of pricing

transfers directly to the upstream factor markets where it nullifies the balancing

mechanisms of the market economy. For this reason, many developers may be

working on programs that nobody wants, or the programs that users want may

not be developed. Even a wide distribution of an open-source product is not a

reliable indicator of a successful utilization of resources as it does not offer any

clues as to whether the use of the development capacity for an alternative

product would have led to a higher satisfaction of customer needs

(nontransparency of opportunity costs). The ability to copy software basically

free of charge has been interpreted in the open-source discussion to mean that

there is no rivalry among users concerning software products, from which a

public-good attribute and a partial market failure are then derived. This view,

however, is too short-sighted, as it only refers to existing (regardless of how it

was produced) software (lack of ex post rivalry). On other hand, before new

software can even be developed, there must be competition for the use of scant

development capacity (ex ante rivalry). This essentially determines which

products should or should not be developed. It is especially in the software

University of Muenster 5
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

sector with its highly qualified workforce that resources should be utilized

according to market-economy, i.e., productivity-oriented criteria so as not to

waste the economically scarce resource of “development capacity”.

4. Second-Best Solution – Commercial Open-Source Business Models

As the commercial exploitation of open-source software itself is restricted,

commercial business models use open source to promote the sale of

complementary services and products. In so doing, commercial business models

are dependent on being able to market the complementary product as

exclusively as possible. Their incentives for investing in open-source software are

not directed by the open-source product but indirectly by the value of the open-

source software to their marketable product. Commercial business models must

indirectly finance all their investments in open-source development with the

profits from complementary products, provided they are not customizing

software for specific clients. This form of cross-subsidization distorts the price

structure of the market economy, which may lead to sizeable distortions in the

production structure. For example, financing the development of software from

service activities would drive up service prices beyond the actual costs incurred

in development, leading to a lower demand for these services than would be

possible in a free-enterprise system. Varying economic activities (software

development, services) should also be priced independently of one another in

order to clearly signal to the demander which resources are actually used in the

process of satisfying the demander’s wants.

5. Weak Proprietary Software Does Not Mean Strong Open-Source Software

The open-source model does not represent a basic alternative form of

software development. One cannot strengthen open source by weakening the

proprietary software market, as the development of open-source software is

contingent upon there being a strong proprietary software market. The

proprietary market serves open-source development as a wellspring of resources

for jobs, income and innovative product ideas.

6. Open-Source Software Does Not Aid SMEs in the IT Sector

Far from offering new business opportunities, open-source software offers

only some of the opportunities already available in the proprietary software

market. Promoting open source is not a suitable locational means of supporting

SMEs in the IT sector. Except as regards custom software work, the nonmarket

University of Muenster 6
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

coordination mechanism fails to contribute to the creation of value in

development, as opposed to the proprietary software market. If software is

available free of consideration, its development – unlike in the proprietary

software market – does not generate profit, income, jobs or taxes. Within the

scope of the Microsoft partner model alone, independent software companies

with a total of 45,000 employees produce Microsoft-related software products

worth 6.6 billion euros. Business models based on open source that offer

complementary services and products are not fundamentally different from

proprietary offerings in this complementary field. However, the cross-

subsidization of the nonmarket core of open-source software causes value-added

to be lower than in the production of proprietary software. Consequently, value-

added in the open-source model is lower overall.

7. Promotion of Open Source – Not a Competition-Policy Tool

The position of individual suppliers in certain market segments of the IT

sector (in particular in desktop operating systems and office software) does not

constitute a justification for promoting open-source software. State

support/subsidization of competitors in highly concentrated markets is not a

competition-policy tool because such interventions require a level of information

that government authorities simply cannot have (e.g., future market trends,

optimum market structure). As an IT demander, the state should therefore – as

stipulated in budgetary laws – be guided strictly by economic considerations

(TCO analyses), deliberately abstain from influencing market developments and

leave it up to anti-trust commissions to enforce the rules of competition. Even if

one disregards these basic regulatory principles for any reason whatsoever,

there is still one question that remains: why should a production process that

suffers from the above coordination deficits be supported at all?

University of Muenster 7
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Table of Contents

Management Summary... 3

List of Illustrations and Tables ... 9

Introduction ... 10

1. Basics of the Software Market ... 13
1.1. Attributes of Software ... 13

1.1.1. Steps of Software Development... 13
1.1.2. History of the Market Structure ... 15

1.2. An Economic Analysis of the Software Market 16
1.2.1. Economic Attributes of Software .. 16

1.2.1.1. Supply Side Attributes 16
1.2.1.2. Demand Side Attributes 18

1.2.2. Network Effects... 19
1.2.3. Nonrivalry and Excludability .. 21
1.2.4. Competitive Traits of the Software Market................................... 23

2. Economics of Open-Source Software ... 28
2.1. Open-Source Basics .. 28

2.1.1. Attributes... 28
2.1.2. Beginnings and Licensing Models ... 31
2.1.3. Work Organization and Development.. 36

2.2. Business Models and Market Overview... 39
2.2.1. The Value Chain of Software - A Comparison of Open-Source

Software and Proprietary Software... 39
2.2.2. Open-Source Software as a Basis for Business Models 41

2.2.2.1. Selling Additional Services 43
2.2.2.2. Selling Additional Software 44
2.2.2.3. Selling Additional Hardware 46
2.2.2.4. Assessment of the Business Models and Limiting Factors 46

2.3. Consequences of the Lack of Market Coordination in the Open-Source
Model ... 48

2.3.1. Has Software Ever Been Free? The Development of the Software
Market from an Economic Perspective .. 48

2.3.2. Economic Motives for Participating in Open-Source Projects........... 50
2.3.3. The Development of Open-Source Software - Not A Bazaar 55
2.3.4. The Role of the Market and Fulfilling the Market Functions in Open

Source... 56
2.3.5. Limits of Open Source .. 59

University of Muenster 8
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

2.3.5.1. “Happy Engineering” - Developer Orientation Instead of
Customer Orientation 59

2.3.5.2. Inadequate Allocation of Resources 62
2.3.5.3. Sustainability of Complementary Open-Source Strategies 64
2.3.5.4. Lower Innovation Capacity 68
2.3.5.5. Standards are More Difficult to Establish 72

2.4. Outlook for Open-Source Development and Economic Implications 74
2.4.1. Proprietary and Open-Source Software - A Comparison................. 74
2.4.2. Motives for Promoting Open-Source Software 79
2.4.3. Promotion of Open-Source Software... 80

2.4.3.1. Not a Regulatory Mandate 80
2.4.3.2. Not a Competition Policy Mandate 84
2.4.3.3. Not a Location Policy Mandate - Open Source and SMEs in

the Software Market 87

Bibliography ... 90

University of Muenster 9
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

List of Illustrations and Tables

Illustration 1: Design of the Study... 12
Illustration 2: Steps in Software Production .. 13
Illustration 3: Two-Sided Market ... 25
Illustration 4: Distribution of Licenses .. 34
Illustration 5: Schematic of How an Open-Source Project Works 37
Illustration 6: The Value Chain of Software... 40
Illustration 7: The Open-Source Core and Indirect Open-Source Business

Models... 42
Illustration 8: Motives of Open-Source Developers... 51
Illustration 9: Market System in Proprietary Software Production 60
Illustration 10: Open-Source Software Production ... 61
Illustration 11: Complementary Strategy with Cross-Subsidization..................... 65
Illustration 12: Adjustment Responses in the Complementary Market................. 66
Illustration 13: Assessment of the Complementary Strategy with Cross-

Subsidization.. 67
Illustration 14: Assessment of the Complementary Strategy without Cross-

Subsidization.. 68
Illustration 15: From an Idea to Marketability ... 71
Illustration 16: Application Fields of Different Software Types 77

Table 1: Categories of Goods... 22
Table 2: Software Categories... 29
Table 3: Major Licenses and their Essential Terms 35
Table 4: Market Functions and the Consequences of their Absence in

Open-Source Software... 57
Table 5: Comparison of Proprietary and Open-Source Software 74

University of Muenster 10
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Introduction

Since the dreams of the internet boom and the associated ideas of a New

Economy have not materialized, hopes are now revolving around a new buzzword in

the world of IT: open-source software. Once again, there are claims that a new and

differently regulated economy will emerge, this time based on software whose

primary economic attributes are the nonexistence of property rights and –

consequently – its availability free of charge. The exchange of “goods for money” is

to be superseded by an exchange of “gifts for reputation” and participation in a

developer community based on reciprocity. The declared goal is to make software

generally available without licensing fees, thereby nullifying the market-

coordination mechanism that is controlled by the price system. The expectations of

the public associated with open-source software are manifold: more transparency,

more democracy, more jobs particularly in small and medium-size enterprises, and

last but not least, a contribution to consolidating public finances with allegedly free

software.

Advocates of producing software that, at the core, dispenses with prices and the

market process, are often fundamentally skeptical of market coordination

mechanisms. The open-source development of packaged software deliberately

shuns the market and thus seems to constitute an engineering method that does

not conform to the processes characteristic of a market economy. This absence of

market processes manifests itself as a nonexistence of prices and the free

distribution of software. The open-source licenses on the software aim to suppress

any ownership claims to the software and prevent prices from being established for

it. In the end, the developed software cannot be used to generate profit.

Be that as it may, business models based on open-source software do exist. These

business models must, however, finance basically all their software-development

investments from complementary services. There is one exception: custom contract

software. As this software is tailored to the special interests of each customer, it is

not mass-marketed, which makes the (complementary) service of developing the

software tantamount to the sale of a one-time license. And while the software is

subsequently made available for free public use, there is generally no demand for

it: it contains special customized features and will therefore not be deployed by any

University of Muenster 11
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

users other than the customer. In sum, the advantages attributed to open-source

software cannot be realized in custom software.

However, any complementary business models that are not based on custom

contract development are severely limited. The returns from investments in a

particular open-source development are simultaneously available to all other

suppliers, who can then benefit from a competitor’s investments in development

and offer their own complementary services without having to finance investments

on their own. This in turn reduces the overall willingness to invest in software

development. Unlike custom software development, the domain of packaged

software does not constitute an economically sustainable foundation for open-

source business models. Despite the fact that there are business models that

exploit open-source software, software development, as the core of the open-

source model, remains nonmarket in principle.

In a market economy, however, prices and the market play a vital role as a

coordination tool: the suppliers’ production plans are matched to customer demand,

scarce resources are steered towards their most productive use, and innovation

incentives are provided in the form of property rights in the finished product. In

such an economy, prices assume a central regulatory function. They indicate

relative shortages and help suppliers determine what value demanders place on a

given good and which goods are in highest demand. Only prices render an economy

based on the division of labor possible; without them, there can be neither sales

nor income. No other measure even comes close to providing an equally effective

assessment of customer wants, production facilities and new market opportunities.

If open-source developers choose not to price their software products, the market

is effectively stripped of its central regulatory functions. For that reason, the quality

of not bearing a price at all means a great deal more, economically speaking, than

the quality of being free in the eyes of demanders.

This study examines the extent to which the open-source model constitutes an

alternative to the production of proprietary software. It primarily examines how the

absence of market processes impact this form of software production.

University of Muenster 12
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Illustration 1: Design of the Study

Die OSS-1 Development of open-
source software1 1

Funktione2 How a
market works2 2

3
Economic

consequences3 3

Central attribute:
absence of market

Need to intervene?
Industrial policy?

Competition policy?

Consequences of the market
vacuum of open source software

Software development basics (Part I)

O
p
en

 so
u
rce so

ftw
are an

alysis (Part II)

The study is split up into two sections. The first section describes the basics of the

software market and software development. The second part briefly describes the

beginnings of open-source software, followed by an economic assessment of open-

source software and a discussion of its economic consequences.

University of Muenster 13
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

1. Basics of the Software Market

1.1 Attributes of Software

1.1.1 Steps of Software Development

Simply speaking, software consists of a list of data-processing instructions.

Software is an intellectual product, comprising programs, procedures, guidelines

and documentation required to give instructions to a computer and to have tasks

performed. It contains, in their entirety, the formalized program statements and

functions required to run a computer (operating system, programming languages

and their compilers or interpreters, programs).1

Illustration 2: Steps in Software Production

… 00 35 65 B8 1F 38
8C FF 75 B8 E4 03 B3
8C 0F 48 1C 00 00 00
33 BD 93 E5 08 0F 58
4B 00 00 00 B8 E7 C1
B8 64 81 B3 8F 27 04
B2 8F BE 02 33 FF B3
BF 47 F2 75 05 15 8E
DC 41 00 00 38 4C 0C
B3 7C 47 02 B3 3C E7
97 93 E5 02 47 03 92
64 C1 B8 67 81 B2 8F
03 6C 75 05 65 8E D9

Let i = 0
Let x = 1

Multiply x by 2
Add 1 to i

Is i < n?
no

yes

Output x

Int main(int, char*)
{

long i, n, x;
cin >> n;
i = 0;
x = 1;
while (i < n) {

x = x*2;
i = i+1;

}
cout << x;
return;

}

Design Source Code Binary Code

… 00 35 65 B8 1F 38
8C FF 75 B8 E4 03 B3
8C 0F 48 1C 00 00 00
33 BD 93 E5 08 0F 58
4B 00 00 00 B8 E7 C1
B8 64 81 B3 8F 27 04
B2 8F BE 02 33 FF B3
BF 47 F2 75 05 15 8E
DC 41 00 00 38 4C 0C
B3 7C 47 02 B3 3C E7
97 93 E5 02 47 03 92
64 C1 B8 67 81 B2 8F
03 6C 75 05 65 8E D9

Let i = 0
Let x = 1

Multiply x by 2
Add 1 to i

Is i < n?
no

yes

Output x

Int main(int, char*)
{

long i, n, x;
cin >> n;
i = 0;
x = 1;
while (i < n) {

x = x*2;
i = i+1;

}
cout << x;
return;

}

Design Source Code Binary Code

Let i = 0
Let x = 1

Multiply x by 2
Add 1 to i

Is i < n?
no

yes

Output x

Int main(int, char*)
{

long i, n, x;
cin >> n;
i = 0;
x = 1;
while (i < n) {

x = x*2;
i = i+1;

}
cout << x;
return;

}

Design Source Code Binary Code

Source: EVANS AND REDDY (2002), p. 5.

The ideal development of software typically takes place in three steps. First, the

design is drafted as a blueprint that reflects the software’s purpose. Next, the

actual programming takes place: the programmer writes, on the basis of the

blueprint, the instructions in a particular programming language. These instructions

are called the “source code” of the software. The source code is the instruction

sequence of software and is what determines its functionalities.

Higher programming languages (such as PASCAL, C or C++) are based on written

language, and on written English in particular. For example, numerous

1 Cf. JANKO, BERNROIDER AND EBNER (2000), p. 13.

University of Muenster 14
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

programming languages contain commands that use the words “if” or “when”. The

last step in software development is the final translation into binary code. In this

step, a compiler or interpreter translates the source code into a form that can be

used by the computer; the source code becomes the object code or binary code

(consisting of zeros and ones or on/off instructions for the processor circuits).

Illustration 2 shows the individual steps of software development.2

The following trends can be identified within the domain of software

development:3

• An increasing importance of software products over hardware products

• An increasing importance of software-related services over software

products

• An increasing complexity of software projects

• Rising quality standards

• A trend from custom software to packaged software

• An increasing number of new versions based on existing software.

The less these individual steps in the development of software are open to the

public, the more effectively protected is the knowledge that has gone into the

development of the software, and the more difficult it is to program one's own

software based on this knowledge. If only the software design is available as a

blueprint, then, even though the structure and logic of a software product are

known, the programming itself still has to be done independently. If the source

code can be accessed, the sequence and the individual programming steps can be

traced. It is also possible to modify the software or copy individual components. If

only the binary code, incomprehensible for humans, is available, then conclusions

can no longer be drawn concerning the structure and the programming of the

software.4

In order to protect the author’s intellectual property in the program, commercial

software is often distributed in binary form. While a copyright or patent may legally

protect intellectual property rights, it is not always possible to enforce them.5 On

2 Cf. EVANS AND REDDY (2002), p. 5. The binary code in Illustration 2 is written in hexadecimals – a

simple way of writing zeros and ones.

3 Cf. BALZERT (1996), p. 27 and BERLECON RESEARCH (2002c), pp. 24-25.

4 Cf. BERLECON RESEARCH (2002c), p. 11, GRASSMUCK (2002), pp.. 233-234 and GRÖHN (1999), p. 4, so
quoted.

5 Cf. SCHMIDT AND SCHNITZER (2003), p. 4.

University of Muenster 15
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

the other hand, translating the binary code back into the source code - what is

known as reverse engineering – requires a Herculean effort. Individual software

components or the software as a whole can also be protected by patents or

copyright.6 This bans unauthorized agents from copying the software or - provided

that the source code is accessible - from incorporating individual software

components into other programs without the author’s permission. 7

1.1.2 History of the Market Structure

The idea of assigning certain tasks to general-purpose computers through stored-

program control was first conceived some 50 years ago. Since then, the software

industry has gradually evolved from a vertically integrated to a horizontal,

nonintegrated market structure.8

Until the late 50's, the software market consisted of custom software projects in

which the U.S. government and other clients awarded contracts to hardware firms

or independent software companies. As mainframes became more widely used,

software demand gradually outstripped the development resources of corporate

computer departments and hardware manufacturers. Increasingly, this demand was

addressed by independent software producers. This led to the launch, in the 60's,

of the first mass-marketable software packages. However, these products were still

tailored to the special needs of large companies.

The period stretching from the 70's to the early 80's experienced an uncoupling of

hardware production and software engineering. IBM decided to market hardware

and software separately ("unbundling" policy), resulting in the emergence of a wide

range of standard business software products for deployment in various industries.

This is also the era that witnessed the birth of business software providers such as

SAP (1972) and BaaN (1978).

Until the early 80's, virtually all computers were mainframes and most software

was developed for mainframes. This continued until IBM unveiled its mass-

6 For example, the algorithm for creating MP3 files has been patented by Fraunhofer Gesellschaft.

Every software product that uses this algorithm to create MP3 files must be licensed by Fraunhofer
Gesellschaft.

7 Cf. EVANS AND REDDY (2002), p. 6.

8 Cf. HOCH, ET AL. (2000) pp. 259 et. seq. and JANKO, BERNROIDER AND EBNER (2000), pp. 16-17 for more
on software history. See also www.softwarehistory.com.

University of Muenster 16
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

marketable Personal Computer on August 12, 1981.9 IBM was still marketing its

hardware and software separately at this point, encouraging the creation of an

independent market for end-user software.10

Not only did the software sector break away from the hardware sector, but an

independent service sector developed. IT service providers offered consulting,

implementation, training or data-center services as well as custom software

engineering. However, the line between software developers and software service

providers is sometimes artificial and often hard to draw. For example, many

business software developers also have service departments. Likewise, IT services

may frequently contain development components.11

These developments fundamentally shaped the current structure of IT market. The

following section examines the economic characteristics of the software market.

1.2 An Economic Analysis of the Software Market

1.2.1 Economic Attributes of Software

An examination of software based on economic criteria reveals special attributes.

These software attributes impact both the development process and competition in

the software market. This section presents the economic characteristics of software

from the supply and the demand perspectives.12

1.2.1.1 Supply Side Attributes

• Extremely high development costs ("first copy costs")

Software is a product of intellectual property rights. As such, most production

costs are incurred as sunk costs during the development and pre-launch

testing.13 This may create a need to commercially exploit newly developed

software as quickly as possible.

9 Personal computers had existed before: the Altair 8800 in 1975, and the Apple II in 1977. However,

they were not able to establish themselves as longer-lived standard platforms.

10 Cf. LEHRER (2000), p. 590.

11 Cf. LEHRER (2000), p. 589.

12 See also BALZERT (1996) for more on attributes.

13 Cf. OECD (2002), p. 105.

University of Muenster 17
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

• Extremely low marginal cost of production

In the case of packaged software, the finished product is available in digital

form and can be copied any number of times. The copy costs and hence the

marginal costs of production are extremely low, which is why the software

industry is characterized by degressive average cost trends.14 As a result, there

are hardly any output restrictions on the production of software. If software is

distributed physically, the only supply-side bottlenecks that can occur are in

copying, packaging and distribution.

• Economies of scope in production

Once written, program elements can be used in other programs. For this

reason, economies of scope play a vital role as well. Interfaces may also be

defined that allow other producers to also benefit from economies of scope by

providing them with individual software elements or components.15 For example,

the so-called APIs (application programming interfaces) within the Windows

operating system make it possible to call individual components of the operating

system.

• Network effects on the supply side

The more applications there are for a certain operating system, the more

attractive this system becomes for the user. The growing number of users in

turn makes it more attractive for developers to develop new software for a

certain platform. Unlike returns to scale in the production of software, network

effects are not confined to any one company. Other suppliers can produce for the

same network as well.16 In this case, they capitalize on an established standard

as there is no need to design their software for different platforms.

• Intangibility

It is difficult to measure the value of software because it is intangible and

consists to a great extent of know-how. It is also difficult to quantify, in

monetary terms, the progress made in software development. This in turn

14 Cf. OECD (2002), p. 105 and GRÖHN (1999), p. 5.

15 Cf. GRÖHN (1999), p. 5.

16 Cf. GRÖHN (1999), p. 3.

University of Muenster 18
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

makes it hard to establish product attributes like quality or to compare

products.17

• Internationality

Because of the attributes of software, its production and distribution are

inherently internationalized. Both team development and product distribution can

be dispersed across the entire globe. As marginal costs of production are low, it

is only a small step to distribute the developed software product worldwide once

the menu language has been changed. Internet distribution allows even small

software suppliers to enter the global market in its entire breadth at once.

1.2.1.2 Demand Side Attributes

• No wear and tear, no expiration date - but: software becomes obsolete

Software does not wear down, nor does it come with an expiration date. So

theoretically, it can be used forever. Software functionality is limited only by the

performance of the hardware on which it is installed. As hardware, and processor

technology in particular, is enhanced, it provides an opportunity to enhance

software and extend its functionality or area of application. If users wish to

exhaust all the capabilities offered by a new hardware generation, they will have

to update their software. Software becomes obsolete whenever a new version

contains new, useful functions or when that new version performs existing

functions better.

• Network effects on the demand side

The more users deploy a certain operating system or application software, the

easier it is to exchange files and get support in using the program.

Consequently, the utility derived from the use of a given program increases with

the number of other users that also use that program. By opting for a certain

operating system or software, the user joins the network of people using that

software.

However, the boundaries between different networks need not be

unbridgeable. For example, formats can be converted to ensure data readability

on different platforms and thus enable users to change to, or work together with,

other networks.

17 Cf. JANKO, BERNROIDER AND EBNER (2000), p. 14.

University of Muenster 19
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

• Experience good and lock-in effects

Software is an experience good. As a rule, the quality and suitability of a

certain software product are only revealed after considerable use and a long

period of familiarization. This, along with the network effects, may result in a

lock-in effect. Once users have familiarized themselves with a certain software

product and ensured that all the files are available in a format accepted by that

software, they will be reluctant to move to another software product. This move

will only make sense for them if the added utility exceeds the necessary costs of

learning how to use the new software.

• Nonrivalry in consumption

A given software copy can be physically installed as often as one likes and can

be used by different users. There is nonrivalry in consumption.

It then appears that the most important attributes are network effects, nonrivalry

in consumption and excludability options in the software market. For that reason,

these aspects will be dealt with in more detail in the following two sections.

1.2.2 Network Effects

Network effects are a special case of technological external effects. External

effects occur when someone is affected by consumption or production activities of

households or companies without paying or being compensated for these

activities.18 When external effects occur, market prices are distorted and do not

reflect the actual shortage and utility circumstances as the market does not

compensate for all of the utility or loss.19 The amount of external effects is defined

as the difference between the social costs and utility and the private costs and

utility compensated for by the market. If the state does not intervene, goods

generating a positive added utility are undersupplied, while goods with negative

external effects are oversupplied.

The network externalities occurring in the software market are a special case of

external effects; they are characterized by the shared use of the same good.

Network externalities occur when a user’s being connected to a network (here the

use of the same software) changes the utility enjoyed by other users in the network

18 Cf. FRITSCH, WEIN AND EWERS (2003), pp. 92 et seq. GROSSEKETTLER (1995), p. 510.

19 "External" thus means "located outside the price system as the main coordination mechanism of a
market economy". GROSSEKETTLER (1995), p. 510.

University of Muenster 20
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

without these changes being included in the market price.20 In technical networks

such as a telecommunications network, network externalities can arise when

network subscribers are physically connected, or they can come about in virtual

networks that are connected through a uniform standard (e.g., a shared PC

operating system).21

There is a difference between direct and indirect network effects. The direct effect

is that the use of a program is advantageous just because many other users are

using that program as well. The indirect effect lies in the availability of

complementary products and services. The value of a software program therefore

depends on the availability of complementary products and services.

If there is a positive correlation between the utility derived from a network and the

number of participants in it, then network externalities will become economically

relevant upon reaching a critical mass of network subscribers.22 Setting up a

network or switching to an alternate network is worthwhile only if there is a

sufficient number of participants. If this critical number of participants is not

reached, the network may not develop or users may remain in the current network.

Such a lock-in effect may act as an entry barrier for alternative providers who wish

to set up a network that is technologically identical to that of the established

supplier, or it may cause users to remain in a technologically obsolete network. In

addition, a network may be fragmented if several similar networks use incompatible

technologies and thereby prevent network externalities from being fully utilized.

Thus, setting up a second network does not make good economic sense.

The problem of the lock-in effect appears especially in those cases when switching

networks entails irreversible costs and when there is incomplete information and

asymmetrical preferences. Network switchers with a strong preference for the new

technology cannot be sure that they will be joined by other users. If they adopt a

strategic “wait and see” attitude, the switching process might not even get started.

20 Cf. WEIZSÄCKER, VON AND KNIEPS (1989), p. 458, KATZ AND SHAPIRO (1994), pp. 93-115.

21 Cf. BLANKART AND KNIEPS (1992), p. 73. These label tangible networks as hardware networks and
intangible networks as software networks. Cf. also KLODT ET AL. (1995), p. 40.

22 Cf. KLODT ET AL. (1995), p. 40, and BLANKART AND KNIEPS (1992), p. 79.

University of Muenster 21
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

1.2.3 Nonrivalry and Excludability

The previous section pointed out the significance of excludability and nonrivalry in

consumption. This section examines these attributes within the context of the

public goods theory.

The public goods theory makes it possible to draw conclusions about the

functionality of a market from present attributes of goods. The theory does not

focus on whether a market is organized competitively or monopolistically but on

identifying functional defects that prevent the development of self-organized

markets.23 If a public good is present, the market cannot carry out its allocation

function: either there is no supply at all, or supply and demand are not

synchronized, thereby triggering an undersupply or an over-use of the public good.

The main distinguishing feature between public and private goods is the ability of

several demanders to use public goods simultaneously. While each consumer

articulates his or her demand for private goods individually, the demand for public

goods must be organized beforehand in order to determine total need and

financing.24 If demand is not organized accordingly, then a market for this good will

not develop. Rules can be derived for the financing and supplying of different

categories of public goods. These categories of goods are identified using the

criteria of private excludability and rivalry in consumption.25 While the degree of

exclusion ε shows whether demanders can be excluded from enjoying a good and

thus enabling a self-organized supply to develop through the market, the degree of

rivalry λ provides information on the cost of including an additional user and, by

extension, on the economically reasonable price of a good.

Wherever nonexcludability (ε = 0) exists, individual demanders cannot be

excluded from enjoying the good at a reasonable cost.26 In this case, the ownership

rights in a good are not allocated or cannot be enforced. A market will not develop

unless it is possible to exclude users from the consumption of a good. If it is not

possible to effectively exclude demanders, then a market for the respective good

will not develop as potential consumers – expecting to have to contribute to

financing themselves - will not be willing to freely articulate their needs. As the

23 Cf. BURR (1995), p. 41, and GROSSEKETTLER (1991), pp. 119-120.

24 Cf. GROSSEKETTLER (1995), p. 499.

25 Cf. GROSSEKETTLER (1995), p. 496.

26 An exclusion technique is economically defensible if it reduces crowding and waste costs, prevents
freeloading and if the value of the avoided costs is not lower than the value of the exclusion costs.

University of Muenster 22
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

consumer knows that he or she cannot be excluded from consumption, he or she

could use the good parasitically without making a financial contribution. This leads

to the “prisoners' dilemma”, in which every individual acts rationally and yet, in

macroeconomic terms, an inefficient market result comes about.27 A company will

not be willing to offer a good with a nonexcludability attribute as the company does

not, under private law, have any means to enforce a financial contribution from

users. As a result, this product will not be produced.28

Table 1: Categories of Goods

 Degree of rivalry

Excludability

Nonrivalry

λ = 0

Rivalry

λ = 1

Nonexcludability

ε = 0

Prototypical
public goods

(e.g., lighthouse)

Quasi-public goods
(e.g., ozone layer)

Excludability

ε = 1

Club goods
(e. g., software)

Private goods
(e.g., food)

Source: GROSSEKETTLER, H. (1995a), p. 499.

Consequently, the attribute of excludability is of material importance in software

engineering. If it is not possible to effectively exclude users or enforce licensing

rights, companies have no incentives to invest in the production of software or to

distribute it commercially because of the aforementioned freeloader problem. This

aspect is especially relevant to open-source software, which expressly rules out

exclusion and as such the enforcement of ownership rights in the used licenses.

At a zero degree of rivalry, no additional units of this good are necessary to supply

additional demanders, the marginal costs of supply then equal zero, i.e., providing

the additional quantity does not incur any costs.29

Four groups can be formed by combining the extrema of the criteria for classifying

public and private goods (Table 1).30 A polar or prototypical public good is when

excludability is not possible and an additional user can be supplied at no additional

cost. In the case of quasi-public goods, additional users cause a loss of utility as

27 Cf. BURR (1995), p. 28.

28 Cf. GROSSEKETTLER (1995a), p. 496.

29 Cf. GROSSEKETTLER (1995a), pp. 502-504.

30 Concerning the classification of goods, cf. GROSSEKETTLER (1995a), pp. 500-501.

University of Muenster 23
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

soon as overcrowding symptoms appear at the capacity limit. In this case, the costs

of over-use would be necessary to exclude additional demanders; this, however, is

either technically not feasible, or it is economically ineffective. The ownership rights

in quasi-public goods are not attributable to individual persons but are assigned to

the public or to a certain group.31 The danger of over-use and hence the destruction

of the good is a characteristic problem of quasi-public goods.32 In the case of club

goods, on the other hand, authorized and nonauthorized users can easily be

segregated by contractual means (in the case of software, with licenses). There is

no rivalry among the authorized users, however. For private goods, rights of

disposal can be assigned, and there is rivalry in consumption.

In this model, software can be categorized as a club good. An exclusion is possible

by explicitly defining rights of disposal; there is no rivalry in use. This

categorization of software is associated with a recommendation to supply the

software privately. There is no need for state intervention.

1.2.4 Competitive Traits of the Software Market

The attributes of software are also the source of the competitive traits of software.

These traits are presented below:

• Competition as an innovation race and competition for the market

These software attributes create an innovative dynamic that is specific to the

software market. Low marginal costs and high fixed costs for research and

development may motivate companies to sell as many copies as possible in the

shortest-possible period in order to finance the development costs.

The network effects that exist on the software market also increase the

pressure of having to tap new markets as quickly as possible. The ability to be

the first to establish a given technology or a file format makes it easier to corner

the entire market. Because of these first mover advantages, competition for the

market (the network) is likelier than competition in the market.

Once a market has been occupied, it is difficult to develop a me-too-product

with marginal additional functionality and to launch it on the market, unless the

development costs are very low. However, price competition can quickly destroy

the profitability of a me-too-product. For that reason, competitors attempt to

31 Cf. BURR (1995), p. 30.

32 Cf. GROSSEKETTLER (1991), p. 70.

University of Muenster 24
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

differentiate their products, or they avoid markets that have already been

occupied.33

The described factors also encourage the concentration of the software

market.34 The emergence of a dominant technology or company in the software

market is not necessarily the result of market failure but may be attributable to

the specific supply and demand conditions in the software market.35

• Competition with one’s own products

As software is not consumed, a supplier in a saturated market is also

constantly challenged to further develop the product in order to survive in the

market.36 Software is only repurchased and replaced if the new version contains

noticeable improvements. If a company wants to sell new versions of a software

product, then competition also consists of becoming better than the previous

version.37 As such, inferior technology is unable to permanently dominate, as it

is squeezed out either by competing products or by new versions of that same

software.

• Two-sided market

The operating systems market, as part of the software market, is essentially a

two-sided market, which is distinguished by network effects on the supply and

demand sides. Typical platforms with the properties of a two-sided market are

operating systems, game consoles and even internet portals. The economic

value of a platform consists of bringing suppliers and users together. Illustration

3 shows a simplified model of a two-sided market.

The more suppliers there are offering products or services for a given

platform, the more attractive it is to users. At the same time, the more users opt

for a certain platform, the more attractive it is to suppliers. Supply on a two-

sided market therefore depends on the number of demanders using a given

platform. Likewise, the more suppliers provide products or services for a

platform, the more demanders will use it.

33 Cf. EVANS AND REDDY (2002), p. 16.

34 The concentration tendency is stronger in the desktop market than in the market where professional
IT employees use software, where training and popularity barriers generally are not quite as high. It
is easier for IT employees to learn new programs, and they do not base their purchase decisions on
popularity. Cf. HOCH ET AL. (1999).

35 Cf. EVANS AND REDDY (2002), p. 17 and OECD (2002), p. 105.

36 Cf. GRÖHN (1999), p. 3.

37 Cf. SCHMIDT AND SCHNITZER (2003), p. 8.

University of Muenster 25
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Illustration 3: Two-Sided Market

 Angebotsseite Nachfrageseite

Nutzer

Nutzer

Nutzer

Nutzer Nutzer

Anbieter

Anbieter

Anbieter

Anbieter

Anbieter

Plattform

z.B.
Spielekonsole
Betriebssystem
Internet -
Portal

Supply Side Demand Side

User

User

User

User User

Supplier

Supplier

Supplier

Supplier

Supplier

Platform

e.g.,
Game console
Operating
 system
Internet
 portal

The decision to use a certain platform is not necessarily associated with

specific investments, as in the case of a game console. For example, users could

quite effortlessly switch between different internet pages where goods are

auctioned off. In reality, however, suppliers and users tend to congregate around

those platforms that are accessed by most of the other suppliers and users.

• Low entry barriers, constant threat from new suppliers

As other companies are free to exploit the network effects by producing for

the same network as the dominant supplier, markets with network effects are

more vulnerable than markets with returns to scale.38

The software market’s entry barriers for new suppliers are low. Though high

development costs are incurred prior to market entry, the additional investments

required in order to be able to enter the market are minimal compared to the

production of physical goods. Short innovation cycles and technological progress

also provide favorable market entry opportunities for new suppliers and threaten

the dominance of established companies.39

The size of the market entry barriers varies, however, with the significance of

the network effects on the supply and demand sides. The more the utility

derived from a platform or technology depends on these network effects, the

greater the additional utility derived from an alternate platform must be, and the

more difficult it is to enter the market.

38 Cf. GRÖHN (1999), p. 3.

39 Cf. SCHMIDT AND SCHNITZER (2003), p. 7.

University of Muenster 26
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

• Fragile market leaders

The comparatively low entry barriers promote high rates of innovation.

Numerous new software technologies have been brought to market in the past

by small, innovative companies. Thanks to the superiority of their technology or

an innovative application, they were able to quickly acquire huge market shares

and take the place of established suppliers. As long as they have an innovative

product, they do not need any additional investments to enter the market. As

such, the success of a new product in the software market does not depend on

the size of the company. If the suppliers represented in the market do not

further develop their technologies, new market participants can generally

threaten the market position of the established suppliers.40

In this context, it is also possible to enter small market segments or to enter

the market by offering additional components for existing software packages.

Because established suppliers, whose offerings are designed to cover the widest-

possible user base, are rarely able to respond to special needs, market shares

remain that can be occupied and expanded by alternative suppliers.

• Great significance of standards and consistency

The combination of low marginal costs of production and network effects on

the demand side can lead to the emergence of de facto standards.41 For

suppliers of complementary products as well as for users, established standards

create a reliable technology platform. Software suppliers can be assured that

software that has been programmed according to certain criteria is compatible

with a defined standard. Users benefit from a software standard by knowing that

applications and hardware components are compatible with a given standard.

• Great significance of patents and licenses

The ability to easily copy software makes it difficult to exclude users. Only the

granting of patents and the licensing of software creates the legal framework for

establishing and enforcing ownership rights. They are requisite to the

excludability of software. As the discussion on the public-good attribute of

software has shown, software would not be developed within the scope of

market processes without fixed ownership rights. The ability to easily copy a

software product would lead to a short-term price competition and to a loss of

40 Cf. HOCH ET AL. (1999) and SCHMIDT AND SCHNITZER (2003), p. 7.

41 Cf. OECD (2002), p. 105, and SHAPIRO AND VARIAN (1998), pp. 135 et seq.

University of Muenster 27
MICE - Muenster Institute for Computational Economics
Open Source-Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

market shares held by the initially innovative company. Fixed ownership rights in

software is required by companies before they invest in any development of

software. Investments can be financed through the sale of software only if the

ownership rights in the software can be enforced effectively.42

42 By purchasing the software, the buyer is not granted the full rights of disposal but the right of use is

restricted to the areas stated in the license. The same applies to CDs or DVDs, the purchase of which
authorizes private use only. Cf. EVANS AND REDDY (2002), p. 6 and p. 17.

University of Muenster 28
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

2. Economics of Open-Source Software

2.1 Open-Source Basics

2.1.1 Attributes

The term “open-source software” was not coined until 1998.43 The original idea of

so-called “free” software, however, originated in the 80’s. Even if both terms are

used for the same form of software, the label “free” software emphasizes rather the

liberal principles in dealing with software – “Free software is a matter of freedom:

people should be free to use software in all the ways that are socially useful.”44

Further, restrictions in the use of the software were wrong and ultimately “all

published software should be free software”45.

The open-source initiative, on the other hand, takes a more pragmatic stand: the

name open-source software had been chosen primarily in order to open up “free”

software to more widespread interests, even commercial exploitation. Even if

“open-source software” is a controversial term and sets other priorities than “free”

software, it has been accepted in general usage and will be exclusively used

below.46

Unlike proprietary software, the defining attributes of open-source software are

the user’s extensive rights of disposal of the software subject to the licensing terms

and a voluntary self-organization of team development that is not based on work

contracts.47 The software user has the following rights in connection with open-

source software:48

• The right to use the program for any purpose.

• The right to understand how the program works and how to adapt it to one’s

own needs.

43 Schiff (2002) provides a brief outline of the literature available on the economics of open source.

44 Cf. www.gnu.org/philosophy.

45 STALLMANN (2001).

46 One of the things criticized the most about the term “open-source software” is the fact that it aims
solely at the technical design of software and neglects the original idea of free availability. Cf.
GRASSMUCK (2002), pp. 231-232. The history and definition of free software and open-source software
are presented in 2.1.2.

47 See 2.1.3 for more information on how development is organized.

48 Cf. www.gnu.org.

University of Muenster 29
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

• The right to distribute copies to other users.

• The right to improve the program and to make the improvements available

to the public.

From a programming point of view, the openness of the source code forms the

basis for the development of open-source software. A user is able to contribute to

the further development of software only if the source is open and the user is

permitted to change the source code. Someone who knows the source code can

develop new versions of the program or correct errors and improve the program.49

This is in contrast to proprietary software, the source code of which is not

principally – or only as machine-readable binary code – made available by the

producer to the user.50

Table 2: Software Categories

Technical property

Disclosure of the

source code binary code

free of

charge

Open-source software

Examples:

Linux, Apache

Freeware,

public domain

Examples:

Adobe Acrobat Reader

Pegasus mail

E
co

n
o

m
ic

 a
tt

ri
b

u
te

D
is

tr
ib

u
ti

o
n

 i
s

subject to

charges

Commercial

open-source software

Examples:

Open-source software

distributions

Shareware,

commercial software

Examples:

Windows, MacOS

Source: BERLECON RESEARCH (2002c), p. 11.

Categorizing software by disclosure of the source text (source code, binary code)

and the kind of distribution (free of charge/against payment) produces the matrix

49 Cf. MORNER (2003), p. 318.

50 Cf. BERLECON RESEARCH (2002c), p. 11.

University of Muenster 30
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

shown in Table 2 that reflects the ideal types of software categories. According to

it, the primary software forms are:51

• Open-source software

The source code of software is available and the licensing terms allow the source

code to be modified. The openness of the source code prevents

commercialization. Programs using the published source code must again be

subject to the licensing terms of the original source code. Known examples of

open-source software are the operating system kernel Linux or the Apache web

server.

• Commercial open-source software

Software engineering under open-source conditions does not preclude the

software from being used commercially. Open-source software, too, can be

distributed in exchange for payment. However, this is impeded by the fact that,

in principle, everyone is permitted to distribute the software free of charge.

This group also includes commercial open-source business models that are based

on open-source software and generate profit with complementary hardware,

services or software. 52

• Freeware, public domain

In the case of freeware, the source is not available; it is delivered in binary form

and may not be modified. However, freeware may be copied and distributed free

of charge. 53

In public-domain software, the author waives any rights and claims.

Consequently, the user has unlimited rights of exploitation. Open-source

software, on the other hand, grants the user rights of exploitation, but expressly

makes them subject to certain conditions. As public-domain software is often not

distributed in source code, however, modification possibilities are limited.54

• Commercial/proprietary software

51 Cf. BERLECON RESEARCH (2002c), p. 11. For more information on software categorization, cf. LESSIG

(2002), pp. 52 et seq.

52 This is dealt with in more detail in section 2.2.2 starting on page 41.

53 Scientific publications can be compared to freeware. For the most part, they are distributed free of
charge. Scientists consider reputation to be the compensation for their publication. However, the
higher the commercial exploitability of the research findings (like in the field of natural sciences), the
more restrictions their scientific publication is subject to. Cf. EVANS AND REDDY (2002), p. 7.

54 Cf. SPINDLER (2003), p. 18, and HANG AND HOHENSOHN (2003), p. 7.

University of Muenster 31
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Commercial or proprietary software is normally only distributed without

disclosure of its source code. Commercial software is distributed in licensed

form. The license sets forth certain terms of use for the user that, as a rule,

preclude multiple use or a circulation of the software. Because the source code is

not accessible, it is technically impossible to modify the software.

These four software categories reflect ideal types of groups. In reality, these

groups cannot always be separated that selectively. There are various financing

methods and possibilities to view the source code as well. There is, for example,

software that may be used free of charge but that calls for a voluntary payment

in form of a donation. Shareware can also be used for a certain period of time,

after which, however, it must be paid for. Even in the case of proprietary

software that is distributed only in binary code, the source code can be

disclosed. For example, within the scope of its Shared Source Initiative, Microsoft

discloses some parts of its source code to customers, partners and

governments.55

2.1.2 Beginnings and Licensing Models

In the early days of computing, there was no independent software market.

Computers were mainframes deployed only in large companies or at special data

centers at universities. These computers could only be operated by experts that

were also able to make changes to the software or who developed their own

software and shared it with other experts. Initially, software was developed

exclusively for one’s own use, specifically for different types of hardware and as

such highly individually. A mass market for standardized software could not exist,

as the corresponding hardware was not designed for the mass market in terms of

size and price.

Developers’ activities revolved around programming software for the computers

they themselves used. They had strong incentives to share their work with other

developers using the same hardware. Because software was distributed only as a

necessary complement to hardware, and developers had to rely upon their mutual

exchange, the source code of software was open and software was freely available.

Even if the software was installed on different computers, it still featured clear

55 Cf. NO AUTHOR (2003).

See www.microsoft.com/resources/sharedsource/Initiative/Initiative.mspx for an overview.

University of Muenster 32
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

attributes of custom software. Though the programs were not subject to a charge,

the programmers were paid for programming.56

In this development environment, the operating system Unix was programmed in

1969 by two employees of the telecommunications group AT&T. The Unix source

code was open and could be further developed by other developers. Without being

promoted or advertised by a company, Unix spread quickly. After the

telecommunications monopoly of AT&T split up, AT&T began marketing Unix

independently. By that time, different, incompatible Unix versions had been created

because the source code was freely accessible and modifiable.

One of the first licenses for free software was the Berkeley Software

Distribution License (BSD license). At UC Berkeley, programs were developed on

the basis of UNIX and distributed as Berkeley Software Distributions. The BSD

license was established so that the program elements produced at UC Berkeley

could be distributed independently of the AT&T license. It permits the use,

modification and free distribution of the source code or binary code. The only

condition for further use is that any changed and distributed programs must contain

a copyright notice referring to the University of California.57

Though the BSD license does stipulate that any software based on it comes under

the free licensing terms, i.e., that it may also be modified, it does not, however,

expressly state that the modified software must also be available in source code. As

such, the actual modification possibilities are limited, and it is easier to establish a

cost-based distribution of programs based on the BSD license.58

In 1984, the commercialization and assertion of ownership rights in software

which were opposed to the originally free programming, modification and

distribution of software, led to the GNU project. This was the actual beginning of

software development whose engineering and distribution was deliberately

classified as free. The objective was to write an operating system similar to Unix,

with an open source and capable of being further developed in voluntary

cooperation. To distribute GNU software, the Free Software Foundation (FSF) was

established in 1985. In order to protect future free software from commer-

56 Cf. GRASSMUCK (2002), pp. 202 et seq. for more historical information.

57 Cf. HANG AND HOHENSOHN (2003), pp. 26-27, EVANS AND REDDY (2002), pp. 8-9. The copyright notice
requirement was waived in 1999.

58 Cf. GRASSMUCK (2002) pp. 216-217 and pp. 279-280 and SCHMIDT AND SCHNITZER (2003), p. 5.

University of Muenster 33
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

cialization, the Free Software Foundation published the General Public License

(GPL) in 1989. This license extends the four rights shown in section 2.1.1.

GPL’s copyright protection is necessary to prevent the software from being used

commercially. Without the license condition stating that any software using the

source code must also be subject to GPL terms, proprietary software suppliers

would be able to integrate the free source code in their software free of charge.

This requirement of GPL protects the intellectual property of the free software and,

in return for its use, requires that the source code be freely accessible as well.59

Consequently, the use of software is not principally free, but only to the extent as it

stays within the limits stipulated by the licensing terms.

An important component of the GPL is the so-called “virus effect”. It arises out of

the following requirement: “You must cause any work that you distribute or publish,

that in whole or in part contains or is derived from the program or any part there

of, to be licensed as a whole at no charge to all third parties under the terms of this

license.”60 The Free Software Foundation uses, contrary to “copyright”, the term

“copyleft” as a name for this method of making software programs freely accessible

and preventing their commercial distribution. As a result of the copyleft

requirement, software that is partially based on software released under GPL

conditions must also come under GPL conditions. This precludes any commercial

use of software or of source-code elements in other programs, that is, the

generation of profits from selling the programs.61

A variation of the GPL is the LGPL (Library General Public License, as of 1999

Lesser General Public License).62 Under this license, programs linked with a library

that is subject to LGPL do not have to be considered derived products as defined by

the GPL. The use of libraries within a program obscures the lines between use and

modification, and it could not clearly be determined in which case accessing a GPL

library required that the derived program be subject to GPL. LGPL permits this use

of libraries without causing the derived program to have to be subject to GPL.

59 Cf. LERNER AND TIROLE (2000), pp. 5-6 and SCHMIDT AND SCHNITZER (2003), p. 5.

60 Cf. www.fsf.org/copyleft/copyleft.html.

61 However, please note the possibility of “dual licensing”. In dual licensing, the holder of a copyright
can publish software under the GPL terms in general and provide this software to certain users under
conditions other than the terms of the GPL. However, FSF handles this possibility very restrictively.
See www.fsf.org/copyleft/gpl-faq.html.

62 Cf. GRASSMUCK (2002), pp. 289-293 and HANG AND HOHENSOHN (2003), p. 26.

University of Muenster 34
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Software released under LGPL thus offers better options in certain cases for

combining free and commercial software.

As open-source programs continued to spread and be developed, the licensing

method changed. While the GPL, a very restrictively interpreted software license,

dominated the 80’s, the 90’s saw a trend towards more flexible, less restrictive

licensing agreements. The use of more liberal licenses was supported particularly

by developers advocating commercial activities and the use of proprietary code in

certain segments in order to guarantee a broader provision of open-source

software.63

Illustration 4: Distribution of Licenses

Apache License
552

MIT License
555

Artistic License
921

Others
Mozilla Public

License
507

BSD License
2422

Lesser General
Public License

3605

General Public
License
25120

Source: BERLIOS (2003).

In the late 90’s, an attempt was made, as mentioned above, to establish the term

of open-source software as an alternative to free software. In 1997, the Open-

Source Initiative (OSI) was established. The open-source definition developed by

OSI is not an independent license but a quality seal for rating licenses. If a license

satisfies the criteria stated in the open-source definition, it may bear the protected

title of “open source”.64

63 Cf. LERNER AND TIROLE (2000), p. 7. See also LERNER AND TIROLE (2000), p. 30 for more on the problems

that may arise from more liberal licenses.

64 Cf. MENDYS-KAMPHORST (2002), p. 10 and HANG AND HOHENSOHN (2003), p. 14.

University of Muenster 35
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

The strategy pursued by OSI entailed popularizing open source and countering the

anti-business image of free software and of the Free Software Foundation.65 These

considerations led to the establishment of the term “open-source software” as an

alternative to free software. OSI publishes a list of major licenses on its website

and states in a catalog of criteria when a license can be rated as open source.66

In addition to the licenses described here, there are many different licenses that

were designed for certain projects.67 Illustration 4 shows the distribution of the

licenses in the Sourceforge.org database as of January 2003.68 89 percent of the

projects listed there are licensed under GPL, LGPL or BSD.

The most important or most popular licenses are listed in the following table.

Freeware is stated only for comparison purposes with open-source software.

Table 3: Major Licenses and their Essential Terms

 Use free of

charge

Source code

modifiable

Source code

must be open

in derived

products

Combination

with

proprietary

elements not

possible

Freeware X

BSD X X

LGPL X X X

GPL X X X X

Source: With reference to SPINDLER (2003), p. 19 and BERLECON RESEARCH (2002c), p. 16, modified.

65 A popular comparison for illustrating the image of free software is that of “free speech” to “free beer”.

Many companies were inclined to associate the term “free software” with “free beer” rather than with
“free speech” and were therefore reluctant to introduce an operating system that was generously
given to everyone free of charge.

66 www.opensource.org/licenses/ and www.opensource.org/docs/definition.php. Cf. also WEBER (2000),
pp. 10 et seq.

67 For an overview and categorization of the different licenses, see
www.ifross.de/ifross_html/lizenzcenter.html.

68 Sourceforge.org provides provides a database with open-source projects. An examination of the
various licensing models at sourceforge.org can be found in LERNER AND TIROLE (2002).

University of Muenster 36
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

2.1.3 Work Organization and Development

Team development in engineering open-source software may take place within

various organizational structures. As a rule, software developers voluntarily join an

open-source project and, depending on their contribution, are involved more or less

deeply in the software project and its decision-making structures. These software

projects come about spontaneously and organize themselves. Participation in a

software project is voluntary and does not entail any financial rewards.69

Unlike traditional software development, open-source projects do not start out by

identifying the customer’s needs, but are mostly sparked by an idea or a specific

problem that developer has.70 An open-source project starts with the publication of

the project and the source code. If the project seems interesting, more developers

show up and join the project. If a project grows, structures may develop in which a

central maintainer or a core team makes essential decisions concerning the future

development. From larger projects, modules may spin off for which there are again

responsible maintainers.71

Under a maintainer or core team, there are many ways to participate in a software

project, from simply testing the program and offering tips for new functions to bug-

fixing and the actual work on the source code. Communication takes place via e-

mail, mailing lists and news groups.72

The comparison between a bazaar and the construction of a cathedral is often

quoted as an example to illustrate this kind of team-based development. In this

comparison, the development of open-source software is likened to a bazaar, while

proprietary software is seen as the construction of a cathedral. Open-source

software is said to be a “great babbling bazaar of differing agendas and approaches

out of which a coherent and stable system could seemingly emerge only by a

succession of miracles”.73 Unlike this “bazaar”, the development of proprietary

software is understood as a “cathedral” and as such as the epitome of hierarchically

structured division of labor marked by strict authority.

69 Nota bene: nonremunerated participation pertains to the engineering of generally usable packaged

software. Programming custom software is also possible on the basis of open source. In that case,
payment is made for the developers, not for the software. This will be dealt with in more detail at a
later point.

70 Cf. SMITH (2002), p. 72.

71 Cf. MENDYS-KAMPHORST (2002), p. 13.

72 Cf. MORNER (2003), p. 320.

73 Cf. RAYMOND (1998a).

University of Muenster 37
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

However, this form of voluntary development association also carries with it the

risk that projects may “dry up”. If developers turn to new projects that, in their

view, are more interesting and possibly higher-profile, projects may not be carried

through to the end due to a lack of support. As an example, of the programs

currently registered with sourceforge.net, only 16% reach the development status

“production/stable”, and only 2% reach the status “mature”.74

Open-source software must not necessarily be developed in this self-organized

fashion, however. Open-source software can also be written in companies by in-

house developers. For example, distributors often employ in-house developers to

make changes to specific development levels of software. In this case, it is essential

that all other users of this software also have access to the contribution made by a

company’s in-house developers.

Illustration 5: Schematic of How an Open-Source Project Works

 Virtuelle Teams

Bieten „ home “ für
Code

Setzen Team - Normen

Integrieren
Code - Vorschläge
in neue Relases Kommerzielle

Anbieter
OEM Open Source

Bieten Support und
Consulting

„ Leadership “

Ursprüngliche Code - Basis
und Vision

Kontrolle über und
Veränderung des Kernel

Lizensierung

Nutzer - Entwickler
„ Scratch an itch “
Problemlösung

Implementieren Funktionen

Beseitung von „Bugs“

Bieten Fachkenntnisse

Nutzer

Nutzer von Software

Melden „Bugs“

Unterstützen sich
gegenseitig

Delivery
of code

 Delivery
of code

Self
organization

Coordination
Influence

Attracting developers

 Sale of
prepackaged

software

Virtual Teams

Offer “home” for code

Determine team norms
-

Integrate code
suggestions in new
releases Commercial

Supplier
 OEM open Source

Offer support and
consulting

“Leadership”

Initial code basis
and vision

Control over and
change of kernel

Licensing

- User-Developer
“Scratch an itch”
problem solving

Implement functions

Bugfixing

Offer expert knowledge

Users

Software users

Report “bugs”

Support each
other

Source: BOSTON CONSULTING GROUP (2002), p. 8, authors’ modifications.

74 www.sourceforge.net lists development status as follows: 1. Planning, 2. Pre-Alpha, 3. Alpha, 4. Beta,

5. Production/Stable, 6. Mature and 7. Inactive. On October 27, 2003, the following information was
found: 1. Planning 13,248 (26%), 2. Pre-Alpha 9,388 (18%), 3. Alpha 8,833 (17%), 4. Beta 10,739
(21%), 5. Production/Stable 8,503 (16%), 6. Mature 823 (2%), 7. Inactive 327 (1%).

University of Muenster 38
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

This kind of networked, collaborative work done on different subproblems is only

possible with a modular project structure. As a result, the functionality of programs

often pertains to individual subtasks, and only the interplay of different of modules

and programs produces the desired functionality.

Illustration 5 outlines the teamwork process within an open-source project as a

flow chart. It must be noted at this point, however, that software users only have

an opportunity to introduce their ideas to the software if they themselves become

developers. There is no feedback channel within the open-source model that

nondeveloper users could use to voice their needs. On the proprietary software

market, they voice their needs with their purchase decision.

However, open-source projects can also grow out of programs that were initially of

a proprietary nature. In 1998, for example, Netscape opened up the source code of

its internet browser “Netscape Communicator”, hoping to accelerate its browser’s

development by involving independent programmers and to re-gain lost market

shares. The software package Star Office, which was initially sold as proprietary

software and whose source code was later released, followed a similar path.

In the case of Netscape, not the entire source code was released, but only

individual parts. In addition, Netscape first insisted on licensing terms that later

would have made it possible to re-appropriate the released code. This reduced the

willingness to cooperate in the Mozilla project.75 As a result, it was mostly paid

employees who worked on the Mozilla project; no more than two dozen external

developers are said to have been involved in the project. In this particular case, the

willingness to participate may also have been curbed because the project was

headed up by a for-profit company.76 The release of a stable version was only

possible after adjustments were made to the new licensing structure; all told, this

took four years.77

Another problem with open-source projects that develop from former proprietary

software is that a developer community has to be found for a defined and finished

source code. In this situation, it is much more difficult to become familiar with the

source code of a finished product and then to work with that code than to

independently develop one’s own project in which the entire history of its

75 Concerning this, see: www.gnu.org/philosophy/netscape-npl.html.

76 Cf. LERNER AND TIROLE (2000), p. 28.

77 Cf. OSTERLOH, KUSTER, AND ROTA (2002), p. 15.

University of Muenster 39
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

development is made transparent.78 Another important consideration concerning

these open-source projects is that the source code of proprietary software is only

opened up for the “use of leftovers” wherever there were not enough users who

were interested in the proprietary version and, as a result, the software was a

commercial failure.

2.2 Business Models and Market Overview

2.2.1 The Value Chain of Software - A Comparison of Open-Source

Software and Proprietary Software

The differences in the development process of proprietary and open-source

software lead to differences in how the two models cover the software value chain.

In the value chain, software development is followed by software services which

include consulting, implementation, support, training and application manage-

ment.79

And though the individual elements of the software value chain are identical for

packaged and custom software, the sequence in which they are applied differs. For

example, in contrast to packaged software, consulting precedes the actual

programming process in custom software. There are also differences between the

value chains of proprietary and open-source software. Even though all the value-

chain elements can be found in both, there is a different weighting of the individual

steps in proprietary and commercial open-source business models. Furthermore, it

is not possible to generate profit with individual elements of the value chain in the

open-source model. This will be dealt with in more detail later on in this study.

The development of software is the first element in the value chain. In proprietary

software, determining the software specifications based on the projected customer

wants is part of software development. This step further entails specifying the

design of the software and writing the source code. The production is followed by

the documentation and packaging of the software. In the packaging process,

individual software products are grouped to form a marketable package. Software

development, documentation and packaging together constitute the production of

software. While the documentation and packaging are only one component in the

78 Cf. GRASSMUCK (2002), p. 257.

79 More on this and on the value chain as a whole, cf. BERLECON RESEARCH (2002c), pp. 22-29.

University of Muenster 40
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

production process of proprietary software, individual open-source business models

(distributors) focus solely on these elements.

Illustration 6: The Value Chain of Software

So
ft
wa
re

De
ve
lo
p
m
en

So
ft
wa
re

Do
cu
m
en
tat
io
n

So
ft
wa
re

Pa
ck
ag
in
g

M
ar
ke
tin
g
&

Sa
le
s

Co
ns
ult
in
g

Im
pl
e
m
en

-
tat
io
n

Int
eg
rat
io
n

Tr
ai
ni
ng

Su
pp
ort

Ap
pli
ca
tio
n

M
an
ag
e
m
en

Software - Wertschöpfungskette

Programming
Development

IT Services

So
ftw

ar
e

D
ev

el
op

m
en

t

So
ftw

ar
e

D
oc

um
en

ta
tio

n

So
ftw

ar
e

Pa
ck

ag
in

g

M
ar

ke
tin

g
&

Sa
le

s

C
on

su
lti

ng

Im
pl

em
en

 -

ta
tio

n
In

te
gr

at
io

n

Tr
ai

ni
ng

Su
pp

or
t

A
pp

lic
at

io
n

M
an

ag
em

en
t

Value Chain of Software

Source: BERLECON RESEARCH (2002c), p. 23.

It is the job of marketing to optimize the use of its tools within the marketing mix

and so to promote the visibility, the acceptance and thus the sales of the product.

Differences between proprietary software and open-source software are evident in

all elements of the marketing mix. Overall, the open-source model does not offer as

many opportunities to influence the product and sales through marketing as does

proprietary software.

There is no scope for influencing the product design – the first element of the

marketing mix – because of the unique open-source development process. In the

case of proprietary software, the developing company can determine the time of

market entry, quality or certain customer requirements, just to name a few

aspects. There are also significant differences between open-source software and

proprietary software with respect to price, which is another marketing tool. Open-

source software can be priced only if, for example, another functionality, in addition

to the program, can be added through packaging. Because the software could be

bundled independently or because a software bundle that has been sold can be

used on different computers, there is much less pricing leverage available in open-

source software distributions than in proprietary software.

Distribution and advertising are further elements of the marketing mix. The

bundling and distribution of a certain software package is the key element in

marketing open-source software.

University of Muenster 41
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Marketing is followed by consulting, which is a component of software services. In

consulting, a company’s unique situation is analyzed, its software requirements are

determined and the software is chosen. There are no differences between open-

source software and proprietary software in this regard.

The software is installed and tailored to the given requirements during the

implementation process. Among other things, compatibility within a network or

different applications must be taken into consideration. Compared to proprietary

standard packages, open-source software offers nearly limitless adaptability in this

respect.

Users are familiarized with the installed software in training courses. There are no

fundamental differences between proprietary and open-source software concerning

the training provided.

Support is necessary if the user has problems using the installed software.

Suppliers of proprietary software offer a wide range of different types of support,

from FAQs and newsgroups to in-house hotlines. There are also many possible sales

models with various forms of support. Support for open-source software is offered

primarily by the community that engineered the software. At the same time,

distributors and independent consulting firms also offer open-source software

support.

The final element in the value chain is application management. It comprises all the

elements that are required to properly operate the software and also includes

possible updates or backups. Application management can be handled by system

administrators within a company or may even be outsourced.

2.2.2 Open-Source Software as a Basis for Business Models

An important factor in the development of free software is to prevent anyone from

acquiring the ownership rights in the software and as such from using it

commercially. The related licensing models have this goal as well. The fact that

open-source software may be legally copied and, for example, downloaded from the

internet precludes the commercial use of software through cost-based licensing

models. Consequently, there is not a market where suppliers and users of open-

source software can meet.

Commercial business models based on open-source software have emerged

nevertheless. They all build on open-source software and use that as a basis for

their own additional services or products. All business models attempt to increase

University of Muenster 42
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

the demand for their own complementary product through their involvement in

open source. From a business point of view, investments in open-source projects

are only profitable for companies if they can generate profit with other services or

products because of these investments. Because improvements in open-source

software cannot be used to directly generate profit, companies must profit

indirectly, through other products and services, from open-source development.

Open-source business models can therefore be described as indirect business

models because sales are not generated with the actual product but with additional

products and services based on open source.80

Illustration 7: The Open-Source Core and Indirect Open-Source Business Models

OSS
Kern

Service

Soft-
ware

Hard-
ware

Complementary segments
(commercial business models)

Nonmarket core (OSS spirit)

OSS
Core

Service

Soft-
ware

Hard-
ware

.

Although the profits can be generated only indirectly, it must be emphasized that,

in contrast to the developer community, companies have purely financial motives

for participating in open-source projects. Illustration 7 shows different ways of

designing commercial business models based on open source. A distinction is made

between business models offering additional services, additional software or

additional hardware. All these models draw on a pool of software and developers

and add their own products and services to open-source software. There are,

however, only limited incentives for companies to directly invest in the

development of software. The investments in open-source software cannot be

financed with the profits from the sale of this software. For that reason, all

expenses incurred in development must be generated through additional offerings.

80 Cf. RAYMOND (1998b), LERNER AND TIROLE (2000), p. 26 and SCHMIDT AND SCHNITZER (2003), p. 12.

University of Muenster 43
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

The individual business models and the limiting factors are discussed in more detail

below.81

2.2.2.1 Selling Additional Services

Distributors of open-source software offer the bundling, testing and adaptation of

that software as an additional service. Known Linux distributors are, for example,

Red Hat, SuSE or MandrakeSoft. The end user can purchase different Linux

software bundles for various purposes (e.g., server applications, desktop

applications, software for administrators or developers). The various versions of

different distributors are not necessarily intercompatible.

Distributors draw on the existing open-source software pool and, by bundling and

adapting the software, perform a task that, for proprietary software, is handled by

the developing company. A Linux distribution contains the Linux kernel and

numerous additional components that jointly form the Linux operating system. For

in-house versions to be developed, first the latest versions of individual components

are collected (which is called packaging) and then tested, adapted and optimized.

Finally, the distribution is documented and set up in a way that facilitates easy

installation. The fact that distributors are necessary for making adjustments and

adaptations to the software prior to it being usable by a wide circle of users is also

a sign of the inability of the open-source development process to bring forth

products that end users can use immediately.82

A buyer of a Linux distribution no longer needs to search for the software,

download and then adapt it so that the individual components operate together

flawlessly. Along with a distribution, a buyer also purchases the opportunity to

receive updates or bugfixes in certain sequences. In principle, any user could also

bundle and install these components and fix any bugs independently.

Distributors employ their own developers who adapt the software as required.

Again, every development contribution made by a distributor to his or her own

Linux distribution must, however, be made freely accessible. Though Linux

distributors save the bulk of the development efforts in the distributed software and

benefit from a further distribution of the software, their contribution to the

development not only benefits them but all the other companies that are active in

81 BERLECON RESEARCH (2002b) offers a comprehensive overview of the open-source software activities of

different companies.

82 Cf. LERNER AND TIROLE (2000), p. 26.

University of Muenster 44
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

this market as well. As a result, their development contribution also directly

supports potential competitors who, as freeloaders, also benefit from the

development investments.83

Distributors have very little leeway in pricing their products. Not only can users

themselves bundle the individual software components for free, buyers can also

pass on the distributions that are sold free of charge. Likewise, other companies

can take over a given distribution and distribute it as their own distribution. If the

source code is disclosed and visible to any recipient, then the software can very

easily be distributed further. This exerts pressure on prices until the selling price

reaches the level of the average sales costs.84 In this case, the software

distributor’s average sales costs are the lowest price level because, provided the

distributor does not incur any development costs, the distributor merely has to bear

the sales costs. Accordingly, it is very easy for users to have free access to the

distributed product and for other suppliers to enter the market, which severely

restricts the distributors’ pricing leverage.85

Because of the limited opportunities to generate profit with the sale of

distributions, many distributors also offer consulting, implementation and training

services. In this aspect, their engineering know-how acquired by bundling the

software is very useful to them. They are, however, competing with established IT

consulting firms that handle the bundling of software and its installation according

to the specific requirements of their customers.86 In this regard, IT consulting firms

are not restricted to open-source software offerings but can choose the best-

possible, platform-independent solution for their customers from proprietary or

open-source software.

2.2.2.2 Selling Additional Software

Business models based on the sale of additional software use open source as a

starter and basis for selling complementary proprietary software products or even

for offering support services. Companies that have implemented this business

model often have a very close relationship with individual open-source projects. In

many cases, the company founders are also the initiators of the projects, or they

83 Cf. LERNER AND TIROLE (2000), p. 27.

84 Cf. SCHMIDT AND SCHNITZER (2003), p. 3.

85 Cf. EVANS AND REDDY (2002), p. 37.

86 Cf. BERLECON RESEARCH (2002c), p. 43.

University of Muenster 45
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

have assumed important developer functions in which case it is possible that the

principal developers of that particular software are employed by the companies.

Nevertheless, even these projects are dependent on the support of the developer

community. The more commercial the focus of a company, the more difficult it

becomes, however, to attract enough volunteer developers, as the commercial

focus is contrary to the developers’ interests, which are geared towards voluntary

contributions and free availability. An illustration of this fact is the aforementioned

example of Netscape.87

The basis of these business models is freely available open-source software on

which additional add-ons or programs with enhanced functionality are built and

which are then distributed for a charge. Furthermore, the dual-licensing strategy

allows making a product freely accessible as open-source software and selling that

very same product as a cost-based version to companies wanting to use it in

combination with other, proprietary software.

For example, MySQL offers its database free of charge as open-source software.

There is also the option, however, to purchase the software under a specific

corporate license so that it can be deployed together with other, proprietary

software.88 Ximian offers software that in terms of looks and functionality closely

resembles Microsoft Outlook. A cost-based component can be purchased as an add-

on to this software, which allows it to operate together with a given e-mail server.

However, it is possible even for commercial software providers like Oracle, SAP or

IBM to sell additional software. These providers have generally reached a significant

market position in the proprietary software market with certain software products.

Adapting their software to other platforms enables them to broaden their potential

installation base. In this regard, it is important that the open-source platform can

be used as a free base. If a software user is not required to additionally invest in a

proprietary platform, the potential profits on the application level are

correspondingly higher. It should be noted that the software offered by proprietary

software providers for an open-source platform is not necessarily open-source

87 Cf. 2 section 2.1.3.

88 See www.mysql.com.

University of Muenster 46
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

software in itself.89 This software is merely open-source compatible and uses open

source as an operating system platform.90

2.2.2.3 Selling Additional Hardware

Companies can also support open-source projects to promote the sale of their own

hardware products. IBM is the best-known example for this kind of strategy. IBM,

however, is not only a hardware firm but also one of the world’s biggest software

producers. By IBM’s own account, the company had invested 1 billion U.S. dollars in

various open-source projects by 2001, which included adapting Linux and Apache

to the different IBM hardware platforms.91

IBM uses adapted Linux versions to create a uniform operating-system basis for

different server platforms on which the different IBM software components can then

be executed. The software is therefore tightly integrated into the hardware and

makes it possible to create uniformity within the full range of hardware products. If

the operating system platform is considered a fixed hardware component, profits

can then be generated with the sale of the hardware. This is particularly attractive

for hardware firms because of the fact that the user does not incur any extra costs

for purchasing an operating system. If the user has fewer software expenses,

however, the hardware firm’s pricing leverage increases.

Open-source projects are also supported by Intel. Intel’s primary interest is to

create software that is highly compatible with its hardware products. For that

reason, the support can be viewed as a promotion of the company’s own products

rather than as an independent business segment.

2.2.2.4 Assessment of the Business Models and Limiting Factors

All commercial open-source business models have to function in the open market.

Companies invest in the development of open-source software only if they can offer

additional services or products with which their investments can be financed. In

these business models, open source, as it is available free of charge, becomes an

attractive input factor with which to attempt to generate additional profits with

services building on open source. Freely accessible software remains the basis of

89 The GPL applies only if new software uses components of other software licensed under GPL (“viral

effect”).

90 For an economic model on the support of open-source software by proprietary providers, see
Mustonen (2002).

91 Cf. EVANS AND REDDY (2002), p. 34.

University of Muenster 47
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

these business models, however, limiting the opportunities to build stable revenue

models as well as the incentives for investing in open-source projects.

Concerning consulting, training and support offerings, open-source business

models are no different from business models in the proprietary world. The same

applies to the distribution of specific literature or the offering of trade fairs and

magazines.

It is crucial to the success of commercial open-source business models that the

additional offering cannot be easily offered also by another company – which

requires that ownership rights in this additional offering can be enforced. The

distributor example has shown that the market barriers for other companies are

very low in this area. Based on the work performed by the distributors, similar

software packages or support offerings can be offered by other companies as well.

If, however, the actual source of profits for open-source projects consists of

additional products in which companies can enforce ownership rights, that serves

more as proof of the superiority of proprietary business models than of the stability

of commercial open-source business models. Commercial open-source business

models seem to be especially successful when they are as far removed as possible

from the open-source world, and when the ownership rights in the additional

services can be easily enforced. This means that a provider of a complementary

service has the ability to exclusively market his or her offering. There is then no

pressure on prices as other providers cannot easily copy the offering. In that,

however, successful commercial open-source business models are no different from

proprietary business models, either.

As to specific licenses for proprietary open-source software versions or

components, the additional components can be marketed separately/exclusively.

Hardware firms can also consider open-source software a simple way of equipping

their hardware with a higher level of functionality. Because of the great exclusive

marketing opportunities of hardware products, the integration of open source

seems comparatively easy.

Various factors limit business possibilities within a commercial open-source

business model. The more open-source business models commercially market

additional products, the more difficult it might become to find sufficient voluntary

(and from the company’s view, free) support in the developer community for a

project. This, however, increases the need to invest in building up a permanently

employed development team. Yet the work of these developers would then also be

University of Muenster 48
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

freely available to all other users as well. The higher a company’s investments in

development, the likelier are incentives to protect these investments and to restrict

free accessibility, for example through specific licensing models. Therefore, with

increasing commercialization, these models move ever further away from the world

of open source and align themselves with proprietary models.

Another limiting factor is a company’s limited ability to set itself apart within the

open-source development environment. The fact that the results of programming

activities are also available to all other potential and actual providers makes it very

easy to copy not only the product but also the business strategy. Consequently, the

first supplier of a certain product does not have greater opportunities for generating

profits for too long. If a business model is based on an open-source product, the

market position of that product can easily be contested by imitators (fast erosion of

pioneering advantages).

2.3 Consequences of the Lack of Market Coordination in
the Open-Source Model

2.3.1 Has Software Ever Been Free? The Development of the

Software Market from an Economic Perspective

Accounts of the history of open source often point out that in the beginning, all

software was free. This refers to the aforementioned kind of software development

prevalent when computers were beginning to spread. At that time, specialists and

system administrators developed software for mainframes and provided other users

with the changes and further developments they had made. The developers were

employed by universities or large companies from whom they received their pay. As

the market for specific software developments was very small, the employers of

these developers rarely showed an interest in marketing the software externally.

Mainframes and the necessary software were primarily seen as a tool and input

factor and not as a marketable product.

A determining factor in the willingness to open up one’s software developments to

other users and to distribute the software free of charge was the fact that the

developer group and the user group were by and large identical. As mainframes

were not widespread, every developer had an incentive to open up his or her

development contribution to other users as it was safe to assume that these other

users would also enhance the software. This allowed a bartering system to emerge

University of Muenster 49
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

based on development contributions. As long as there were no or only a few users

that did not contribute to the development, there was no danger of freeloaders who

would benefit from the software development without contributing to its

enhancement. As such, however, software was not nonmarket even at its inception;

it was merely distributed by barter. In this barter, one developer’s programming

contribution was exchanged for the programming contribution of another developer.

In the framework of the public goods theory, the development of software at that

time can be classified as a club good. There was no rivalry in consumption, and

excludability was indirectly guaranteed by the fact that only those people used

software who could also enhance it. This led indirectly to the development of a club,

one whose membership was restricted to users who were also developers.

The software developer/user identity disintegrated with the further spread of

computers. Initially, software was designed as custom software or reproduced in

small numbers for specific business applications. It was at that point that software

users started to pay for the software instead of contributing to its development.

With the emergence of a mass market for personal computers, there eventually

was a large number of users that did not make their own development

contributions. The implicit developer-user club disintegrated. Without established

ownership rights, there was not much willingness to make a development

contribution that could then be used by many others free of charge. In this interim

phase, software can be viewed as a pure public good, for which there is neither

rivalry nor excludability. Only the definition of ownership rights re-established

excludability and thus provided incentives to invest in the development of software.

There was also the fear that establishing the Free Software Foundation would give

users access to freely developed software without the users providing their own

development contribution. In that case, however, the use pertained to other

companies that might integrate free software into their proprietary products, but

would not open them up. In connection with the development of free software, the

Free Software Foundation itself refers to a “club” that – along with the use of the

developed software – is only open to those who open up their software as well.92

The GPL was designed to allow just that. This ensured that nobody would use the

software code for his or her own software products without opening up his or her

92 Cf. FREE SOFTWARE FOUNDATION “The GNU GPL and the American Way”

www.gnu.org/philosophy/gpl-american-way.html

University of Muenster 50
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

own development contribution to others. The GPL thus acts as an exclusion option

for those companies that do not open up their software.

2.3.2 Economic Motives for Participating in Open-Source Projects

As to the motives of open-source developers, one commonly raised argument is

that there is a “gift culture” within the open-source movement that is compelled by

altruism and reciprocity. According to this argument, developers contribute to

open-source projects because they enjoy being part of the community and consider

their development contribution to be compensation for the programs and support

from which they themselves have benefited.93 Against this backdrop, the exchange

of “goods for money” is to be superseded by an exchange of “gifts for reputation”.94

It is unclear, however, why the motives of altruism and reciprocity should be more

important in the development of software that in other fields. The motive of

altruism as a driving force seems to be an inappropriate explanation especially as it

is not other private users who benefit from the programming work, but large

companies. Relationships based on a mutual exchange are important mainly in

small, manageable groups.95 However, it is questionable to argue that reciprocity

can also explain the programming contribution in a very large and anonymous

group.96

In 2002, the Boston Consulting Group surveyed the developers registered with

SourceForce.org to examine their motives. In this survey, the respondents provided

the reasons listed in Illustration 8 as their motives for work.97

Motives like “intellectually stimulating”, “work with team” or “nonwork

functionality” can be viewed as motives that apply to other leisure activities, too.

Ideological motives like “code should be open” are found in a similar form in other

leisure activities. As a result, open-source development can be viewed as a normal

form of leisure activity, the results of which are available to other users as well.98

93 Cf. RAYMOND (1998b) and SCHMIDT AND SCHNITZER (2003), p. 10.

94 Cf. RAYMOND (1999), KOLLOCK (1999) and FRANCK AND JUNGWIRTH (2002), p. 124.

95 FEHR AND SCHMIDT (2002) provide an overview of economic research on the topic of fairness and
reciprocity.

96 Cf. SCHMIDT AND SCHNITZER (2002), p. 10. LERNER AND TIROLE (2000), p. 18.

97 Cf. BOSTON CONSULTING GROUP (2002), p. 16.

98 A similar effect is found in other clubs such as garden clubs, where the property is also open to the
public. In this case, too, the leisure activity yields a positive utility for visitors.

University of Muenster 51
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Illustration 8: Motives of Open-Source Developers

0 5 10 15 20 25 30 35 40 45 50

Intellectually stimulating

Improves skill

Code should be open

Non-work functionality

Work functionality

Obligation from use

Work with team

Professional status

Other

Open-source reputation

Beat proprietary software

License forces me to

% of responses

Source: BOSTON CONSULTING GROUP (2002), p. 16.

However, there are also numerous additional motives that are directly or indirectly

related with a professional activity. These include, for example, “improve skill”,

“work functionality”, “professional status” and “open-source reputation”. These

economic motives for participating in an open-source project are examined in

further detail below. In this examination, a distinction is made between the

importance of open source in revealing one’s own development skills, small

contributions and the use of open source for continuing education.

According to economic criteria, a developer will only participate in a project if this

activity is associated with a positive utility for that developer as compared with his

or her costs. The developer incurs costs because of the time invested in the

programming activity. The value the developer attaches to these costs depends on

how much the developer enjoys his or her work. The developer can derive utility

from a direct or postponed consideration.99

Payment is the direct consideration for the developer in a proprietary software

project. A developer’s direct consideration may also be that a software problem

personally affecting him or her is solved directly. This may be the provision of a

certain driver that is then jointly developed, the tailoring of software to the

developer’s specific needs, or a program bugfix.

99 Regarding the cost-benefit considerations, cf. LERNER AND TIROLE (2000), p. 14 and MENDYS-KAMPHORST

(2002), pp. 19-20.

University of Muenster 52
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

If a developer makes only small development contributions within an open-

source project, these contributions are associated with little effort and low costs for

a highly qualified developer. This may include solving a simple problem,

customizing software or developing a small add-on application. The ability to access

the source code makes it relatively easy for these developers to make

improvements that can also benefit others in their daily work. The opportunity costs

of sharing the new code with others are low as well. If, in addition, the new

developments are relatively unsophisticated, it is not worth the effort to protect this

innovation. Moreover, the internet provides an efficient and inexpensive way to

make this innovation available to the public. Consequently, the individual developer

incurs only minimal costs in making and disclosing a development contribution.100

In addition, open-source development work can be used in continuing

education. In this case, the developer uses his or her work in an open-source

project to find solutions to questions in his or her professional life. The developer

therefore receives a direct consideration for his development contribution in the

form of the solution to the problem. Yet programming work as part of continuing

education can also be viewed as an investment in the developer’s future career.

The consideration to be received in the future would in this case consist of better

career prospects.

Another future consideration may consist of developers being able to show their

programming skills (signaling) and to have these evaluated. Working in an open-

source project thus sends out signals regarding the quality of one’s own work,

which can then be profitably used in a secondary market (labor market). As such,

development work is used for signaling and to build up a reputation.101 Similar

behavior can be observed in scientific publications.102

Revealing one’s own development skills and building up a reputation can be a

major motive wherever development work goes beyond simple small contributions.

As previously described, the bulk of development work in larger projects is

performed by a small group of developers. By making a considerable development

contribution, these developers can build up their reputation and use it in other

areas. If building up a reputation is an important argument for a development

100 Cf. SCHMIDT AND SCHNITZER (2003), pp. 10-11.

101 Cf. FRANCK AND JUNGWIRTH (2002), p. 127.

University of Muenster 53
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

contribution, then the bigger the proprietary market in which the reputation gained

in open-source development can be used, the greater the incentive to participate in

an open-source project. A big proprietary market means that there are more

companies that would compensate developers for their commercial development

work.103 There are various factors influencing the scope of the signaling effect:

• The signaling effect is strong if a developer’s skills can be evaluated by a large

audience. This may lead to developers preferring such projects that attract as

many other programmers as possible. Large projects in which many developers

are already involved are therefore more attractive than small niche projects,

whose further course and significance are yet uncertain. A resultant positive

effect is that there is a tendency for better-quality work to be performed in high-

profile fields. With regard to resource allocation, however, all developer capacity

is concentrated in only a few fields, while other areas are not dealt with (on

resource allocation, cf. 2.3.5.2).104

• The signaling effect is also stronger in those cases when the programming task

to be performed is particularly challenging and if the developer group is able to

assess and evaluate the development contribution. It is especially significant in

“settings with sophisticated users and an audience that can appreciate effort and

artistry and thus distinguish between merely good and excellent solutions to

problems”.105 A key aspect in this context is the so-called “peer review”. This

means that one programmer’s work can be reviewed by other professionally

qualified programmers. A certain reputation can only be built with the help of

“peer review”, as it represents the only benchmark for the quality of a product.

The incentives leading to signaling may therefore focus development capacities

on areas that do not necessarily match the products that are actually in demand.

102 For a comparison with the incentives in the field of science, see LEE, MOISA AND WEISS (2003), p. 23. In

this area, scientific publications serve to build up reputations in order to signal skills and hence
improve career opportunities as well.

103 Cf. MENDYS-KAMPHORST (2002), p. 20. Empirical data seem to support this theory: “Contributing to
open source did help many programmers to get access to venture capital or to be offered attractive
jobs by commercial software developers.” IBID (2003), p. 12.

104 LERNER AND TIROLE (2002), pp. 15-16 point out that similar trends can be found in scientific research as
well. While some fields are researched intensely, other areas remain completely untouched.

105 Cf. WEBER (2000), p. 22.

University of Muenster 54
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

The practical design of open-source projects has indicators pointing out the

importance of signaling:106

• Stating the development contribution is of particular importance in a project.107

All developers involved are listed in the project history, the credits or the

maintainer list. There are also many web pages of open-source projects where

the involved developers list the significance of their contributions. For example,

the web page of the Apache web server very clearly shows the involved

developers and their respective contributions.108 The Sourceforge web page also

ranks the registered projects and the developers along with their qualifications

and contributions.109 Furthermore, it is considered a major offense if the

contribution made by a developer can no longer be found. “Removing a person’s

name from a project history, credits or maintainer list is absolutely not done

without the person’s explicit consent. … surreptitiously filing someone’s name off

a project is, in cultural context, one of the ultimate crimes.”110

• The first open-source projects in particular were technically challenging solutions

for operating systems. These solutions are best suited for establishing a

reputation and therefore offer a higher signaling incentive than tasks that benefit

less advanced users. 111

• The modular structure of many projects does not only facilitate distributed

teamwork in different developer teams, it also makes it possible to allocate the

individual contributions more exactly.112

This examination of motives has shown that there are also numerous economic

explanations for a developer’s participation in an open-source project, as

developers can also use their participation to improve their career prospects. It is

imperative in this case that a proprietary software market exist. If a developer

pursues his or her own interests, that will not necessarily lead to the best result for

the software user. As has been shown, developer interests are best met when

106 Cf. SCHMIDT AND SCHNITZER (2003), p. 11.

107 Cf. MENDYS-KAMPHORST (2002), p. 13.

108 Cf. www.apache.org

109 Cf. sourceforge.net

110 Cf. RAYMOND (1998b)

111 Cf. WEBER (2000), pp. 21 et seq.

112 Cf. LERNER AND TIROLE (2000), p. 17.

University of Muenster 55
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

technically demanding solutions are designed. These demands, however, are

generally different from those that end users place on software.113

2.3.3 The Development of Open-Source Software - Not A Bazaar

In one of the best-known articles on the principles of open-source development,

the work in an open-source project is likened to a “bazaar”: “The Linux community

seems to resemble a great babbling bazaar of differing agendas and approaches…

out of which a coherent and stable system could seemingly emerge only by a

succession of miracles.”114 The development work in a proprietary project, on the

other hand, is viewed as the “construction of a cathedral” and thus as a strictly

hierarchical form of organization.

Though the example of the bazaar clearly demonstrates the multifaceted nature of

open-source cooperation, an open-source project lacks the very attribute that

defines a bazaar: the coming together of suppliers and demanders and the resulting

establishment of a price for the traded good. A bazaar is the prototype of a

market.115 The seemingly chaotic trading on a market is the manifestation of a

decentralized coordination mechanism that brings together the wants of the

demanders and the opportunities of the suppliers. The bazaar serves as a basis for

information exchange and pricing. Prices indicate relative shortages and provide

important information to suppliers about what value demanders place on a good

and which goods are in highest demand. At a bazaar, every dealer pursues his or

her own interests by maximizing his or her profits. This can be best achieved if the

vendor offers goods that are demanded especially urgently by customers. The

vendor who best satisfies the customers’ wants stands to gain the most. As such,

the demander benefits indirectly from the self-serving interests of the suppliers.116

In an open-source project, suppliers and demanders do not meet. The open-

source bazaar only consists of suppliers and developers who develop their software

primarily according to their own ideas. Although developers, as the previous section

showed, also pursue their own interests, there is no connection to the interests of

113 See also JOHNSON (2001) regarding a model analysis of the development of open-source software and

of developer contributions.

114 Cf. Raymond “The cathedral and the bazaar.“

115 See BORCHERT, GROSSEKETTLER (1985), pp. 13 et seq., for the constitutive role of pricing for a market.

116 Cf. SMITH (1776), book 1, chapter 2, who pointed out this mechanism more than 200 years ago: “It is
not from the benevolence of the butcher, the brewer, or the baker that we expect our dinner, but
from their regard to their own interest. We address ourselves, not to their humanity but to their self-
love, and never talk to them of our own necessities but of their advantages.“

University of Muenster 56
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

demanders and users of a software. The software that is created in the pursuit of

the developers’ interests is not necessarily the software demanded by the

customers.

2.3.4 The Role of the Market and Fulfilling the Market Functions in

Open Source

In a market economy, supply and demand are coordinated by the market through

competition between different suppliers. In contrast to a planned economy, the

market is a decentralized planning and coordination tool, i.e., there are no national

economic targets with respect to output or rationing nor are there regulations

concerning the quantities to be demanded. As shown in the previous section, the

suppliers’ self-serving interests are what motivates them to optimally meet the

demanders’ interests.

If shortages exist in a market, a rationing method must be found that regulates

the way demanders compete for scarce goods. However, shortages can also be

present in the end-user market when production factors are used. There are many

possible behaviors and regulations with which demanders organize the distribution

of scarce goods and influence their own supply of these goods: in this regard,

waiting in lines, using or threatening the use of violence, bribery and fraud can be

competitive methods in the market that are just as legitimate as competing through

price and quality. However, these methods operate in extremely different ways.

Accordingly, one cannot choose between living in a society with or living in one

without competition, as noncompetitive societies cannot exist in a world of scarcity.

What can be chosen, however, are the competitive methods, i.e., the rules

governing how competition is carried out.117

The decision to utilize the market as a coordination tool also entails a decision to

live in a decentralized economy that grants the participants far-reaching freedoms

of planning, action and choice. Markets are not an end in themselves but serve to

fulfill various functions that are summarized in Table 4:

• The principle of customer sovereignty requires that supply and demand are

balanced according to the needs of the demanders. Individual plans are balanced

out through the price mechanism in and between the individual markets.

Adequate price variations reduce excessive supply (waste) and excess demand

117 Cf. VANBERG (1997), pp. 707 et seq.

University of Muenster 57
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

(shortage) and as a result balance out the individual economic plans of market

participants. In this context, suppliers have to let themselves be guided by the

demanders and not vice versa: the final decision about the success of a supplier

is made by the demanders through the purchase of a good.

• The factor allocation function steers scarce resources to their most productive

use. Assuming that there are scarce means of production but unlimited demand,

the scarce means must be steered so that they are used in a way in which they

are needed most urgently.

• The distribution function of competition distributes income in accordance with

the production contribution. Consequently, the one who better meets the needs

of the demanders receives a higher compensation than others.

• The adjustment function ensures that the behavior of market participants

quickly conforms to new conditions. If, for example, a supplier can no longer

survive in the market with his or her product because the demanders’ needs

have changed, the offering of this supplier will either have to be adjusted

accordingly or withdrawn from the market.

• The progress function provides new incentives to develop new products and

processes and consequently to provide better cost-benefit combinations than the

previous ones (incentive function of competition).

Table 4: Market Functions and the Consequences of their Absence in Open-Source Software

Market function Ensures
Its absence in

open-source software
leads to:

Customer
sovereignty Balancing of supply and demand Under-supply

Over-supply

Factor allocation
Scarce resources are steered
towards the most urgent need

Misallocation of resources

Distribution
Income distribution by
production contribution Nonsustainability

Adjustment Structural adjustment ---

Progress
New products

New procedures
Innovation obstacles

.

University of Muenster 58
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

The price system is of key importance within the competitive coordination and

planning process: for a decentralized market economy, in which numerous

autonomous decision makers must interact in a coordinated fashion, prices

constitute the central navigation system for all parties involved. This is made clear

in the different functional aspects of a price:

• Information: The price reflects shortages and is therefore, on the one hand, an

indicator of urgent demand (willigness to pay) and, on the other, of the

consumption of resources associated with the use of goods (cost information).

• Steering: Changes in one or both of the market sides lead to price changes and

induce quantity reactions both in the observed market as well as in any

upstream and downstream markets.

• Motivation: The price determines the seller’s income: the better customer

wants are satisfied, the higher the income. This results in a permanent incentive

to innovate.

• Assessment: The success of an economic activity can only be assessed and

compared with other activities by means of prices.

Developers lack key information due to the absence of pricing in open-source

software. They do not have information concerning customers’ willingness to pay (=

actual preferences), based on which production decisions would be made in the

market process. Because of the absence of this information, supply does not

automatically develop in line with the needs of the users, which may manifest itself

as oversupply (excessive supply) or undersupply (excessive demand). Furthermore,

the functional deficits in the software market also work their way up to the

upstream factor markets (in particular, the labor market for developers) and –

depending on the financing model of the open-source software development – to

the downstream or parallel complementary markets (e.g., service markets) as well.

Because the open-source model at its core deliberately rejects the use of the

market as a coordination mechanism and prevents the formation of price

information, the above market functions cannot be satisfied by the open-source

model. This results in a systematic disadvantage in the provision of software in the

open-source model as compared to the proprietary production process. Aside from

the market functions and their tasks, Table 4 also shows in note form the

consequences of their absence in open source. The following points deal with the

University of Muenster 59
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

individual aspects in more detail. The limits of open source that are a direct

consequence of the absence of the market as a coordination tool are discussed in

more detail in the following points:

• Developer orientation is not customer orientation

• Less effective utilization of resources

• Lower innovation capacity

The following section also discusses the less favorable development of standards

that result from the software-specific attributes.

2.3.5 Limits of Open Source

2.3.5.1 “Happy Engineering” - Developer Orientation Instead of Customer

Orientation

In evaluating a new product, the key criterion is not the technically feasible

maximum; in the final analysis, it is only the marketability of a development. If, for

example, engineers focus solely on the technical aspect in their developments, they

will create expensive and sophisticated high-performance products that may not

find a buyer because the end user cannot recognize the added value or is unable to

afford it. “Happy Engineering” is the term for this type of development, one that

exhausts the technical possibilities without considering usability, operability, added

value and incurred costs. A determining factor in the distribution of products is not

their technological sophistication but the creation of additional value for the

customer.118 In the case of proprietary software, the market matches the

technologically feasible solutions with the wants of customers and their resultant

willingness to pay. In the case of open-source software, the absence of pricing

prevents matching from occuring (cf. Illustration 9 and Illustration 10 regarding the

following section).

Proprietary software can only survive in the market if it optimally fulfills

customers’ wants.119 This does not mean, however, that the best software

necessarily has to be the technologically most sophisticated solution. For a

business, the value of a product depends on the utility that the customer derives

118 Cf. BACKHAUS (1999), pp. 130-133, where the term “Happy Engineering” is also mentioned.

University of Muenster 60
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

from the product. This customer valuation is reflected in the price that the business

can demand. The greater the added value for the customer, the greater the

company’s profits. Therefore, the identification of user needs and the resultant

willingness to pay make up the first step in traditional software development. The

more valuable the software is to demanders (quality or universality), the higher the

price/sales volume and as such the profits that a software developer can expect for

his or her software.

Illustration 9: Market System in Proprietary Software Production

Produktion

Softwareindustrie

Production

Software industry

Software market

Suppliers

Demanders
(Companies, government, households)

Labor market

Suppliers
(Developers)

Demanders

Leistung Lohnsatz

Interesse, Zeit,
Qualifikation Einkommen

Produktivität Lohnkosten

Work Pay rate

Interesse, Zeit,
Qualifikation Einkommen Interest, time,
qualification Income

Produktivität Lohnkosten Productivity Labor costs

Leistung Preis

BEDÜRFNISSE Ausgaben

Kosten Erlöse

Work Price

BEDÜRFNISSE Ausgaben NEEDS Expenses

Kosten Erlöse Costs Profits

.

In market production, realizable profits are matched to the production cost (shown

in Illustration 9 in simplified form as labor costs). The production of a software

product is only economically justifiable if the demanders are willing to actually

finance the costs incurred in software production through the product price.

119 This includes user friendliness (in particular in the case of mass markets) and compatibility with

previously installed platforms (investment protection, use of network effects).

University of Muenster 61
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Otherwise, the scarce resources used in production should rather be steered

towards other, more productive uses. Since proprietary software developers

maximize their profits by developing software in line with the customers’ needs,

there is a strong incentive for them to invest in market research and to actually

identify the customers’ needs.120

Illustration 10: Open-Source Software Production

needs INTEREST, TIME,
QUALIFICATION

Demanders
(Companies, government, households)

Suppliers
(Developers)

Software Work

?

User-developer-community

.

Open-source software development, on the other hand, does not consider the

needs of a broad user base. For that reason, the needs of the users do not play a

significant part. This is not deliberate but due to a lack of information about the

actual preferences of demanders. The market system degenerates, becoming a

lopsided relationship between developers and recipients. The above examination of

the motives for participating in an open-source project showed that developers

develop primarily for their own problems or needs. As a result, however, the needs

of nondevelopers are difficult to pinpoint and implement. If not all the users are

developers, this may lead to software being developed that does not meet the

demands of the users (i.e., the customer, the market).

As a result of the signaling incentive discussed above, a programmer is interested

more in developing technically complex software than a technically less

sophisticated application, as the latter would entail less of a reputation gain. An

open-source developer therefore has very little incentive to identify and solve

problems of less knowledgeable users.121

120 Cf. SCHMIDT AND SCHNITZER (2003), p. 14.

121 Cf. HANG AND HOHENSOHN (2003), p. 44 and EVANS AND REDDY (2002), p. 30.

University of Muenster 62
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

As a result, customer wants are only considered in the development of open-

source software if the users themselves become developers. This corresponds to

the original cooperative idea behind an open-source community. It also means,

however, that processes based on division of labor must be restrained, gains from

specialization must be relinquished, and as such the major driving force behind

productivity progress and economic growth must be weakened.

The example of the Apache web server shows that open-source software can

currently be extremely successful if users are technologically adept. In this case,

users benefit from the adaptability of the software. Because they have the

appropriate technical skills, documentation and easy handling are not the main

criteria in their software decision.122

Companies involved in business models based on open source have a greater

interest in taking customers’ wants into consideration. However, it should also be

noted that the developed software must be freely accessible, even in commercial

business models. This means, though, that no company is able to gain a specific

competitive advantage by developing highly user-friendly software. The additional

open-source services are more successful if the additional service can only be

marketed by the offering company. The business model of distributors can be

interpreted to the effect that their distributions attempt to add customer utility to

open-source software that open-source development alone cannot add. However,

the possibilities for exclusively marketing the resulting product are very limited in

this regard as well.

2.3.5.2 Inadequate Allocation of Resources

Due to a lack of price mechanism, the open-source model does not provide any

information about the value a user places on a software product. The advantage of

a price system is that different goods and services can be evaluated based on a

common standard and are thus comparable.123 In the open-source model, it is not

possible to compare the urgency of alternative needs. As shown below, this

valuation deficit immediately works its way up to the upstream factor market,

where not only does the open-source model not allow income to be produced, but it

does not permit any shortage signals to be generated.

122 Cf. LERNER AND TIROLE (2000), pp. 8-9 and SCHMIDT AND SCHNITZER (2003), p. 14.

123 Despite the many claims of “not being able to compares apples with pears”, the price mechanism
allows exactly that comparison.

University of Muenster 63
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

If open-source development is considered a leisure activity, every developer is

free to individually design his or her time plan that is not subject to any economic

evaluation criteria except the developer’s. If, however, the open-source

development method is viewed as a basic alternative to the proprietary model, it

has to be compared to the proprietary model in terms of how it allocates resources.

Only then can one judge whether it is capable of producing the desired products

with the least-possible effort. The shortages emerging in open-source development

are not related to the allocation mechanism for created products. In this

connection, there cannot be any shortages because there is nonrivalry in

consumption. In the open-source model, shortages come about instead because

limited development capacity has been allocated to a proper use. If the open-

source model is to be viewed as a general alternative to the proprietary world, such

shortages are inevitable.

Even if open-source software is distributed free of consideration, the development

of software still has its costs, economically speaking. Developers are confronted

with opportunity costs, as they can use the time available to them but once.

Without a price signal, it remains unclear whether development time spent in

Project A would create greater utility if spent in Project B. The traditional economic

view of software, in which it is a nonrival good among users, therefore only applies

to existing software, that is, from an (economically less interesting) ex post

perspective. However, whenever the issue is about using scarce resources for the

production of new software, competition among potential future users definitely

exists if they are faced with the choice of having to do without the new Software A

so that the alternative Software B can be programmed, or vice versa (ex ante

rivalry). Markets can easily solve this conflict through the price mechanism, while

other coordination processes fail in this aspect as they are unable to valuate and

consequently compare A and B due to the lack of pricing.

Therefore, from an economic perspective, the lack of information about the actual

wants of demanders leads to a poor allocation of resources, where developer

capacity is the main resource. In a price-based software market, producers would

be able to focus their development work on those products that are needed most

urgently. The open-source model is not able to identify the desired demand in such

a fashion. A lot of developer capacity may thereby be tied up in products that are

University of Muenster 64
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

not needed or that would also yield good results with less development work.124 The

signaling goals of developers merely serve to exacerbate this tendency: it is likely

that areas promising a higher profile are occupied by many developers, while hardly

any development work is performed in other areas. Because there is no opportunity

to allocate resources to their proper use, the open-source model is not suitable as a

basic production method for software.

Consequently, the open-source development method must consequently be

classified as neither economically efficient nor effective.125 It is less effective than

the proprietary model as there is no mechanism to check whether developer

capacity is actually invested properly. It is not efficient because the input can be

unreasonably high compared to the output.

The allocation of resources can be improved if more commercial elements are

integrated in open-source projects. Companies will invest in those open-source

projects that they suspect will provide the greatest additional benefit for their

business model. However, in this case the resources are allocated only indirectly by

the utility that the complementary product or service offers to the providing

company. The following section examines how the economic coordination efficiency

of such complementary strategies can be assessed.

2.3.5.3 Sustainability of Complementary Open-Source Strategies

When it comes to financing the development costs incurred in developing the

nonmarket open-source core (cf. Illustration 7), many people refer to open-source

business models based on open-source core products (complementary strategy).

This amounts to a cross-subsidization of open-source software production from the

profits generated in downstream or parallel value-added steps. Depending on the

contestability of the complementary markets, there are two different scenarios in

which this strategy is assessed:

• Scenario 1: Cross-subsidization possible (no contestability)

• Scenario 2: Cross-subsidization fails (contestability)

124 Though such products could also come into existence in the proprietary software market, bad or

inappropriate products are sanctioned as lossmakers by that market.

125 Efficiency is the ratio of output to input (“doing things right”). Effectiveness is the ratio of targeted
utility to actual utility (“doing the right things”).

University of Muenster 65
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Scenario 1 is examined in more detail first. Illustration 11 shows the basic

construction of this financing model in the software market (open-source core) and

in the service market which acts as a commercial complementary market based on

that software market.

Illustration 11: Complementary Strategy with Cross-Subsidization

 Software market

Suppliers

Demanders
(Companies, government, households)

Work Price

NEEDS SW expenses

Software industry

Service market

Demanders
(Companies, government, households)

Work Price

BEDÜRFNISSE Ausgaben NEEDS Expenses

Costs Profits

Service industry

Suppliers

SW profits SW costs

SW expenses

SW profits

As there is no pricing in the software market, an attempt is made to recover

incurred costs by selling software services at prices higher than cost. Starting with

an original market equilibrium (in the case of a proprietary organization of both

markets), the resulting price increase in the service market will trigger certain

adjustments, as the demanders in that market are not willing to buy the previous

equilibrium quantity for a price that is clearly above the previous equilibrium price.

The market’s price and quantity reactions to the nonpricing of software and its

cross-subsidization by a complementary market are shown in Illustration 12.

University of Muenster 66
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Illustration 12: Adjustments Triggered in the Complementary Market

 Service market Software market

Supply

Demand

Supply

Demand

Software

Price

Software

Service

Price

The shaded area in the diagram on the left corresponds to the lost value-added in

the software market caused by nonpricing. If that loss is to be recovered by a

corresponding price increase in the service market (dotted rectangle in the diagram

on the right), it will lead to a gross price increase in the complementary market

(effect), which causes the demand/sales quantity to be reduced (effect). At the

same time, this reduces the net price for services (effect) and thus diminishes

value-added in the complementary market, which corresponds to the shaded area

in the diagram on the right. The overall result is one of deadweight losses similar to

those seen in the analyses of tax effects. In both scenarios, the deadweight loss is

caused by prices for demanders and suppliers moving further apart. Cross-

subsidization has the effect of a wedge, driving purchase and selling prices apart

and reducing economic welfare by triggering quantity reactions.

The discussions so far have been based on the assumption that an open-source

software product entails the same services as proprietary software, i.e., that both

production processes lead to identical quality software. The net loss in value-added

caused by the complementary strategy in the entire IT sector could be prevented

only if the service demand for open-source software were greater than for

proprietary software. Considering that service demand and product quality are in a

reciprocal relationship, that means that the loss in value-added in open-source

software production could only be countered by worsening software quality (higher

University of Muenster 67
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

training costs, more support etc.). However, this form of artificial value creation can

be classified as economically undesirable. In this case, it would be better to permit

added value to be created in software development in order to provide the economy

with better-quality software. Otherwise – as has been shown – customer

sovereignity will not be sufficiently asserted.

Illustration 13: Assessment of Complementary Strategy with Cross-Subsidization

OSS
core

Service

Soft-
ware

Hard-
ware

Complementary segments
(commercial models)

Nonmarket core
(OSS spirit)

identical value-added at best

possibly efficiency deficits due to
Indirectness of price control

 at best, OSS = PS

without quality deficits compared to PS:
Value-added losses in the complementary market

with quality defects compared to PS:
identical or even higher, but then
undesired value-added

 OSS < PS

 Questionable in terms of competition:
 “Why not contestable?”

In wrapping up Scenario 1 and moving along to Scenario 2, one might wonder

how cross-subsidization can be successful at all, as the complementary markets are

basically contestable (if not, there is a serious competition problem). Since open-

source software is open to anyone even without a financing contribution, service

providers might, for example, appear in the market offering their services at cost,

thereby forcing out those providers who have to set selling prices that will allow

them to recover the financing contributions for open-source software.

If the complementary markets are contestable (Scenario 2), the cross-

subsidization strategy has no foundation. This leads to a loss of value-added in the

IT sector in an amount equal to the shaded area in the diagram on the left in

Illustration 12. As there is no indirect connection to commercial business models,

University of Muenster 68
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

the coordination deficits in open-source software production stated in Table 4 reach

their full effect. If the loss in value-added in software production is compensated for

by higher “value-added” in the complementary sector, this will require worse

product quality, which in turn would mean a failure to reach the goal of customer

sovereignty.

Illustration 14: Assessment of Complementary Strategy without Cross-Subsidization

OSS
Kern

Service

Soft-
ware

Hard-
ware

Complementary segments
(commercial models)

Nonmarket core
(OSS spirit)

complete loss of value-added

efficiency deficits due to
lack of price control
(at least in 4 market functions, see table)

 OSS < PS

without quality deficits compared to PS:
identical value-added

with quality deficits compared to PS:
higher albeit undesired value-added

 at best, OSS = PS

Contestability of complementary markets
prevents cross-subsidization

If one traces the different branches of these scenarios to their logical conclusions

(with/without cross-subsidization, with/without quality reduction), it becomes clear

that, in the end, the results in the open-source model are clearly inferior to those of

proprietary software production. This overall result is ultimately attributable to the

absence of pricing for open-source core products.

2.3.5.4 Lower Innovation Capacity

Innovation means that new knowledge is used to offer products or services that

the customer prefers to previous solutions. Therefore, an innovation is the

commercialization of a product that was not previously commercialized.126 In this

126 Cf. IANSITI AND LERNER (2002), p. 2.

University of Muenster 69
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

context, innovation is understood in terms of adoption as well, i.e., the consumers

adopt a new product or process. By contrast, an invention is the creation of a new

product or process. Therefore, in order to measure innovation, one must analyze its

acceptance or its influence on the private consumer, on organizations and on

society as a whole. For that reason, information concerning the distribution of a

product also provides information on innovativeness.127

Innovations are extremely important to economies. They are customarily

subdivided into product innovations and process innovations. In the case of a

product innovation, a new process leads to the production of new products or

product qualities. Process innovations, on the other hand, allow for an elimination

of production factors and consequently for a reduction in production costs.128

In static markets129, the measure of economic well-being is the sum of consumer

surplus and producer surplus. This sum is also called social surplus, which is

maximized when a good is priced at marginal costs. From a static point of view, the

pricing of open-source software at marginal costs is efficient. However, the

software market is a dynamic market characterized by rapid technological changes.

Pricing at marginal costs in this case does not offer companies enough incentives to

invest in software development.130

The existing incentives for professional software developers to fix bugs or

customize software causes personal utility to increase for developers. However, the

incentives for software innovations in the proprietary market cause utility to

increase for the economy.

Innovations always represent a critical success factor for companies, because only

if they can produce more successful innovations than their competitors will they

prevail on the market and generate enough returns to cover their costs. Companies

will invest in the development of software if they can protect the intellectual

property rights in the software created and if, in compensation for possible losses in

the case of failure, they can achieve above-average prices for the product.131

127 Cf. IANSITI AND LERNER (2002), p. 3. See the examination by LERNER AND TIROLE (2002) for more

information on the interrelationships between licensing and innovations.

128 Cf. FRITSCH, WEIN AND EWERS (2003), p. 75.

129 Static markets contain a given technology exists and do not produce innovations.

130 Cf. SCHMIDT AND SCHNITZER (2003), pp. 6 et seq.

131 Cf. SCHMIDT AND SCHNITZER (2003), p. 8.

University of Muenster 70
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

For that reason, a company only has an incentive to undertake innovations

wherever they help the company to realize first-mover or pioneering advantages

that reward it for its expenses, particularly for the risk associated with the

innovation activities. The pioneering advantage is the return resulting from the fact

that no other company can claim the innovation. The longer it takes for its

competitors to adapt in response, the greater the pioneering advantage of the

innovator and the greater the incentive to innovate. If, however, competitors are in

a position to immediately imitate the innovation, or, as is the case with open-

source software, if the company must make it immediately available, pioneering

advantages cannot be realized. An extremely quick reaction on the part of

competitors upon the launch of new products or processes would, for the overall

economy, result in a reduction or the complete elimination of incentives to

innovate.132

The prospect of future profits is thus the strongest incentive to undertake

innovations. These incentives are not present in the open-source model, as the

disclosure of the source code provides every user with the ability to customized the

software as needed. The software can be freely copied and distributed as well.

Companies building their business on the open-source model have therefore much

less incentive to invest in R&D activities, and it is doubtful they will be as innovative

as a supplier of proprietary software. The only incentives for a company to invest in

the enhancement of software are indirect, if at all, because in the open-source

world, as has been shown, companies are not able to generate profit with the

software itself but only with additional services or products.

For example, one can envision two companies identical in all respects except that

one invests in open-source software development and the other does not. The first

company has to make every software improvement it develops (especially under

GPL) available directly to the second company. As such, the open-source

development process does create equal business opportunities for both companies,

but the first company will, because of its development work, inevitably have higher

costs than the second company. The first company can be successful only if the

open-source development fosters added trust among customers or if it has shorter

development times for proprietary software or services that are based on open-

source software. 133

132 Cf. FRITSCH, WEIN AND EWERS (2003), p. 77.

133 Cf. EVANS AND REDDY (2002), p. 30.

University of Muenster 71
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

As a result, a basic advantage of proprietary software is the fact that it offers

developers an opportunity to recover the investments they have made and to

transform the additional utility they created for consumers at least partially into

earnings for themselves. “Like in all other industries, the profit motive provides a

very powerful incentive to innovate that is not present in the open source

world”.134.

Illustration 15: From an Idea to Marketability

OSS Proprietary

Start-up

Proprietary

Etablished

Acceptance

Innovation

Profit expectations

OSS

Idea

Maturity

Innovation

Pool

Illustration 15 is a simplified model comparing the different paths that lead to an

innovation. For an innovation to come about, there must first be an invention or

idea. In the open-source model, it develops out of the large pool of developers. In

this context, as has been shown, developers focus on their own interests or

problems. Because of its free form of cooperation and the huge number of

developers, the open-source model is able to produce a multitude of ideas

(brainstorming effect). However, these are not selected for their exploitability.

Proprietary software producers, on the other hand, focus on the customers’

interests, for they have to expect that there are enough takers for their product for

their investments in the software development to pay off. In this context, the

proprietary development model differentiates between start-ups and established

companies. Principally, the initial conditions are identical for both companies.

Numerous software developments have been started as small start-ups in the past

and garnered considerable shares of the market with their product.

134 See CF. SCHMIDT AND SCHNITZER (2003), p. 13.

University of Muenster 72
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

The maturing process in open-source software is expedited more or less

depending on how many developers get together to further develop a project. From

this stage on, proprietary start-up companies may also be taken over by an

established company. The incentive scenario remains basically the same. The

established company will be interested in an acquisition only if the cost-benefit ratio

is deemed particularly favorable by its demanders.

The last stage finally is the market penetration and wide distribution of the

product. An innovation is not relevant merely as an invention of a new product or

production process. Rather, an innovation has an economic impact only if it is

widely distributed and provides the users with additional value in the form of a

productivity boost or lower costs. If software development is not aligned with the

users’ preferences, however, it will not bring forth innovations that are widely

distributed and as such work to increase well-being in an economy.

Open-source software must also be comparable to proprietary software with

regard to innovativeness. However, the strengths of open-source software used to

lie mainly in copying existing software. Even the start of open-source software had

the goal of copying software, that is, the Unix operating system. “Clearly, much

innovation in commercial software has occurred over those 25 years. Just as

clearly, much (but certainly not all) of the focus of GPL software over the past two

decades has been on creating “free” versions of proprietary software.”135

2.3.5.5 Standards are More Difficult to Establish

As shown in the first section, standards136 play an important role in the software

market. They make it possible to fully utilize network effects on the supply and

demand sides. Suppliers developing software for a given standard benefit from it in

that they do not have to adapt their products to different platforms. Demanders

benefit from a standard that, for example, eases file sharing for them and obviates

the need to be trained on differing platforms at different workstations. Another

consequence of standardization is that there are pre-defined interfaces between

programs developed by different suppliers. This ensures that program

functionalities like copy and paste can be used universally. In the open-source

model, the formation of standards can be more difficult than in the proprietary

135 Cf. EVANS AND REDDY (2002), p. 49.

University of Muenster 73
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

world as there are no economic incentives to establish and hold on to a certain

standard. The problem of network fragmentation and thus the nonestablishment of

a standard can occur on the development and the distribution / producer levels.

If this happens already on the development level, it is called “forking”. Developers

may not see eye to eye concerning the direction that a project should take, which

might lead to a breakdown into different projects that are further developed

independently of each other and that are not intercompatible.137 The Unix operating

system is the best-known example for the emergence of many different and

partially incompatible versions.138 This was exacerbated by the fact that commercial

suppliers put their own Unix version into circulation in order to set themselves off

from their respective competitors.

It is true that forking can be understood as a type of competition between

different development trends for the best solution. Once again, however, the

emphasis is on developing the technologically best solution. The final consumer is,

however, equally interested in practical issues such as compatibility or

interchangeability of documents. Because proprietary suppliers have a vested

interest in distributing their software as widely as possible, they will try to achieve

equally wide coverage with their products. Furthermore, the presence of a certain

degree of market power is helpful in establishing a standard or platform.

The standard can also become fragmented on the level of distributors and

hardware/software producers whose business models are associated with open

source. There are many distributors trying to market their own Linux distributions.

This has resulted in a slew of Linux versions that are not necessarily compatible

with each other.139 For example, distributors can choose different approaches for

organizing file storage. This makes it difficult for software application developers to

develop a routine for setting up applications as it will not run under different

versions. Developers must therefore offer different program versions for different

distributors, or these programs must be adapted by the distributors.140 In the same

136 “Standards” or “standardization” are defined in the following as measures to prevent forking effects.

The difficulties that may arise in the development of open IT standards such as TCP/IP are not
discussed here.

137 Cf. MENDYS-KAMPHORST (2002), p. 15 and p. 39.

138 GRÖHN (1999), p. 11, again methaphorically, refers to a “Balkanization” of Unix.

139 For an overview of the different Linux versions, see, for example, www.suse.de/de/index.html oder
www.redhat.com/

140 Cf. MENDYS-KAMPHORST (2002), p. 48.

University of Muenster 74
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

way, programs that are operable on one user interface do not have to run the same

way on another user interface.141

The special importance of standards in the software market and the need to

establish them in the open-source world is evidenced by the creation of different

initiatives that attempt to set uniform rules for file storage and other areas.

2.4 Future of Open-Source Development and Economic
Implications

2.4.1 Proprietary and Open-Source Software - A Comparison

The starting point of the preceding analysis was the absence of a market as a

coordination tool between software developers or suppliers and software users.

Table 5: Comparison of Proprietary and Open-Source Software

 Proprietary Software Open-Source Software

Supplier-demander
coordination

Market as coordination tool
Autonomous software

engineering

Development
orientation

Orientation towards customer
needs

Orientation towards
developer interests

Innovation incentives
Pursuit of profits
by innovator

Ownership of innovations

Personal interests that do
not necessarily match user

interests

Compatibility and
interoperability

Strong incentives for
compatibility

Threat of forking

Bugfixing

Easy installation, high level of
compatibility in different

hardware constellations, but
because of that longer process

Quick availability, but user-
friendly installation
and compatibility
may be difficult

Customizability
Customizability within the

defined possibilities

Far-reaching customizability
possibilities for experienced

users

Signaling
Depends on the producer’s

publication policy

Strong signaling effect due
to disclosure of individual

developer contribution

Because open-source development consciously shuns market processes, it does

not carry out important economic coordination tasks that, in proprietary software

production, are performed by the market. The previous section pointed out the

141 EVANS AND REDDY (2002), p. 44 produce this example for the KDE and GNOME interfaces.

University of Muenster 75
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

resulting consequences for various market functions. Table 5 contrasts the most

important statements on proprietary and open-source software once again.

The differences between proprietary and open-source software result in the

respective software models having different strengths as well. The strengths of

proprietary software reside in:

1. Wellspring of Innovation

Owing to the granting of ownership rights, there are strong incentives in the

proprietary market to invest in research and development and to create

innovations.142 In the open-source model, on the other hand, all development

results are open to all other parties involved. If an innovation does not consist of

many small changes but of fundamental development trends, proprietary

software development will offer organizational structures that are better capable

of realizing market maturity.

2. User or Customer Orientation

The engineering of proprietary software is customer-oriented; this is

contrasted by a developer orientation in open-source software. Open-source

developers are often guided by technical and not customer-oriented

considerations (such as user friendliness and operability). While the market

mechanism ensures that proprietary software is developed according to the

wants of the customers, there is no incentive mechanism in open source to steer

the interests of the developers towards the wants of the customers.

3. User Friendliness: High Degree of Usability and Ease of Use

In standard applications for the mass market, proprietary software

development has to be guided by the widest-possible customer base. In order

for the products to cover a large portion of the market, they should be accessible

to less advanced users as well. This means that comprehensive software

documentation should be provided – a characteristic that is often lacking in

open-source software. The quality of a proprietary product and hence the

success of a company are decided by the sales figures and consequently by

customer satisfaction.143

142 Cf. SMITH (2002), p. 77.

143 On user friendliness, see HORST (2003), p. 36.

University of Muenster 76
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

4. High Level of Standardization, Compatibility and Updates

Proprietary software suppliers have a vested interest in their products being

highly standardized. For that reason, compatibility is realized in different

hardware environments. Hardware and software producers can safely assume

that their products will always work the same way with defined platforms. This

also extends to the availability of drivers and their easy installation as well as

regular software updates and their adaptation to new hardware configurations.

5. No Fragmentation

Because proprietary software suppliers own all the rights of disposal in the

source code of the software they develop, they can also prevent the software

from becoming fragmented and incompatible versions from emerging. There are

also incentives for them to maintain compatibility with as many of the previously

installed versions as possible and thus to protect and increase the network

effects for users.

6. Variety of Application Software

There is an almost infinite number of applications available for proprietary

software platforms. It is ensured that these applications always function equally

well in different hardware configuration on the specified platforms.

The strengths of open-source software are based on the following points:

7. Customizability for Technically Inclined Users

Open-source software provides unlimited software customizability because its

code is open source. However, the only users who benefit from this advantage

are those who can draw on adequate know-how in order to customize it.

Software customizability is hardly an issue for the mass market as the users do

not have the necessary technical know-how.

8. Fast Spread of Knowledge

Because of the absence of ownership rights and the free accessibility of the

source code, knowledge can spread fully and more easily in the open-source

model. Knowledge produced in the open-source model is immediately available

to all other developers. It must be noted, however, that the absence of

ownership rights also leads to a lower production of knowledge.

University of Muenster 77
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

9. Signaling

Open-source software discloses the development contribution made by each

programmer. Because of that, open-source programming is better qualified to

publicly signal a developer’s skills. However, various proprietary software

products also name the developers involved.

The differing strengths of the two software models are reflected in their respective

product offerings. Because of these strengths, there are certain product groups in

which each software model is at an advantage. Below is a closer examination of the

importance of the standardization and developer orientation attributes for the

software offering and a graphic depiction in Illustration 16.

Illustration 16: Application Fields of Different Software Types

supplier-user-congruency

S
ta

n
d

a
rd

iz
a
ti

o
n

high low

high

low

OSS Coordination failure

Coordination
problems

OSS

The higher the level of standardization and the greater the compatibility

requirements for software, the more likely will coordination problems occur in the

open-source model. For a standard to become established and provide

compatibility, it requires the kind of coordinated action that is more likely to be

achieved within the structures and incentives of the proprietary model.

As regards developer orientation, developers and users can be one and the

same people or they may belong to different groups. If users are also developers,

user interests are automatically developer interests. If users are not developers,

the developers’ being guided by their interests will not necessarily lead to a product

that also corresponds to the users’ interests. As a result, there are mounting

University of Muenster 78
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

coordination problems in software engineering with respect to the coordination of

user interests and product supply. In the proprietary model, the market mechanism

provides for the coordination of interests. The wider the gap between users and

developer groups, the more serious is the coordination failure in the field of open-

source software.

Open-source software is therefore able to produce an adequate product supply for

individual areas (little need for standardization, high supplier-user congruence). In

the past, it has proven to be successful particularly in areas in which the attributes

described above were of only minimal relevance. Open-source software has

advantages with respect to products for which users also have developer know-

how, for which standards and compatibility play a minor role and for which no

fundamental innovations are required. The open-source model is not, however,

qualified for the mass market. The proprietary model is clearly superior, especially

with regard to long-term sustainability. It is better able than the open-source model

to identify customer wants and to bring forth innovations.

Another limiting factor is the dependence of the open-source model on the

proprietary software market. The discussion of developer motives has shown that

one motive for participating consists of signaling incentives towards the proprietary

software market. The reputation gained in an open-source project provides utility

only if it can be exploited monetarily. Therefore, a commercial market has to exist

in which the developers are remunerated for their efforts. Companies have to

generate profits in this market that enable them to employ a large number of

developers. If open-source developers do not have an opportunity to use their

reputation in a proprietary market, they will lack a major incentive for contributing

to open-source projects. As a result, the willingness to participate in open-source

projects may decline as the proprietary market shrinks.

Even the existing commercial business models based on open-source software do

not justify the long-term success of open-source software or its possible fitness for

the mass market. As has been argued, the success of these business models hinges

on complementary products being marketed, while this strategy results in

economically inferior solutions overall in all the areas examined in this paper. The

incentives for investing in the actual development of open source are also limited in

commercial business models.

From a regulatory point of view, the open-source development model is therefore

not a suitable substitute for the proprietary model. For the bulk of the software

University of Muenster 79
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

market, the proprietary model is better qualified to bring forth needed products.

There still are numerous initiatives promoting the use of open-source software. The

sections below examine whether such a promotion makes sound economic sense.

2.4.2 Motives for Promoting Open-Source Software

Lately, more and more governments have begun promoting the use of open-

source software.144 Because the government itself is a big demander of software,

open-source software can be promoted by deliberately making procurement

decisions in favor of open-source software. Even if a neutral cost comparison (TCO,

total cost of ownership) comes to the conclusion that, including all relevant costs,

the use of proprietary software is overall cheaper, a decision is nevertheless made

in favor of open-source software.

For example, the decision of the city of Munich in favor of Linux is not based on

economic reasons but rather on “qualitative-strategic” ones. The study conducted

by the consulting firm Unilog arrives at the recommendation that “updating the

Microsoft products currently in use to the current XP versions constitutes the

technically easiest and economically soundest alternative for LHM”.145 The monetary

advantages of the Windows XP alternative outweigh the next-expensive equipment

alternative by approx. 2.46 million euros in principal value and by approx. 1.76

million euros in total value. The cost advantage of Windows XP as opposed to a

pure Linux solution amounts to approx. 11.9 million euros in principal value and

approx. 11.6 million euros in total value.146 From a business point of view, the

proprietary solution is clearly superior. From a “qualitative-strategic” point of view,

however, the open-source solution is considered more advantageous. It is expected

to ensure a higher level of basic security and to reduce manufacturer dependence,

as the software products “are not developed by one manufacturer but by an

independent group comprising many developers”.

Similarly, the German “Bundestux” initiative, which lobbied for the use of Linux in

the run-up to a decision for new IT infrastructure for the German Parliament, did

not view cost considerations as a key criterion in the procurement decision. The

initiative called the “introduction of a free operating system in German Parliament”

144 There are currently over 60 government initiatives, studies and statements in 25 countries aiming to

step up the use of open source. Concerning this, see http://www.softwarechoice.org.
HAHN (2002) also offers an overview of the different governmental activities.

145 Cf. UNILOG INTEGRATA (2003), p. 29.

146 Ibid, p. 19.

University of Muenster 80
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

a “necessary signal for Germany for regulatory, competition and location-policy

reasons”.147

The feasibility study conducted by the consulting firm INFORA ultimately

recommends using Linux in Parliament only in the field of e-mail servers and as a

groupware solution. According to INFORA, one would be better served with

Windows with respect to all other server services and desktop applications because

open-source software still offers insufficient functionality for end users. Parliament

ignored this recommendation and decided to deploy Linux on the file and print

servers, too, and to have the directory service based on Linux, even though this

solution costs some 80,000 euros more than the approach favored by Infora. The

reasoning behind this decision is that in future procurements, there would no longer

be a restriction to Microsoft-compatible products and that therefore this additional

cost would pay off quickly – “moving into a strategically advantageous position with

just a little more money”.148

The following sections examine the extent to which the promotion of open-source

software can be the state’s mandate. In this examination, a distinction is drawn

between regulatory, competition and location-policy reasons.

2.4.3 Promotion of Open-Source Software

2.4.3.1 Not a Regulatory Mandate

Regulatory policy is understood to include all regulations and acts that allow the

economy to be organized in accordance with market and competition principles. In

this context, it is essential to defend competition and to give individual economic

participants the freedom they require for their economic activities. This requires

drawing a reasonable line between the activities of the state and those of the

private economy.

In a market economy, the state’s function is to establish a general framework.

Furthermore, the state only intervenes in the market process with regulations or its

own economic activity if the efficiency of the markets is not guaranteed.

Competition policy is part of regulatory policy. The regulatory analysis in this

section focuses on whether there are special functional deficits in the software

market that might justify state intervention. The section thereafter discusses

147 Cf. www.bundestux.de

University of Muenster 81
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

competitive reasons for state intervention. It examines whether the positions in the

software market necessitate intervention and whether the promotion of open

source would be an appropriate way of intervening.

From an economic point of view, two criteria must be satisfied in order to justify

state intervention in a certain market:

• A market failure exists in a market.

• The state can provide an efficient and inexpensive solution to this failure and the

benefit generated by the elimination of this failure is greater than the accruing

costs.

Ad 1: It must first be examined whether there is a market failure in the software

market. Theoretically, a market failure could exist in the form of nonexcludability

and network effects.

As the public goods theory has shown, there must be excludability for a market to

even develop. Nonexcludability would be a consequence of insufficiently defined

or not adequately enforceable ownership rights. If nonexcludability is present, the

state can try to establish ownership rights or – if that is not possible – itself act as a

producer or procurement agent. As the history of the software market has shown,

the proprietary market evolved as a direct result of copyrights being established in

order to exclude (or at least make legally excludable) users that were unwilling to

pay. However, since the main criterion of open-source software is just this free

availability, such an intervention is incompatible with the concept of open source.

There is a difference between “strong” network effects and “weak” network

effects.149 Strong network effects prevail over users’ decisions. Even if a software

product is superior, users will opt for the software that they expect will be the

choice of all other users as well. Theoretically, a decision may come about that is in

favor of an inferior technology, assuming that enough users expect a majority to

opt for this new technology.

However, there are also mechanisms indicating that users will opt for the superior

technology in spite of dominant network effects. It can therefore be assumed that

users were primarily guided by the quality of the product at the time the network

was formed. Subsequent users then jumped on the bandwagon. It is also possible

148 Cf. NO AUTHOR (2002). See: http://www.heise.de/newsticker/data/odi-27.02.02-000/

University of Muenster 82
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

that users’ decisions are indirectly synchronized through reading test reports and

sharing experiences.

A market with strong network effects will produce a dominant network overall. If

users have opted for the correct network, then this result would be economically

efficient. If a better technology appears after a network has developed, it will make

sense to switch to the better technology only if the costs associated with the move,

i.e., the special investments in the switch and continuing education, are taken into

account as well. Only if the utility derived from the new network is greater than the

utility from the old technology, including the cost of switching, will it pay to switch

networks.

If it is assumed that a new network would make economic sense because the

current technology is inferior, the superiority of the new technology would have to

be known before the technology could even establish itself in the market. Proving

this fact is difficult, however, because neither state nor private institutions can

decide beforehand which solution is the technologically superior one.150 It is

especially doubtful that government authorities would be able to make the correct

technological decision for others.151

Even an objective assessment in favor of a new technology, regardless of how it

came about, must factor in the investments made by every user in the form of

training and the know-how need to use that technology. A switch makes economic

sense only if the utility to be derived from the technology is so great that it exceeds

the utility from the old technology plus the specific investments made.

If the state intervenes in a market with strong network effects, it may make a

preliminary decision in favor of a technology and cause a major part of the market

to lean towards that software. Therefore, an intervention in the market reduces the

incentives for proprietary companies to invest in the development of software. On

top of that, compatibility between proprietary and open-source software is

restricted if open-source software is licensed under GPL. In that case, the open-

source network would be created in parallel with a proprietary network. The

promotion of open-source software in a market with strong network effects would

149 Cf. SCHMIDT AND SCHNITZER (2002), pp. 15-19.

150 Or, as stated more metaphorically in the original source, “the state and private institutions are both
wanderers trying to find their way in the fog of future development”. GRÖHN (1999), p. 54.

151 “…governments do not have good track records at picking technology winners and losers“
EVANS AND REDDY (2002), p. 71.

University of Muenster 83
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

then establish a second network in a market in which a singular network would be

economically superior.152

If there are weak network effects, competition may even decline because of the

state’s intervention. In this scenario, two parallel networks can develop, and there

will be consumers that, despite the network effects, opt for one or the other

platform. At the same time, there is a third group of consumers who do not have a

preferred platform, and for whom there is therefore competition between the

platforms.

If, in this environment, the state prefers open-source software, it influences just

those users who do not have any basic preferences for or against a technology. This

reduces the market size of the consumers for whom there is competition. As a

consequence, the prices of proprietary software increase and investment incentives

in the proprietary market are lessened.153

Ad 2: If the analysis uncovers any indications of an existing market failure, it does

not automatically warrant an intervention by the state, as this does not prove that

the state is actually in a position to bring about improved, let alone optimal

allocation. There are several reasons why government action is not warranted. One

can safely assume that the state’s decision-makers do not have the right

information (household preferences, cost structures of companies, development

potential of new technologies) in order to improve allocation. On top of that,

government countermeasures often change the incentive structure for the private

sector. It is hard to determine whether these incentives can be influenced so as to

improve allocation. Correcting the market failure often implies that market

allocation decisions are supplanted by government decision-making processes.

Experience has shown, however, that in many cases the state’s decision-makers

are guided not only by overall economic efficiency but – because of incentive

structures within the bureaucracy – by their own interests as well.154

As such, there is no evidence that because of a market failure, an intervention in

favor of open source would be possible. Instead, state intervention might lead to

reduced competition, to diminishing network effects or to a leaning of the market

towards a technology that is not necessarily superior.

152 Cf. SCHMIDT AND SCHNITZER (2002), pp. 26-27.

153 Cf. SCHMIDT AND SCHNITZER (2002), pp. 27-28.

154 Cf. FRITSCH, WEIN AND EWERS (2003), pp. 83 et seq.

University of Muenster 84
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

2.4.3.2 Not a Competition Policy Mandate

The promotion of open-source software is sometimes also considered a

competition-policy measure. The discussion in this case revolves primarily around

the market position of Microsoft. Promoting a second operating-system platform, it

is argued, will curtail the market position of the Windows platform and reduce

dependence on one supplier. The following discussion first examines briefly how to

evaluate the competitive situation in the software market. This is followed by an

examination of whether the promotion of open source constitutes an adequate

competition-policy measure.

In evaluating competition in the software market, it is first necessary to define the

market. In this case, promoting open source targets the market position of

Windows in the desktop operating-systems market and the market position of the

Office suite in the application-software market. The competitive situations in the

desktop and application market are certainly very different. The difference is even

more marked in the server market, where different products compete with each

other. Promoting the use of open-source software would therefore not impact solely

a certain position in a market segment but would have far-reaching consequences

for other, highly competitive markets.155

As the discussion of the characteristics of software has shown, competition in the

software market is subject to its own unique characteristics. On the one hand, they

promote the formation of a certain market position; on the other, they limit the

opportunities for fully utilizing any pricing leverage.156 As previously stated, the

software market is often characterized more by competition for the market than by

competition in the market.

Nor is the size of the entry barriers to the software market entirely certain.

Because development costs may represent sunk costs for an established supplier,

this supplier might set his or her market price so as to prevent competitors from

entering the market. In addition, the described network effects will tend to shore up

the market position of an established supplier, particularly if switching costs are

high. There are, however, several factors that limit switching costs. For example, in

a market characterized by a steady inflow of new customers, market entry could

also consist of competition for these new customers, who would not incur any costs

155 Cf. on competitive aspects also EVANS (2002), pp. 44 et seq.

156 Cf. on considerations regarding competition SCHMIDT UND SCHNITZER (2002), p. 7.

University of Muenster 85
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

for switching. “Network bridges” may also be built in order to make different

platforms compatible.157 There are also incentives for an established supplier to

continue developing his or her products, since, software being a product that does

not suffer from wear-and-tear, once the market has been saturated, profits can be

only generated if new products trigger repeat purchases.158

So far, these points indicate only that an assessment of the competitive situation

must be very multifaceted und must not be based solely on the market share in a

given segment. If a situation requiring intervention is identified, one must next

determine whether the promotion of open-source software is an adequate tool for

intervention.

If a supplier holds a powerful position in the market, there are any number of

measures and institutions provided for in German and European antitrust laws that

can intervene. If the competitive situation is examined and a violation of

competition law is identified, there are any number of different measures of varying

degrees of severity. However, none of the measures call for the state to specifically

promote a competitor or an alternate technology. Nor do German and European

anti-trust laws provide for pro-active interventions in favor of one side of the

market; rather, these anti-trust measures are designed to stop anti-competitive

behavior and to reestablish the requisite latitude for all market forces. It is then up

to the market to make the final decision whether a given supplier can establish

itself or not. Promoting a given supplier or technology in a competition-policy

measure simply ignores the fact that the government does not even have the data

needed to make an informed decision. Competition rules can only be protected if

they abide by clear, transparent guidelines that focus on the rules and not the

market result. Nonetheless, intervention in favor of given technologies – motivated

mainly by the government’s lack of information – is doomed to encourage private

participants to use the state for their own particularist interests under the false

guise of competition policy.

Nor do the most recent discussions concerning competition policies and their

impact on Windows, focus in the main on how to establish a second platform.

(Indeed, the network effects may make it economically efficient to have just one

platform.) Rather, the competition issues deal with giving other providers access to

157 For example, the offer of the Microsoft Office package makes a move between the Windows and Apple

operating system easier for the Apple platform, as files have to be usable on both systems.

158 Cf. GRÖHN (1999), p. 140.

University of Muenster 86
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

the platform, expanding platform functionality, and integrating and tightly bundling

individual applications to this platform. Even where these issues do indeed reveal

anti-competitive behavior, they do not constitute adequate justification for

replacing one platform with another.

It is often argued that promoting an alternate platform would reduce dependence

on one supplier and combat the emergence of a “monoculture”.159 In principle,

demanders will look favorably on any situation where they are not dependent on

any one supplier. However, one should also consider that promoting different

platform suppliers in the software market means that the positive network effects

will be weakened. Thus one must weigh the advantages of being less dependent on

one supplier against the disadvantages of using different platforms.

Nor is it clear whether opting for open-source software actually reduces

dependencies. It might merely shift them. For example, if the demander has opted

for a certain software product, he or she will again be dependent on the new

software supplier. Because the same network effects apply to open-source software

as to proprietary software, open-source software may also create monopoly

situations with lock-in effects.

And although open-source users are not dependent on a given producer, they are

still somewhat dependent on their particular distribution. The more specific the

supplier’s installation knowledge is, the greater the switching costs will be for the

user. That means that all network effects and switching costs prevalent in

proprietary software would also be present in open-source software. It thereby

becomes impossible to reduce these fundamental dependencies. Furthermore, the

examination of commercial open-source software models has shown that

commercial suppliers use open source to finance the investments made in open

source with profits from complementary products and services. If a commercial

supplier succeeds in closely linking his or her open-source offering with this

complementary product – and that is necessary if open source is to lead to

commercial success –, then the dependencies will move away from the open-source

product to the complementary product.

159 Cf. ZYPRIES (2001).

University of Muenster 87
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

2.4.3.3 Not a Location-Policy Mandate - Open Source and SMEs in the

Software Market

The promotion of open-source software is occasionally also considered a

competition-policy measure. The state’s decision to demand a certain technology is

calculated to generate a critical mass of demand so as to support the domestic

suppliers of that technology. Such a decision is informed by the belief that, without

this demand decision, a sector cannot develop at all or not as well and that the

state can encourage the market development as an initial demander. In addition,

the state expects more favorable effects for the national economy from promoting a

technology developed, installed and serviced by local companies than from a

technology that is developed entirely in a different country. This section therefore

examines to which extent the state is a suitable agent for boosting the national

economy by promoting open-source software.

Redirecting production flows into the domestic economy is an age-old commercial

strategy. It basically contradicts the principle of global division of labor and ignores

the current production structure in the software market. Just as division of labor

and specialization within a national economy increase the general level of economic

prosperity, so does international division of labor increase prosperity. Germany, as

one of the world’s biggest exporters, benefits considerably from this division of

labor. Because the software market is horizontally structured, large portions of the

value chain are covered by domestic companies even when software is imported.

For example, 76,000 Microsoft-related jobs have been created at Microsoft’s

Certified Partners alone.160

As the analysis in section 2.3 has shown, the open-source model is, at its core,

based on a deliberately nonmarket coordination mechanism. This mechanism is

inferior in many respects, not only with respect to how well it performs market

functions. If software engineering takes place outside the market, then no

economically relevant transactions occur in this link in the value chain. If the

software is (or has to be) available free of charge, its development – unlike in the

proprietary software market – does not generate profit, income, jobs or taxes.

If the open-source community chooses not to price the software it produces,

developers cannot be paid from the profits generated with the finished products.

Complementary strategies (generating profits not with the software but with

University of Muenster 88
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

additional services or products) are not economically capable of balancing out the

loss of value-added caused by the eradication of software-development profits (see

also section 2.3, especially item 2.3.5.3). Though developers do make a

contribution in the open-source model, this contribution is not rewarded by an

economically relevant transaction. If proprietary software is replaced with open-

source products, the jobs associated with this proprietary software are lost as well.

Software developers, who as employees of domestic software companies are part of

the economic value chain, are consequently squeezed out of the market.

In the open-source model, software development will entail economically relevant

transactions only if developers are paid directly for programming as services

rendered (engineering of custom software). This, however, is no different from the

proprietary software market and can therefore not claim the advantages (open-

source spirit) expected from the open-source model. As such, the development of

open-source software does not, at its core, only take place outside the proprietary

market of goods; it also takes place outside the labor market and consequently has

no positive effects, and net negative effects.

According to the statistics on services, software development accounts for sales of

19.4 billion euros, 8,806 companies and 131,356 jobs in Germany. 99.6% of these

companies are SMEs in the IT sector. The loss of a part of the value chain and of

the associated jobs and opportunities to generate profit therefore hits SMEs in the

IT sector particularly hard because, far from offering SMEs any new business

opportunities, open-source software only offers some opportunities that are already

present in the proprietary software market. The resultant effect on the national

economy is not additive but substitutive.

If, when programming packaged software, a medium-sized software supplier is

faced with the choice of developing for the open-source model or for the proprietary

market, then the proprietary model offers an opportunity to recover the

investments made in development by selling the designed programs. In the open-

source model, however, the supplier can generate profit only by selling services in

connection with the program. The more the open-source model spreads, the

smaller the market becomes in which software can be exploited commercially. Thus

in terms of location policies, supporting open source is not only an unsuitable

means of promoting SMEs in the IT sector; it is inherently harmful, as open-source

160 Cf. KOOTHS, LANGENFURTH AND KALWEY (2003). On the importance of the proprietary IT sector in various

countries, see SMITH (2002), p. 79.

University of Muenster 89
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

software robs the software market of the economic basis it needs to realize profits

and create jobs. The German IT market is efficient and, with a share of two percent

in the entire value chain, its importance to the national economy should not be

underestimated. Open-source software gradually undermines this market.

University of Muenster 90
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

Bibliography

BACKHAUS, K. (1999): Happy Engineering, in: managermagazin, issue 8, 1999, pp.

130-133.

BALZERT, H. (1996): Lehrbuch der Software-Technik: Software-Entwicklung,

Heidelberg.

BERLECON RESEARCH (2002a): Free/Libre Open Source Software: Survey and Study,

Use of Open Source-Software in Firms and Public Institutions

Evidence from Germany, Sweden and UK, FLOSS Final Report - Part

1, Berlin, July 2002.

BERLECON RESEARCH (2002b): Free/Libre Open Source Software: Survey and Study,

Firms’ Open Source Activities: Motivations and Policy Implications,

FLOSS Final Report - Part 2, Berlin, July 2002.

BERLECON RESEARCH (2002C): Free/Libre Open Source Software: Survey and Study,

Basics of Open Source Software Markets and Business Models, FLOSS

Final Report – Part 3, Berlin, July 2002.

BERLIOS (2003): http://openfacts.berlios.de/index.phtml?title=Open-Source-

Lizenzen (October 27, 2003)

BITKOM (2003A): SoftwareTag 2003 Berlin-Brandenburg, Rahmenbedingungen für

einen erfolgreichen IT-Mittelstand, Thomas Mosch.

BITKOM (2003B): ITK-Branche geht offensiv in die nächsten Jahre, BITKOM Press

Release dated September 23, 2003.

BLANKART, C. B. UND KNIEPS, G. (1992): Netzökonomik, in: Jahrbuch für Neue

Politische Ökonomie, vol. 11, pp. 72-87, Tübingen.

BORCHERT, M. UND GROSSEKETTLER, H. (1985): Preis- und Wettbewerbstheorie –

Marktprozesse als analytisches Problem und ordnungspolitische

Gestaltungsaufgabe, Stuttgart u.a.O.

BOSTON CONSULTING GROUP (2002): Hacker Survey, Release 0.3, Lakhani, K. R., Wolf,

B. and Bates, J., LinuxWorld Presentation, January 31, 2002.

BURR, W. (1995): Netzwettbewerb in der Telekommunikation: Chancen und Risiken

aus Sicht der ökonomischen Theorie, Wiesbaden.

University of Muenster 91
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

COLECCHIA, A. AND P. SCHREYER (2001): ICT Investment and Economic Growth in the

1990s: Is the United States a Unique Case? A Comparative Study of

Nine OECD Countries, STI Working Paper 2001/7, OECD, Paris.

EITO (2003): European Information Technology Observatory 2003, 11th ed.

EVANS, D. AND REDDY, B. (2002): Government Preferences for Promoting Open

Source Software: A Solution in Search of a Problem, National

Economic Research Associates, Cambridge, Mass., April 2002.

EVANS, R. (2002): Politics and Programming: Government Preferences for Promoting

Opne Source Software, in: Government Policy towards Open Source

Software, Editor: Hahn, R. W., pp. 34-49.

FEHR, E. AND SCHMIDT, K. M. (2001): Theories of fairness and reciprocity : evidence

and economic applications, Münchener wirtschaftswissenschaftliche

Beiträge.

FRANCK, E., JUNGWIRTH, C. (2002): Das Open-Source-Phänomen jenseits des Gift-

Society-Mythos, in: Wirtschaftswissenschaftliches Studium : Wist,

Vol. 31, 2002, Issue 3, pp. 124-129.

FRITSCH, M., WEIN, T., EWERS, H.-J. (2003): Marktversagen und Wirtschaftspolitik,

5th ed., revised and supplemented.

GERMAN FEDERAL STATISTICAL OFFICE (1999): Classification of Branches of Economic

Activity with Explanations, 1999 Edition (WZ93) (German edition).

GERMAN FEDERAL STATISTICAL OFFICE (2001): Sales-Tax Statistics, Technical Series 14,

Series 8 (German edition).

GERMAN FEDERAL STATISTICAL OFFICE (2002A): Services in Germany, Results of New

Statistics – Year 2000, Wiesbaden (German edition).

GERMAN FEDERAL STATISTICAL OFFICE (2002B): National Accounts, Input/Output Tables,

1991 to 2000, published July 2002, Wiesbaden (German edition).

GRASSMUCK, V. (2002): Freie Software zwischen Privat- und Gemeineigentum;

Bundeszentrale für Politische Bildung, Bonn.

GRÖHN, A. (1999): Netzwerkeffekte und Wettbewerbspolitik - eine ökonomische

Analyse des Softwaremarktes, Tübingen.

University of Muenster 92
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

GROSSEKETTLER, H. (1991): Die Versorgung mit Kollektivgütern als

ordnungspolitisches Problem, in: Ordo, Jahrbuch für die Ordnung von

Wirtschaft und Gesellschaft, Vol. 42, pp. 69-89, Stuttgart.

GROSSEKETTLER, H. (1995): Öffentliche Finanzen, in: D. Bender u.a. (Hrsg.), Vahlens

Kompendium der Wirtschaftstheorie und Wirtschaftspolitik, Vol. 1, 6th

ed., pp. 483-627, Munich.

HABER, G. AND GETZNER, M. (2003): Gesamtwirtschaftliche Effekte des

Softwaresektors in Österreich 2003, Forschungsbericht, Version 2.31,

September 5, 2003, Klagenfurt University.

HANG, J. AND HOHENSOHN, H. (2003): Eine Einführung zum Open Source Konzept aus

Sicht der wirtschaftlichen und rechtlichen Aspekte, eine Studie im

Rahmen des Projektes NOW: Nutzung des Open Source Konzeptes in

Wirtschaft und Industrie, Siemens Business Services GmbH & Co,

OHG, C-Lab, Paderborn.

HOCH, D. J. ET AL. (1999): Secrets of Software Success: Management Insights from

100 Software Firms around the World. Boston, Massachusetts, 1999.

HORST, E. (2003): Unser Bürgermeister soll schöner werden, Die Stadt München will

zum Betriebssystem Linux wechseln, in: Frankfurter Allgemeine

Zeitung, August 2, 2003, p. 36.

IANSITI, M. UND LERNER, J. (2002): Evidence Regarding Microsoft and Innovation, AEI-

Brookings Joint Center for Regulatory Studies, Related Publication 02-

4, Washington, D.C.

INSTITUTE FOR SMALL AND MEDIUM-SIZED ENTERPRISES (2002A): Mittelstand in der

Gesamtwirtschaft – Anstelle einer Definition, Brigitte Günterberg und

Hans-Jürgen Wolter, Institut für Mittelstandsforschung, Bonn.

INSTITUTE FOR SMALL AND MEDIUM-SIZED ENTERPRISES (2002B):

Unternehmensgrößenstruktur in Deutschland nach

Wirtschaftsbereichen und Rechtsformen, Brigitte Günterberg und

Hans-Jürgen Wolter, Institut für Mittelstandsforschung, Bonn.

JANKO, W. H., BERNROIDER, E. W. N. UND EBNER, W. (2000): Softwarestudie 2000, Eine

empirische Untersuchung der österreichischen Softwarebranche.

JOHNSON, J. P. (2001): Economics of Open Source Software.

University of Muenster 93
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

KATZ, M. L. UND SHAPIRO, C. (1994): Systems competition and network effects, in:

The journal of economic perspectives. Year 8, issue 2, pp. 93-115.

KLODT, H., LAASER, C.-F., LORZ, J. O., MAURER, R. (1995): Wettbewerb und

Regulierung in der Telekommunikation, Kieler Studien 272, Tübingen.

KOOTHS, S., LANGENFURTH, M., KALWEY, N. (2003): Die Bedeutung der Microsoft

Deutschland GmbH für den deutschen IT-Sektor (Economic Impact

Study), MICE Economic Research Studies, Vol. 3.

KUHN, A. (2003): Die methodische Behandlung von Software in der

Außenhandelsstatistik, in: Wirtschaft und Statistik, Issue 2/2003, pp.

121-125.

LEE, S., MOISA, N. AND WEISS, M. (2003): Open source as a signalling device : an

economic analysis, Johann-Wolfgang-Goethe-Univ., Fachbereich

Wirtschaftswiss., Working paper series.

LEHRER, M. (2000): From factor of production to autonomous industry: the

transformation of Germany's software sector, in: Vierteljahrshefte zur

Wirtschaftsforschung. Berlin : Duncker & Humboldt, vol. 69 (2000),

4, pp. 587-600.

LERNER, J. UND TIROLE, J. (2000): The simple economics of open source, NBER

working paper series, no. 7600.

LERNER, J. und Tirole, J. (2002): The scope of open source licencing, NBER Working

Paper Series, no. 9362.

LESSIG, L. (2002): Open Source Baselines: Compared to What? In: Government

Policy towards Open Source Software, Editor: Hahn, R. W., pp. 50-

68.

LÜNENDONK (2003): Lünendonk-Liste I 2003: Die Top 25 Standard-Software-

Unternehmen in Deutschland, Lünendonk GmbH, Bad Wörishofen.

MENDYS-KAMPHORST, E. (2002): Open vs. closed : some consequences of the open

source movement for software markets, CPB discussion paper.

MENDYS-KAMPHORST, E. (2002): Open vs. closed: some consequences of the open

source movement for software markets, CPB discussion paper.

MICROSOFT (2003): Creating a Vibrant Information Technology Sector: Growth,

Opportunity and Partnership, White Paper, updated May 2003.

University of Muenster 94
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

MORNER, M. (2003): Open Source Software, in: Das Wirtschaftsstudium: wisu, Vol.

32 (2003), Issue. 3, pp. 318-321.

MUSTONEN, M. (2002): Why do firms support the development of subsitute copyleft

programs? FPPE, Universität Helsinki.

NO AUTHOR (2002): See: http://www.heise.de/newsticker/data/odi-27.02.02-000/

NO AUTHOR (2003): Microsoft at the power point, in: The Economist, N. 8341 (Sep.

13th – 19th 2003), p. 61.

OECD (2002): Information Technology Outlook, ICTs and the Information Economy.

OSTERLOH, M. KUSTER, B. UND ROTA, S. (2002): Die kommerzielle Nutzung von Open-

Source-Software: der Einfluss von sozialem Kapital, in: Zeitschrift

Führung + Organisation, 2002, Issue 4, pp. 211-217.

RAHMEN-ZUREK, K. (2002): Internet economics and the organization of open source

software-development In: Competition, environment and trade in the

globalized economy / Dieckheuer, Gustav (2002), pp. 101-132

RAYMOND, E. S. (1998A): The Cathedral and the Bazaar. Elektronische Ausgabe

unter: www.openresources.com/documents/cathedral-bazaar/.

RAYMOND, E. S. (1999): The Magic Cauldron

http://www.tuxedo.org/~esr/writings/magic-cauldron/.

RAYMOND, E.S. (1998B): Homesteading the Noosphere, Elektronische Ausgabe unter

www.firstmonday.dk/issues/issue3_10/raymond/.

RÖLLER, L.-H. (2002): Der Charme der freien Software, in: Frankfurter Allgemeine

Zeitung, September 18, 2002, No. 217, p. 15.

SCHIFF, A. (2002): The economics of open source software: A survey of the early

literature, The Review of Network Economics Vol. 1, Issue 1, pp. 66-

74.

SCHMIDT, K. UND SCHNITZER, M. (2003): Public subsidies for open source? : Some

economic policy issues of the software market, Centre for Economic

Policy Research, Discussion Paper Series.

SHAPIRO AND VARIAN (1999): Information rules: a strategic guide to the network

economy.

University of Muenster 95
MICE - Muenster Institute for Computational Economics
Open-Source Software: An Economic Assessment

MICE Economic Research Studies – Vol. 4

SMITH, A. (1776): Publication 2000: An inquiry into the nature and causes of the

wealth of nations, Introduction by R. Reich, Annotations and Index by

E. Cannan, New York, Modern Library, 2000.

SMITH, B. L. (2002): The Future of Software: Enabling the Marketplace to Decide, in:

Government Policy towards Open Source Software, Editor: Hahn, R.

W., pp. 69-86.

SPINDLER, G. (2003): Rechtsfragen der Open Source Software, im Auftrag des

Verbandes der Softwareindustrie Deutschlands e. V.

STALLMAN, R. (2001): Free Software: Freedom and Cooperation, copy of the speech

held at the University of New York on May 29, 2001

http://www.gnu.org/events/rms-nyu-2001-transcript.txt

UNILOG INTEGRATA (2003): Client Studie der Landeshauptstadt München, Kurzfassung

des Abschlussberichts, abgestimmte Fassung, July 2, 2003.

VANBERG (1997): Die normativen Grundlagen von Ordnungspolitik. In: ORDO, Vol.

48, pp. 707-726.

WEBER, S. (2000): The Political Economy of Open Source, BRIE Working Paper 140,

Economy Project Working Paper, Juni 15, 2000.

WEIZSÄCKER, C. C. VON AND KNIEPS, G. (1989): Telekommunikation, in: OBERENDER, P.

(Hrsg.) Marktökonomie: Marktstruktur und Wettbewerb in

ausgewählten Branchen der Bundesrepublik Deutschland, Munich.

ZYPRIES, B. (2001): „Linux-Tag: Abhängigkeit von Softwareherstellern verringern“

Article in the newspaper “Die Welt” dated July 6, 2001,

http://www.bmi.bund.de/top/dokumente/Rede/ix_47733.htm

(Oktober 27, 2003).

