

Lehrstuhl für Unternehmensführung und -politik

Universität Zürich

Working Paper Series

Working Paper No. 8

Reconciling investors and donators - The governance structure of open

source

Egon Franck, Carola Jungwirth

Juni 2002

Reconciling investors and donators -

The governance structure of open source

Egon Franck, Carola Jungwirth**

(Preliminary draft, comments are welcome.)

Abstract: Software developed and produced in open source projects has become an important

competitor in the software industry. Since it can be downloaded for free and no wages are

paid to developers, the open source endeavor seems to rest on voluntary contributions by

hobbyists. In the discussion of this puzzle two basic patterns of argumentation stand out. In

what we call investor approaches, emphasis is put on the fact that although no wages are paid

to contributors, other pay-offs may turn their effort into a profitable investment. In what we

call donator approaches the point is made that many people contribute to open source projects

without expecting to ever receive any individual rewards.

We argue that the basic institutional innovation in open source has been the crafting of a

governance structure, which enables investment without crowding out donations. The focus of

the presented analysis lies on the specific institutional mechanisms, by which the open source

governance structure achieves to reconcile the interests of investors and donators.

Keywords: Governance, production and organizations, software communities

JEL: D200, L86, L22

** University of Zurich, Chair of Strategic Management and Business Policy, Plattenstrasse 14,

CH-8032 Zurich, egon.franck@ifbf.unizh.ch, carola.jungwirth@ifbf.unizh.ch.

3

1. Introduction

Software developed and produced in open source projects has become an important

competitor in the software industry, widely thought of as the realm of genuine capitalistic

firms like Microsoft, SAP and so on. Let numbers speak.

According to market analysts the operating system Linux has between seven and twenty-one

million users in the whole world and is growing faster than any other competitor.1 As of

November 2001 the web server Apache counted for 61.88% of active servers across all

domains.2 Sendmail routes an estimated 75% of mails in the Internet. Its closest competitors,

Software.Com, Microsoft Exchange and Lotus Notes, hold just 3 percent of the market.3

Since in all these cases the software can be downloaded for free and no wages are paid to

developers, the whole open source-endeavor seems to rest on the voluntary contributions of

hobbyists. At the beginning of the open source euphoria Bill Gates wrote: „Who can afford to

do professional work for nothing? What hobbyist can put three man-years into programming,

finding all bugs, documenting his product, and distribute for free?”4 Meanwhile it has turned

out that the alleged hobbyists in some cases came up with software that is more elegant,

consistent and successful than its proprietary counterpart.

In the discussion of this puzzle two basic lines of argument clearly stand out. In what we call

investor approach, emphasis is put on the fact that although no wages are paid to contributors,

other pay-offs may turn the investment of labor into an open source project into a profitable

decision. Most prominent in this context is the argument by Lerner and Tirole (2001)

according to which contributions ultimately translate into individual reputation, which is

either comforting in itself or may be used as a talent signal on secondary markets, e.g. the job

market or the market for venture capital.

1 See http://www.idc.com, http://leb.net/hzo/ioscount. See for example also Dalle and Jullien (2001), p. 3.

2 http://www.netcraft.co.uk/Survey/

3 http://news.cnet.com/news/0-1003-200-327370.html?tag

4 Bill Gates 1976 in his “Open Letter to Hobbyists”; See Moody (2001), p. 2.

4

In what we call donator approach, authors stress that many people contribute to open source

projects without expecting to ever receive any individual rewards.5 Because it is not money -

as in commercial software production - and not peer recognition or a marketable talent signal

- as assumed in investor approaches - which motivate these contributors, it seems appropriate

to speak about idealistic motivations.

In many cases the interactions between “activists” of the “investor party” and the “donator

party” are highly ritualized and stereotypical. The latter find proof in open source that the

time has come to bury good old homo oeconomicus and economics altogether. “Aficionados”

of economics work hard to show that there is a consistent incentive structure in open source,

which secures contributions among rational actors. If this holds, idealistic motivations are

nice, but not necessary to grasp the phenomenon. Economics does not need to take care of

them.

Needless to say, both positions are unproductive. Donative behavior has a long history before

open source, which can be studied in charities and in the nonprofit sector. It has not rendered

economics useless, even if the sources of donative behavior are not well understood in

economics. If we accept as an empirical phenomenon that people donate due to idealistic

motivations, the question still matters which kind of organizations they choose for their

contributions. Economics would still be in the game if it were a question of rational choice to

allocate donations flowing from idealistic motivation among different recipients. The theory

of nonprofit organizations pioneered by Hansmann (1980) makes a strong point in support of

this view.

The position of an “aficionado” of the homo oeconomicus is unattractive as well. It not only

turns out to be a truly philosophical endeavor in which an ever-increasing body of empirical

evidence has to be ignored.6 But, “aficionados” overlook that there is still room for economics

in a world in which some actors are ready to contribute to certain activities even if expected

benefits do not exceed incurred costs.

5 See for example Rota, von Wartburg and Osterloh (2002).

6 See Frey and Osterloh (2000), Frey and Jegen (2001) as well as Fehr and Falk (2001).

5

Open source is an ideal application for this kind of “enhanced” economics. It is a well-

established empirical fact that both groups, investors and donators, are substantially involved

in successful open source projects.7 Given this fact, a basic institutional innovation of open

source projects must have been the crafting of a governance structure, which enables

investment without crowding out donations. The classical capitalistic firm that remains the

most frequent organization structure in software development, serves the investors well who

contribute work or money against future streams of income. Yet, its cornerstone, the

institution of residual claims, precludes that a credible commitment can be given not to turn

the donations of volunteers into private profits. It therefore drives out donators for reasons of

contract failure, as we know from the theory of nonprofits (Hansmann 1980).

The aim of our paper is to explain the basic elements in the governance structure of successful

open source software projects. In particular, we will try to lay open the specific institutional

mechanisms by which the open source governance structure achieves to reconcile the interests

of investors and donators.

The remainder of this paper is organized as follows: In section two we analyze how

coordination and motivation for investors is achieved in open source and in traditional

software development. Section three focuses on a governance structure suited to attract

donators. It turns out that the same institutional prerequisite, a specific licensing agreement

for software, ultimately enables the design of a rather complex incentive structure for

investors based on reputation, and at the same time serves as a device against contract failure

in attracting donators. Hence, this licensing agreement plays a key role in reconciling

investors and donators in open source. Section four gives a brief outlook on other factors,

which influence the success of open source projects.

7 Looking at the success of classical firms in the software industry, like Microsoft or SAP, one may ask why

there should be any need for an additional governance structure for investors. We will discuss this point in
paragraph 2.2.2. Lakhani and von Hippel (2000) as well as Hertel, Niedner and Herrmann (2002) have
made an empirical investigation of the worked out the motivation mix that leads to contributions in open
source systems.

6

2. Coordinating and motivating investors in open source and traditional software

development

Investors contribute to an open source project because the expected value of their future pay-

offs exceeds the incurred costs. Although traditional and open source software development

both attract investors in this sense, they employ different mechanisms to do so.

There are two levels on which the alternative approaches to software development can be

further described. First, there is a more technical level defining the work process and the

division of labor. Second, there is the level of analyzing the incentives, which are needed to

make sure that the actors perform according to the assigned tasks. At this level we have to

take into account that rational actors only play expected roles if they earn a net benefit from

doing so. In the terminology introduced by Milgrom and Roberts (1992, pp.25) the first level

is known as the coordination problem, whereas the second is called the motivation problem.

Now let us turn to the coordination problem first and abstract from the question of incentives

for a moment.

2.1 Coordination

Software like Linux, Apache or Sendmail is highly complex. Many different features work

together.8 Since different users have different preferences, they employ different

combinations of features. If the number of features that may or may not be used together is M,

there are 2M use-combinations. Since program features interact, the quality of software

strongly depends on the testing and debugging of every single combination of use. Obviously,

the number of combinations of use that need to be tested and debugged grows exponentially

with the number of independent features added to the program.

Consequently, commercial software providers limit the amount of features as much as

possible. The utilization of “structured code” and “object oriented” regimes facilitates the

detection of bugs by predefining interfaces. In spite of all these techniques aimed at handling

8 For this argumentation see Bessen (2001), pp. 1-5.

7

complexity, testing and debugging remain the main cost drivers in software development and

production, accounting for more than 80% of total cost9.

2.1.1 Two approaches to software development: Disclosure-feedback and secrecy-

incorporation

Putting it simple, there are two basic approaches in software development, which have

different consequences with regard to the testing and debugging of complex programs. There

is the disclosure-feedback approach used in open source projects and the secrecy-

incorporation approach used by traditional firms in the software industry.

The communication facilities provided by the internet and the fact that software is an

information good are basic enablers of the disclosure-feedback approach. This point will not

be discussed extensively here, but it seems likely that the coordination approach applied in

open source projects has not penetrated many other fields precisely because they lack the

equivalent of the infrastructure of the internet.

In the disclosure-feedback approach actors are expected to play as follows: As soon as an

innovator makes an improvement to the program, he discloses his work and invites peer

review by others. Users selecting their own use-application from the combination of features

automatically test the software, report encountered bugs and eventually write patches, try

them out and again disclose them. Patches are peer-reviewed and if accepted as improvement

become part of the next release of the software. Releases are frequent and debugging is done

for every incremental improvement of the software. Feedback would not be feasible if the

source code of the program were not distributed with the program. Users would not be able to

fix bugs without being able to work on the source code and modify it. Peers would not be able

to review improvements and proposed patches and infer their quality without looking at the

modifications at the source code level.

In the secrecy-incorporation approach used in traditional software development the process is

different: Software developers write source code. But this code will not be disclosed to the

9 See Ibid., p. 5 with reference to papers by Cusumano (1991) and Cusumano and Selby (1995).

8

users of the software. Instead, compiling it into binary object code, which cannot be easily

reverse-engineered, hides this source code. Ultimately, the object code is incorporated into

specific software products that are sold to customers. Without being able to access the source

code, customers have only limited possibilities to debug programs. They cannot do more than

report instances of malfunction back to the seller using “normal language”. More precisely,

they cannot inspect the source code, write patches, nor make improvements on their own. In

addition, they are not in the position to peer-review modifications of the source code proposed

by others. Strong feedback remains restricted to the narrower domain of software developers

within the firm.

2.1.2 Different effects of coordination: rapid debugging versus versioning

Remember that incentive issues are still not taken into account for the moment. If we could

take for granted the existence of institutional regimes perfectly supporting each of the

presented approaches, the disclosure-feedback alternative should be faster with regard to

testing and debugging complex software. The connection between intensive user involvement

and innovation has been analyzed by various authors10 and shall not be the main point of

interest here. Nevertheless, the arguments supporting faster debugging of complex software in

the disclosure-feedback approach are fairly obvious. The same people who work with the

software applying it to their specific tasks also test it, report bugs and eventually propose

solutions that they have already tried out. Communication breakdowns typically arising

between dispersed users and the developers in the secrecy-incorporation approach are less

likely to occur in this setting. Frequent releases, which come with the disclosure of every

innovation, encourage simultaneous engineering. Innovators get their work tested and

debugged at every step of the development process before bugs can infect larger program

partitions. Unlike the number of customers in the secrecy-incorporation approach, the number

of users in the disclosure-feedback regime is of direct relevance to debugging. With the

source code laid open and accessible to modifications and peer review, every user is a

potential bug fixer. Attracting users means increasing debugging capacity. Or, as Raymond

states less formally: ”Given enough eyeballs all bugs are shallow.”11

10 See von Hippel (2001) and Harhoff, Henkel and von Hippel (2000).

11 Raymond (2000a), p. 2.

9

Nevertheless, even if rapid debugging is an obvious effect of the coordination approach

termed disclosure-feedback, deferred debugging on the other hand is not a coordination

failure of the secrecy-incorporation approach. Consumers will not pay for an update until

substantial improvements are accumulated to a new release worth being called the next

version. In our further considerations we have to take into account that disclosure-feedback

and secrecy-incorporation define different work processes and different tasks that need to be

carried out. Obviously, the incentive structure supporting each of theses approaches must be

different too.

2.2 Motivation

As a point of departure, a closer look at the incentives supporting the secrecy-incorporation

approach turns out to be useful.

2.2.1 The motivation structure of the secrecy-incorporation approach: intellectual

property rights, residual claims, wages

The incentive structure supporting the secrecy-incorporation approach rests on the construct

of intellectual property rights regarding the program code. These are defined and enforced in

different ways.12 Firstly, there is the concept of trade secrecy. As outlined above, the source

code of software containing the innovation is hidden by compilation in the form of a binary

object code and incorporated into software products. Secondly, there are user licenses by

which consumers commit themselves not to redistribute the software product. Thirdly, there is

the institution of copyright, which prevents that commercial software may be duplicated.

Fourthly, there are patents by which it can be excluded that competing products contain

infringing ideas. Moreover, there are common law and economic law, which enable

companies to draw up employee confidentiality agreements and non-disclosure agreements.

Law courts and public agencies, e.g. maintaining patent databases, complete the institutional

12 See Bessen (2001), p. 3.

10

regime by which intellectual property rights are defined and enforced.13 Apart from these

legal devices Microsoft permanently improves technical aspects of its software distribution

system in order to exclude free riding by consumers simply copying the software. Before

working with the new Windows version XP users need a starter code which will be delivered

via internet if proof can be given that the software has been regularly bought.14

Intellectual property rights allow the owner of the source code (for example Bill Gates) to sell

software products to consumers and to solve motivation problems in software development by

applying the well-known governance structure of the classical capitalistic firm. Contributors

working in the development team get compensated for their efforts by contractually

prearranged wages. In order to prevent “shirking in teams” a monitoring structure is

established. Being the residual claimant entitled to the net earnings after paying for the other

inputs, the top monitor has incentives not to shirk his duties, and therefore serious monitoring

will be implemented from the top to the bottom. Monitoring includes observing input

behavior, apportioning rewards, giving assignments and instructions, terminating contracts

and so forth.15

To summarize, the relative strength of the Microsoft approach to software production lies in

the preclusion of consumers’ free riding and in preventing team members in the development

process from shirking. Investors in the sense described above fall into two categories. There

are the software developers supplying labor and programming skills. They can expect fair

wages as employees because specialized monitors motivated by residual claims prevent team

members to shirk at the expense of others. Profits are the compensation for this second type of

investors, the monitors.

13 Taken together, intellectual property rights grant innovators (at least temporary) monopoly power. This is

thought to be necessary because of the positive externalities associated with innovations. Without
intellectual property rights competitors would be able to imitate the new knowledge without incurring the
research and development costs of the innovator. Since the social value of creating knowledge exceeds its
private value, incentives to innovate are strengthened by granting innovators intellectual property rights
which allow them some form of exclusive exploitation of the knew knowledge.

14 For example see Ludsteck (2001).

15 See Alchian and Demsetz (1972).

11

2.2.2 Another game in open source: abandoning direct income but gaining reputation

Incentives aimed at supporting the disclosure-feedback approach need to make sure that

contributors can only derive utility from publication of their innovation. Recognition among

one’s peers is the “natural” utility achievable through publication. This kind of reputation can

be satisfactory in itself or be traded on secondary markets. Lerner and Tirole (2001) have

made reputation gains the central element in their explanation of the economics of open

source. Peer recognition may trigger immediate ego gratification or enhance the bargaining

position with respect to future job offers, access to venture capital, or shares in commercial

companies selling complementary services to open source programs (consulting, training,

packaging etc.). Reputation is a valuable asset in the labor and other secondary markets if it is

a valid signal for otherwise hidden characteristics of the supplier or his offer. We will return

to this issue later. Obviously, the problem of free riding by consumers simply vanishes in this

context. Every down-loader pays attention to the software and therefore contributes to the

reputation of its developer. In addition, he is a future potential contributor and perhaps

promoter of the software.

Yet, the problem of shirking among contributors does not vanish if programmers are seen as

reputation investors instead of workers compensated by wages. As with monetary incentives

in classical software production, reputation too must be awarded in relation to the magnitude

of the contribution/innovation made by the single actor.

However, how can an assessment system for contributions, which makes sure that nobody

earns reputation by shirking at the expense of others be installed in open source projects?

Without intellectual property rights over the source code, the option of a specialized

capitalistic monitor motivated by residual claims is not feasible. It follows that only peers who

are themselves contributors can do the assessment. In order for such a peer review to function

there are several prerequisites. Contributions must be openly accessible to peers, which is the

case when the source code of a program is laid open and distributed with the software.

Moreover, innovators must be able to mark their contributions in a way securing recognition

through several releases of the program. History, maintainer and credit files, which are

attached to programs, play an important role in this context.16

16 See Moon and Sproull (2000) and Raymond (2000b), pp. 7-8.

12

In addition to these rather technical things, peers must also have incentives to make fair

assessments of the contributions of others. This seems to be the crucial point in the whole

debate. A functional equivalent to residual claims is needed. We believe that this functional

equivalent is provided by the option to build reputation levers in a voting community.

In open source development innovators with a good reputation may embark on subprojects

involving the improvement of a certain application or partition of the software. If they are

able to attract good contributors, their reputation is boosted by the success of the subproject.

Project leaders are under permanent assessment of their contributors who are interested in

building their own reputation. If the assessments received by project leaders are not

convincing (e.g. the project leader promotes friends, suppresses good contributions), they vote

with their feet and subscribe to other subprojects. The project leader loses his reputation lever.

With the option to build reputation levers, innovators receive a functional equivalent to

residual claims, which makes sure that they are motivated to properly assess the contributions

of peers. In fact, open source communities often have a vertical structure with more than one

layer of project and subproject leaders.17 Innovators at the top level have the highest

reputation lever. They profit from the contributions of many programmers, which make up for

the success of the software, but they also have much to lose if their decisions do not convince

their “voters” anymore.18

Reputation gained in open source development may signal various abilities. The greater the

contributions of an actor acknowledged by his peers at the source code level are, the better he

has performed in a genuine programming tournament. Employers on the labor market can

take the gained peer reputation as an indicator for programming skills and human capital that

are not directly observable. The bigger the reputation lever that an actor was able to build in

attracting “voters” for his projects and activities is, the better he has performed in a leadership

tournament. Venture capitalists and owners of capitalistic firms can take the gained reputation

17 Take Linux for example: Linus Torvalds is the project owner standing at the top. He is followed by his

“Trusted Lieutenants” who are his link to credited maintainers. Maintainers care for one module of the
whole program assessing user contributions and keeping interfaces. See Dafermos (2001) or Moon and
Sproull (2000).

18 There is an equivalent to this “lever building” in science. Becoming the editor of a prestigious refereed
journal boosts one’s reputation. But, at the same time, if contributors do not perceive the editorial policy as
fair, they may vote with their feet. The same holds true for the building of research teams, where the most
talented young researchers can also select their “project leader” at several academic institutions. See for
example Franck and Jungwirth (2001).

13

as an indicator for management and leadership abilities which otherwise are genuine

experience goods. This means that it would take years of expensive “experiments” to find out

if someone is a good leader. As expected, open source communities make all the generated

reputation-relevant information readily available, so that it may be used for transactions on

secondary markets.19

The better the peer review works in an open source project, the more reliable are the produced

signals for outsiders. But, how can they know if the peer review works? In practice they infer

from the success of the produced open source software. A good “filter” is attractive for good

programmers and leaders who would lose most if they were rated as average, as it would be

the case without the filter. A project attracting good programmers and leaders is more likely

to be successful. Therefore, in a competitive environment, success of the open source

software is linked to good “filtering”.

Summarizing this section it can be said that the incentive structure suited to support the

coordination requirements of the disclosure-feedback approach is built on a reputation game.

The option to build reputation levers in a voting environment creates a functional equivalent

to residual claims. However, the described reputation game has a crucial prerequisite.

2.2.3 Copyleft: The constitutional prerequisite of the open source game

The major threat for the players of the reputation game described so far is the existence of a

third party able to cut down the stream of attention flowing to them as reward for their

contribution. This threat materializes if the developed code or parts of it are taken private

sometime in the future and get incorporated into commercial software products. Every attempt

to hide source code by claiming property rights on it means damaging the “citation

mechanism” by which skills and effort are accredited.

19 It is a system of files that makes reputation visible. The so-called history file refers to the inventors of a

program, maintainer files demonstrate respect for hard working contributors, credit files list people whose
contributions are new features of a program and so on. See Moon and Sproull (2000) and Raymond
(2000b), pp. 7-8.

14

Traditional contractual devices fail as a safeguard against such “pirating”. A team of

developers working on an open source project may draw up an agreement, according to which

they will never incorporate and hide the code in commercial products. But even if we abstract

from issues of enforcement, the disclosed source code is easy prey for outsiders who never

signed such agreement. And there will always be such outsiders, no matter how many

developers signed the afore-mentioned agreement.

Therefore, a constitutional device is needed which precludes every possibility to claim

property rights on any program written making use of the open source program or parts of it.

A basic institutional innovation in this context has been the so-called GNU General Public

License (GPL, known also as Copyleft).20 Those who wish to modify and distribute software

under the GPL have to agree to make the source code available. They cannot impose any

licensing restrictions on others. All derived work must also be distributed under Copyleft. The

GPL or similar licensing agreements “infect” the open source software with a “virus” that

makes sure that any software derived from open source software will remain open source

software. Therefore, running an open source project under the GPL or similar licensing

agreements sends a credible commitment to the investors in reputation that nobody will be

able to cut them off from the stream of attention generated by their contributions.

The poor success of firms, which disclosed the source code of their commercial software in an

attempt to tap improvements by direct user involvement, is unsurprising in this context.

Innovators driven by the reputation incentive have no reason to invest in a program controlled

by owners. By definition owners have the ability to take the program private whenever they

wish to do so, and thus destroy the “citation mechanism” that ultimately feeds on the

signaling capacity of contributors or just boosts their ego.21

20 http://www.gnu.org/copyleft/gpl.html

21 The most prominent example here is the dull success of the Mozilla-project. In 1994 Netscape successfully
lanced the Internet browser Navigator as a commercial closed source software project but rapidly lost
market share when Microsoft bundled different programs to the “MS Office” package. Now the Internet
browser Explorer was delivered automatically. To defend its position Netscape decided to open the source
code of the Navigator, making a free software project out of it. However, Netscape failed to offer license
conditions contributors were willing to accept. See Dalle and Jullien (2001), p.7. and Hecker (1999). See
also http://www.mozilla.org/mozilla-at-one.html.

15

3. A governance structure for donators

The signaling explanation does not answer the entire puzzle of open source. If outsiders infer

“filtering quality” and the validity of signals from the success of the open source software in

the market place, then reputation incentives can only emerge from already running open

source projects. But, how does an open source project gain enough momentum to be able to

attract all the reputation-motivated contributors described in the last section? How is the gap

bridged until the project can deliver the fame these people seek to achieve?

One explanation is, of course, that some investors in reputation may gamble on the future and

contribute in anticipation of future success. However, the prospects of such a strategy will be

much better if the open source project is likely to gain initial momentum from the

contributions of actors motivated by other goals than reputation maximizing. Since income is

not a feasible alternative in this case either, two questions arise. Which are those other goals?

Why is the open source movement a viable structure to pursue such goals?

The first question will not be analyzed at length here. It is well known from the literature that

many open source communities have very strong ideological superstructures. The ideas

people seek to express in the open source movement range from freedom, sharing,

unrestricted exchange of information, anti-capitalism or anti-imperialism to fighting

Microsoft.22 Idealistic motives driving people to contribute without expecting individual

compensation in the form of money, fame or other advantages may not be all too well

understood in economics. Nevertheless, they are an empirical fact known from many fields,

the most obvious of them being the various charitable institutions. We do not intend to further

inquire into the question why people donate.23 What interests more is the following point:

Given that such other goals exist, why should they be primarily pursued through the

contribution to open source projects? If we abstract from some extreme cases like for example

anti-capitalism, the ideas are not restrictive a priori as to the form of organization that should

be selected as a vehicle. For example, Microsoft’s dominance could also be fought by

deliberately buying products from its competitors wherever possible. The answer to the

22 See for example Raymond (2000a).

23 See Hansmann (1980) for this kind of argumentation.

16

question why open source organization is the right vehicle to attract contributors with

idealistic motivations is more intricate.

3.1 Contract failure in a public goods context and Copyleft as nondistribution constraint

Many of the goals propagated by open source communities have characteristics of public

goods. Goods qualify as public goods, if it does not cost more to provide them to many

persons than it does to provide them to one person, and if there is no way to prevent other

persons from consuming them, once they have been provided to one person.

Even a rather “simple” motivation like breaking Microsoft’s market power refers to a public

good which may be called “consumer freedom”. Once Microsoft has been restrained, there is

no way of preventing others from enjoying “consumer freedom” and it does not cost more to

restrain Microsoft for additional consumers. The same holds for other ideals expressed in the

open source movement like “information freedom”, “relief of information barriers” and so

forth. Even anti-capitalism or anti-imperialism have to do with public goods. Once capitalism

or imperialism are abolished, nobody can be excluded from the blessings and there is no

additional cost to extend the blessings to more people.

Economic theory explains that every individual should contribute to the production of a public

good an amount equal to the value he places upon it, if the good is to be provided at the

optimal level. Because the amount an individual may contribute will be very small in relation

to the total investment, the production of the public good will not be affected by a single

contribution. This translates into individual incentives to free ride. If the production gets

started, the individual will be able to consume anyway. If not, non-contribution avoids losses.

If all individuals follow this calculation, the public good will not be supplied although the

aggregate demand may be substantial.

Standard economic reasoning concludes that the private market is unable to provide public

goods. If this is used to call for the state, a very interesting point elaborated by Hansmann

(1980, pp. 848-851) is missed. It suffices that the free-rider psychology outlined above is not

universal and that there are (some) people willing to contribute toward the production of

public goods. Such contribution to the production of a public good can be termed as donative

17

behavior because it does not influence the provision of the good to the individual contributor.

The contribution is a donation precisely because the contributor’s own consumption of the

good is not affected by it.

Again, the reasons why people donate will not be elaborated here.24 Suffice it to say that

donative behavior is an empirical fact, which can be observed in many contexts. Hansmann25

has explained why, taken for granted that (some) people are willing to donate in public goods

contexts, nonprofit forms of organization are best suited to tap such donative behavior. If we

take the example of a listener-sponsored radio station, the mechanism requiring that it should

be nonprofit is straightforward:

“The listener knows what quality of broadcast is being provided, but he does not
know whether his contribution is being used to pay for it. There is no observable
connection between the amount of the individual’s contribution and the quality
of broadcast. The virtue of the nonprofit form of organization is that it can
provide some assurance that in fact such a connection exists.”26

A basic institutional feature of nonprofits is what Hansmann (1980) calls the nondistribution

constraint. Profits can be made, but they may not be distributed to those in control of the

organization. In contrast to capitalistic firms nonprofits do not have residual claimants. As

with the listener-sponsored radio station cited above this is an important contractual device in

many public goods contexts.

Contributors have no means to assess if their donation flows into the production of the desired

public good. Taking advantage of asymmetric information the residual claimants of the

organization receiving donations could easily increase profits at the expense of the production

of the public good. Because they cannot credibly commit to restrain from doing so,

capitalistic firms with residual claimants face “contract failure” in attracting donations.

Nonprofits can be an answer to this contract failure since the nondistribution constraint

supplements the discipline of the market by an additional safeguard, the legal commitment

that those in charge cannot extract any profits. In abolishing residual claimants nonprofits

24 Such inquiry on the psychological foundations of economic behaviour outlines the boundaries of economic

rationality. Norms of fairness and reciprocity play an important role in human behaviour as many empirical
and experimental studies show. See Fehr and Falk (2001).

25 See Hansmann (1980), pp. 849-851

26 Ibid., p. 851

18

make sure that nobody has incentives to increase profits at the expense of the production of

the public good. To opportunistically turn donations into profits would only pay for somebody

who had the right to take out the residual.

People may be driven to donate by idealistic motivations. But, if they have the choice to

whom to donate, empirical observation confirms that they will select organizations with a

higher propensity to direct their contributions into the production of a desired public good.27

Because the nondistribution constraint contributes to make organizations fraud-safe for

donators, it is suited to attract people with idealistic motivations.

Yet, how do these explanations apply to open source software production? The communities

developing, producing and using Linux, Apache or Sendmail are not incorporated in the same

way as the more traditional nonprofits. Universities, the Salvation Army, The Red Cross, or

CARE are distinct legal unities. Just as in for-profit firms there is a corporate charter defining

the legal boundaries of these organizations. In contrast to this, the legal boundaries of open

source software projects are blurred. In the absence of labor contracts, decisions to participate

or to contribute are easily reversible. Taking into account the internet-based interaction within

open source communities, the boundaries in time and space are also fading. Open source

projects are truly global.28 Compared to the traditional nonprofits, open source communities

are rather virtual forms of organization. At first sight it is hard to see how a virtual entity

without clear legal borders can credibly commit itself to the nondistribution constraint, which

makes for the basic competitive advantage over for-profits in solving specific instances of

“contract failure”.

By running software production and development under the terms of the General Public

License or comparable licensing procedures, virtual communities too can commit to

nondistribution. Those who wish to modify and distribute software under the General Public

License have to agree to make the source code available. They cannot impose any licensing

restrictions on others. All derived work must also be distributed under Copyleft. Copyleft is

viral: It “infects” every software making use of source code produced under Copyleft with the

requirement that it should be covered under the Copyleft license as well.

27 See Ibid., Fama and Jensen (1983), and Steinberg (1993).

28 For example, the credits file for the March 2000 release of Linux shows contributors from more than 30
countries. See Moon and Sproull (2000).

19

Copyleft is an intricate institutional device. It does not preclude that someone will ever be

able to earn private profits with open source software. Because open source software always

incorporates contributions of donators, any kind of profits made with it will contain an

element of commercialization of donative resources. This is the case in the whole service

industry growing around open source software products. Firms engaged in consulting,

packaging and training in the Linux world partly commercialize donative resources because

they use Linux as an “ingredient”, whatever they may do. Programmers selling their

knowledge and reputation to this service industry build their human capital in the donative

context of the open source project. In this sense they may sell skills and signals they partly

acquired through donations.

The point is more subtle. Copyleft is a device against fraud and not against private profits.

Donations, which have entirely flown into the production of the public good first, may then be

second-used and commercialized in the sense described above. By eliminating property rights

on the source code, Copyleft makes sure that nobody can turn donations into private profits

before they have contributed to the production of the public good. In the eyes of people

interested in “free exchange of information” or “anti-capitalism” or “unrestricted sharing”

someone who hides and incorporates source code in a software product, which he then sells

on the market, simply steals their donations. Their work no longer contributes to “free

exchange of information” etc. when hidden in a product sold for money. In contrast to this,

someone who sells his reputation and knowledge acquired working on the software does not

undermine the public good, since the software stays open source and “unrestricted sharing”

etc. simply go on. On the contrary, he may further contribute to the dissemination of the

software with his skills and reputation, in this way even increasing the installed base for “free

exchange of information” etc.

Copyleft is a basic institutional innovation in the governance structure of open source. It

encourages donators who identify with the broader purposes of the open source project to

contribute by providing them with additional assurance that all support flows entirely into the

production of the desired public good first. Yet, Copyleft does not crowd out investors

allowing for the second-use and commercialization of the innovations partly coming from the

input of donative resources.

20

3.2 The role of investor motivation for attracting donators and vice versa

For the sake of simplicity the quality of the open source software can be taken as a proxy for

all the public goods donators might want to sponsor in open source projects. Whatever the

idealistic goals, from fighting Microsoft to free exchange of information, powerful, consistent,

elegant etc. software is the means by which these goals can be achieved.

By proposing that donators chose the form of organization, which provides assurance that a

connection between the individual’s contribution and the quality of the open source software

exists, we assume that they make a rational choice. Their motivation to donate may have

idealistic sources, but once they have decided to donate, they are concerned to find the

organization that turns the highest quality software out of their contribution.

It is consistent with such behavior that donators should also take interest in the governance

structure for investors. Their preferred public good is best served if the project attracts

talented and motivated investors. In this sense an open source project with a well-designed

governance structure for investors at the same time makes the highest quality software out of

donations. Seen from the perspective of donators, investors seem like simple “working bees”,

which help the donator’s ideals come true.

From a more general standpoint the relationship is symbiotic, because the profits investors try

to capture in the form of marketable skills, signals and services partly stem from a

commercialization of donative resources. In this sense, investors are better off in an open

source project that has the right governance structure to attract large numbers of donators.

Bringing people with different motivations, investors and donators into a symbiotic

relationship is the key innovation in the governance structure of open source. Idealists profit

from investors as “working bees” who enhance the quality of software and thereby serve the

ideals without consideration. Investors are compensated in a way that respects the constraint

that all contributions should be directed to the improvement of the software first. Donators

have no incentive to object the commercialization of derivative goods and services partly built

in a donative environment, since this does not harm the quality of the software.

21

Before an open source project generates derivative exploits (marketable signals, skills and

services), which are suited to attract investors, it must gain considerable momentum. In

particular, the rather complex governance structure for investors must be designed and

implemented, which consumes time and energy. How can a project start at all, if considerable

set up investments need to be made before signals and other derivative goods start to flow?

The symbiotic nature of open source governance may contribute to the explanation of this

puzzle. The basic governance-requirements for donators are much easier to meet. As soon as a

project is licensed under GPL or comparable agreements, donators are fraud-safe and may

embark on their idealistic mission. If the concept they work on becomes prominent enough,

investors who gamble on its future find their way in. Step by step the governance structure is

completed in order to attract further investment.

4. Outlook

The focus of this analysis has been on governance structures. As important as a symbiotic

governance structure reconciling investors and donators may be, it is, of course, not the only

factor influencing the success of an open source project. We will briefly point out at two other

important success factors.

Market conditions matter because they influence the cost-benefit calculations of investors.

The spreading of Linux in professional surroundings such as companies or public authorities

increases the demand for skilled Linux programmers. Opportunity costs for managing a Linux

subsystem during leisure time for free rise proportionally to the external wage offers. Once an

open source project produces high quality software, which gains significant market share,

donators might conclude that the desired public good is already produced and available. If for

example the dominance of Microsoft is broken and everybody enjoys free choice of software,

there is no need for further donations29.

The program conception matters because it defines the potential market of the program and

the entry-requirements of contributors in terms of skills and knowledge. Presumably, open

source projects need a broad potentially installed base of users in order to have a chance to

29 See von Hippel (2001).

22

succeed. A program that is of general use like an operating system and that is developed with

standardized programming tools, enables many users to find bugs and even to fix them. On

the other hand, one might argue that it does not pay to invest time in a standardized product

that users can easily buy from commercial suppliers30. From this make-or-buy-perspective,

highly specialized programs with a strong emphasis on quality are more appropriate to be

developed open source and accordingly to be made instead of bought.

In our analysis we have assumed that favorable market conditions and program conceptions

exist, whatever they might look like. Without a governance structure economizing on the

symbiotic relationship of investors and donators, open source will not work. Collecting

donations whenever given, providing a tournament whenever asked for is the crucial element

in the governance of open source.

30 See Kuan (2001).

23

References

Alchian, Armen A. and Harold Demsetz. 1972. "Production, Information Costs, and

Economic Organization." The American Economic Review, 62, pp. 777-95.

Bessen, James. 2001. "Open Source Software: Free Provision of Complex Public Goods."

Working Version 5/01.

Cusumano, Michael A. 1991. Japan's Software Factories: A Challenge to U.S. Management.

New York: Oxford University Press.

Cusumano, Michael A. and Richard W. Selby. 1995. Microsoft Secrets: How the world's most

powerful software company creates technology, shapes markets and manages people.

New York: Simon and Schuster.

Dafermos, George N. 2001. "Management and Virtual Decentralised Networks: The Linux

Project." First Monday, 6.

http://www.firstmonday.dk/issues/issue6_11/dafermos/index.html.

Dalle, Jean-Michell and Nicolas Jullien. 2001. "'Libre' Software: Turning Fads Into

Institutions?" Working Paper: Cachan/Brest Cedex.

Fama, Eugene F. and Michael C. Jensen. 1983. "Separation of Ownership and Control."

Journal of Law & Economics, 26, pp. 301-25.

Fehr, Ernst and Armin Falk. 2001. "Psychological Foundations of Incentives." forthcoming

in: European Economic Review.

Franck, Egon and Carola Jungwirth. 2001. "Warum "geniale Ideen" für wissenschaftlichen

Erfolg nicht ausreichen." Arbeitspapier des Lehrstuhls für Unternehmensführung und -

politik Nr. 1: Zürich.

Frey, Bruno S. and Reto Jegen. 2001. "Motivation Crowding Theory: A Survey of Empirical

Evidence." Journal of Economic Surveys: forthcoming.

Frey, Bruno S. and Margit Osterloh. 2000. "Motivation, Knowledge Transfer, and

Organizational Forms." Organization Science, 11, pp. 538-50.

Hansmann, Henry B. 1980. "The Role of Nonprofit Enterprise." Yale Law Journal, 89, pp.

835-901.

Harhoff, Dietmar, Joachim Henkel, and Eric von Hippel. 2000. "Profiting from voluntary

information spillovers: How users benefit by freely revealing their innovations." MIT

Sloan School of Management Working Paper 4125.

Hecker, Frank. 1999. "Mozilla at One: A Look Back and Ahead."

http://www.mozilla.org/mozilla-at-one.html.

24

Hertel, Guido, Sven Niedner, and Stefanie Herrmann. 2002. "Motivation of Software

Developers in Open Source Projects: An Internet-based Survey of Contributors to the

Linux Kernel." University of Kiel Working Paper.

Kuan, Jennifer. 2001. "Open Source Software As Consumer Integration into Production."

Working Paper Haas School of Business, University of California-Berkeley.

Lakhani, Karim and Eric von Hippel. 2000. "How Open Source software works: "Free" user-

to-user assistance." MIT Sloan School of Management Working Paper 4117.

Lerner, Josh and Jean Tirole. 2001. "The Simple Economics of Open Source." Working

Paper.

Ludsteck, Walter. 2001. "Microsoft: Von einem Monopol zum anderen." Sueddeutsche

Zeitung, 23.10.2001.

Milgrom, Paul and John Roberts. 1992. Economics, Organisation and Management. New

Jersey: Prentice-Hall, Inc.

Moody, Glyn. 2001. Rebel Code: The Inside Story of Linux and the Open Source Revolution.

Cambridge, Massachusetts: Perseus Publishing.

Moon, Jae Yun and Lee Sproull. 2000. "Essence of Distributed Work: The Case of the Linux

Kernel." Firstmonday, 5, http://www.firstmonday.dk/issues/issue5_11/moon/.

Raymond, Eric Steven. 2000a. "The Cathedral and the Bazar."

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/.

Raymond, Eric Steven. 2000b. "Homesteading the Noosphere."

http://www.tuxedo.org/~esr/writings/cathedral-bazaar/homesteading/.

Rota, Sandra, Marc von Wartburg, and Margit Osterloh. 2002. "Trust and Commerce in Open

Source - a Contradiction?" University of Zurich Working Paper.

Steinberg, Richard. 1993. ""The Role of Nonprofit Enterprise" in 1993: Hansmann

Revisited." Nonprofit and Voluntary Sector Quarterly, 22, pp. 297-316.

von Hippel, Eric. 2001. "Innovation by User Communities: Learning from Open-Source

Software." MIT Sloan Management Review, 42, pp. 82-86.

	2.1.2 Different effects of coordination: rapid debugging versus versioning
	2.2 Motivation
	2.2.1 The motivation structure of the secrecy-incorporation approach: intellectual property rights, residual claims, wages
	2.2.2 Another game in open source: abandoning direct income but gaining reputation
	2.2.3 Copyleft: The constitutional prerequisite of the open source game
	3.1 Contract failure in a public goods context and Copyleft as nondistribution constraint

