Economics of Open Source Software *

Justin Pappas Johnson

May 17, 2001

Abstract

A simple model of open source software (as typified by the Linux
operating system) is presented. Individual user-programmers decide
whether to invest their valuable time and effort to develop a software
application that will become a public good if so developed. Open
source code potentially allows the entire Internet community to use its
combined programming knowledge, creativity and expertise. On the
other hand, the lack of a profit motive can result in free riding by in-
dividuals and, consequently, unrealized developments. Both the level
and distribution of open source development effort are generally ineffi-
cient. The benefits and drawbacks of open source versus profit-driven
development are presented. The effect of changing the population size
of user-programmers is considered; finite and asymptotic results are
given. Whether the amount of development will increase when appli-
cations have a “modular structure” depends on whether the developer
base exceeds a critical size or not. Explanations of several stylized facts
about open source software development are given, including why cer-
tain useful programs don’t get written. Other issues are also explored.

*This paper is an extension of a chapter from my 1999 M.I.T. Ph.D. dissertation. I
thank Daron Acemoglu, Travis Broughton, Jonathan Dworak, Frank Fisher, David P. My-
att, two anonymous referees and a coeditor for helpful comments and advice. I especially
thank Glenn Ellison for his extensive and concise remarks.

1 Introduction

As of late 2000, studies by Netcraft and E-Soft suggest that the web server
Apache powers about 59% of all web pages.! In 1998, the operating system
of choice on 17% of all new commercial servers was Linux.? This is rather
striking because both Apache and Linux are now, and have always been,
freely available for all. Moreover, their inventors took steps to ensure that
their work would always be available at no cost to everyone.

There is a myriad of examples of free software, including Perl and PHP,
premier scripting languages for the worldwide web.? Much of this software
was written in a decentralized fashion by a large number of individual pro-
grammers scattered across the world. The sum of these efforts has produced
an impressive collection of useful, reliable, and free software.?

Such software is commonly referred to as open source software. The
source code of a program is the sequence of actual typed common-language
words entered by the programmer. These commands constitute the logical
structure of the program. When the source code of a particular application
is available to all it is said that the source code is open. A competent
programmer who has the source code of a program can, given time, figure
out exactly how the program works. He or she can modify the program
to suit his or her own preferences, correct bugs in the program, or use the
components of the program to build a new or extended application. This
ability to use ones own programming skills to alter the performance of a pre-
existing application can be of considerable value to a serious programmer.

The source code of most programs that one buys is already compiled
to run on a particular operating system. Compiled software is binary code
that speaks to the components of a computer system. It can be difficult
to invert a compiled program to obtain the underlying source code.’> Also,
most firms restrict the rights of end users to modify software written by
the firm. As such, most software cannot be usefully modified by anyone
other than the original developer. Software for which the source code is not

!See www.netcraft.com/survey and www.securityspace.con for details. The method-
ologies are somewhat controversial. In particular, servers behind firewalls are not counted.

2Red Herring, June 1999.

3See www.perl.org and www.php.net

1See sourceforge.org, freshmeat.net and opensource.org to better appreciate the
sheer scope and depth of open source activity.

5The difficulty of decompiling an executable depends on several factors including the
language in which the program is written. Even when a program can be decompiled, the
generated source code may not match the original code. As a result, it may be difficult to
usefully work with generated source code.

generally available is called closed source software.

Computer and software companies are acknowledging the open source
movement. In 1998, Netscape (now owned by AOL) opened the source code
of its web browser. Sun Microsystems has released the source code of its
StarOffice program.” Interestingly, StarOffice has been released under the
strong terms of the GNU General Public License, which is discussed below.
IBM released an open source version of its popular AFS filesystem.® IBM
has also announced that it will support and market the Red Hat version of
the open source Linux operating system (Red Herring, February 18, 1999),
and also sponsored a three-day open source conference in New York City in
December 1999 (Linuz Today, November 3, 1999). There are many more
examples.

In section 2, open source software development is modeled as the private
provision of a public good. Section 3 examines the influence of the size of
the developer base on welfare, development probability and the distribution
of effort and costs. Both finite and asymptotic results are presented.

In section 4, the open source model is compared to a traditional closed
source (or profit-driven) model of software development. It is shown that
neither system coincides with a constrained social optimum. While the open
source paradigm exhibits both inefficient levels and distribution of develop-
ment it benefits from the fact that individuals know their own preferences
better than a firm does and also from the fact that a greater skill set (that
belonging to the community of programmers as a whole) can be exploited.
The closed source paradigm considers the aggregate enjoyment that con-
sumers will glean from a program, which free-riding open source developers
ignore.

In section 5, several stylized facts are explained in the context of the
model. In particular, it is argued that a reason the open source commu-
nity has been able to build immensely complex software objects, such as
operating systems, yet arguably been less successful in building other useful
applications, such as word processors of quality comparable to proprietary
versions, is that a natural correlation between human capital and production
technology leads those most able to build applications to build ones that are
most useful in their own work.

The importance of the potential for incremental development of an open
source application is addressed. In agreement with received wisdom in the

6See www.mozilla.org.

"See openoffice.org, for example, or the homepage of Sun Microsystems.

8See www.openafs.org for details. Technically, IBM has forked the AFS code into an
open source version and a proprietary version.

open source community, it is shown that the possibility of incremental im-
provement is valuable when the developer base is large but that incremental
development leads to less development when the developer base is small.

Also in section 5, the stylized fact that open source applications tend
to be less complete than their proprietary counterparts is considered. It
is shown that this is a natural consequence of profit maximization when
development costs are highly correlated across tasks and when reservation
prices are additive across different program features.

Before addressing these issues, a very brief discussion of the legal aspect
of open source software is in order. In particular, open source licenses will
be discussed. Also, the related literature is discussed briefly.

1.1 Open Source Software and Open Source Licenses

The source code of open source software is freely available. However, open
source software is more than software for which the source code is available.
Open source programs are distributed under very precise licensing agree-
ments. There are many such licenses, only one of which will be discussed in
the interest of saving space.

1.1.1 The GNU General Public License

One of the most common and stringent of all open source licenses is the
GNU General Public License (GPL). Most of the software mentioned so far
is distributed under the GPL license. The GPL grants specific legal rights
and responsibilities to those who use and modify products licensed under
the GPL.

The GPL does not prohibit charging a positive price for a program cov-
ered by the license. However, it grants customers the right to obtain the
source code. Moreover, anyone who lawfully obtains a program covered by
the GPL automatically inherits the full rights to use, copy, modify or dis-
tribute the program and source code in any manner desired, subject only to
the terms of the GPL itself (Stallman 1996). Thus, legally, all source code
that incorporates GPL source code becomes open source code itself. Thus,
while individuals are free to modify programs covered by the GPL, such
modifications must be distributed under the terms of the License itself if
they are to be distributed at all. Moreover, modifications or redistributions
of such open source software must make the terms of the License apparent
to others who might obtain the software.

1.2 Related Literature

Open source software development is modeled as the private provision of a
public good. Such models of public good provision have been studied by
many people, including Chamberlin (1974), Palfrey and Rosenthal (1984),
Bergstrom, Blume, and Varian (1986), and Bliss and Nalebuff (1984). The
present paper differs from the existing literature both by the focus of the
basic model and by the fact that the model is extended to address issues of
relevance to the open source development regime.

In particular, the model considers not only whether a project will be
successful, but also whether the composition of effort supplied is efficient.
Further, the distribution of redundant effort is considered, since much open
source development occurs with little or no coordination. Also, the free-
riding open source regime is compared both to a social planner’s solution
and to the solution of a profit-maximizing firm. Finally, the basic model
places strong emphasis on a number of asymptotic results (although other
papers, for example Chamberlin (1974), do address asymptotic issues).

The extensions of the basic model also distinguish the current paper from
previous work. For example, in section 5 the importance of being able to
make small contributions is related to the total size of the pool of potential
participants.

Lerner and Tirole (2000) explore the economics of open source software
as well. Their work differs from the present paper in focus. Their primary
point is that labor economics, especially the literature on career concerns,
provides a useful framework for understanding some aspects of the open
source phenomenon. In contrast, the theory of public goods is central to the
present analysis.

2 A Model of Open Source Software

Consider the following simultaneous-move game. There are n user-developers
in the Internet community. Each knows that an enhancement of a pre-
existing software application, the source code of which is open, can poten-
tially be developed. Developing the enhancement of the software takes time,
effort, and ingenuity. These costs are summarized for each agent by his or
her privately known cost of development c;.

Each agent independently decides whether to develop the new applica-
tion. Any agent ¢ who chooses to develop bears the cost ¢;. As long as at
least one agent so chooses, the development will occur. Any developed soft-
ware can be freely provided over the Internet to the other user-developers

and will be so provided if developed (perhaps because the terms of the open
source contract vastly restrict a developing agent’s ability to profit).

If the enhancement is developed all agents receive their own privately
known valuations v;. If the software is not developed all payoffs equal zero.

Suppose that all agents’ costs and valuations are independent, identical
draws from the joint distribution function G(c,v), with support on the finite
rectangle defined by {(c,v) : cp < ¢ <cpg, vp <v <wvg} where ¢, > 0 and
vy > 0. Assume this is a smooth function.

The first object of analysis is the optimal response of any agent i to
the strategies of the other agents. Suppose that the agent believes that
the probability that the development will take place if he or she does not
innovate is 7’. A strategy for this agent is a decision to develop with some
probability, conditional on his or her own realized cost and valuation, and
given his or her beliefs about what other agents are doing (summarized by
the value 7%). More precisely, a strategy for each agent i is a function v’
taking each of that agent’s potential value-cost pairs (v;,¢;) into the unit
interval [0, 1].

An equilibrium of this game is a set of strategies and beliefs { (wi, 7ri) }?:1
such that each strategy is optimal given that agent’s beliefs, and such that
each agent’s beliefs are consistent with the strategies of the other agents.
That is, Bayesian Nash Equilibria are considered.

Optimality for agent ¢ requires that v’ solve

max [’Ui(ﬂ'i + 9 —) — Cﬂ/)]

¥€[0,1]

Consistency requires that
7' = Pr{At least one agent j # i chooses to develop}

where the probability on the right is computed using the underlying distri-
bution G(c,v) and the strategies of agents j # 1.
An agent optimally chooses to develop the program with probability one
if
Vi —C; > T i’Uz'
which can be rearranged to yield

V; 1

(1)

¢ 1—m

so it is clear that the optimal response is to invest in development with
probability one, so that 1’ = 1, if the value-to-cost ratio is sufficiently

high. When inequality (1) is reversed it is optimal never to develop, so that
' = 0. When (1) is exactly satisfied, the agent is indifferent among all
personal development probabilities. Given the smoothness of G(c,v), this is
a measure zero event. Since consistency implies that equilibrium beliefs are
invariant to such events it is without loss of generality that one can assume
agents who are indifferent choose to develop.

Throughout this entire paper only symmetric equilibria are considered.
Let ¢ denote the critical value-to-cost ratio. Also, let F'(q) be the induced
distribution of the value-to-cost quotients;? that is,

F(Q)ZPT{%<Q}

Denote the upper bound of the support by

VH
qgg = — < o0
CL

It will also be convenient to define
v = Pr{No agent develops} = F(¢)"

Given these definitions, the probability (from an individual agent’s per-
spective) that none of the remaining agents develops is

n—1

L—m=F@" " =77

where 7 is the common value of 7. Hence one can determine from the agent’s
optimality condition that he will only be indifferent between developing and

not when
. 1 1
QZ—l_ﬂ_—V

which of course must equal ¢. Given this, inspection of the definition of
(i.e. the probability that no agent develops) reveals that it is an equilibrium
value if o

y=F |y (2)
which has a unique solution unless the law F' places no mass above 1, in
which case there is no solution to this equation and the unique equilibrium
exhibits no development. To avoid this boring case, assume that F(1) < 1,

9The value-to-cost distribution is not taken as primitive because later the performance
of a closed source system will be compared to that of an open source one. To do so the
joint distribution of v and ¢ will be needed.

or equivalently that qg > 1. Under this assumption, the above condition is
both necessary and sufficient for v to be an equilibrium value.

The straightforward manner in which the Bayesian Nash Equilibrium
can be computed in the basic model has been explained. In the following
sections a number of different issues are addressed in the context of the basic
model.

10

2.1 Choice of Model

Before proceeding, a few comments on the choice of the model detailed
above are in order. In particular, one might wonder whether the payofts
are appropriately modelled, and whether a static model is preferable to a
dynamic one.

Some developers of open source projects in the real world are paid by
their employers to spend part of their time working on such projects. This
fits within the model, since those same employers are often using the software
as an internal tool, not as a product that is sold. That is, the return to
the firm of having employees work on the software does not derive from
proprietary control and sale of the software.

Another issue is that some user-developers might prefer to develop the
software rather than have someone else do it. These people could be trying
to signal how clever they are, perhaps out of vanity or the desire to obtain
a better job in the future. In fact, the present model captures some of this
quite easily. One must merely reinterpret the cost of development to be the
net cost, after factoring in other gains beyond mere direct utility from use
of the program. Of course, this does require that if multiple agents develop,
they are each able to receive these extra cost savings.

If such is not the case, an alternative to the present framework is a
tournament model in which developers race to be the first to develop in
order to prove their abilities. If this force is dominant, a tournament model
might be more appropriate than the model of private provision given above.
While difficult to argue cogently, casual examination of the open source
movement seems to suggest that a private provision of public goods model
is more appropriate than a tournament model. It is a common to hear
a lament such as, “It would be great if someone finally could expand the
capabilities of this software.”

There are several reasons to employ a static model instead of a dynamic
one. Clearly, both approaches capture much the same concept; the current

10 As mentioned previously, throughout this entire paper only symmetric equilibria are
considered.

approach allows one to discuss whether an innovation occurs or not, while a
dynamic model in the spirit of Bliss and Nalebuff (1984) addresses the issue
of delay. It turns out that the present model can be solved easily and in
closed form. The results are therefore easy to interpret in terms of model pa-
rameters. Also, the current model can be extended easily in new directions,
for example to look at the importance of incremental improvement.

Of course, there are strong limitations of the static approach. In par-
ticular, such a model cannot capture adequately the incentives of an initial
programmer to release her work under an open source license. Furthermore,
it strongly relies on the emergence of equilibrium beliefs. Also, a static ap-
proach naturally precludes study of how an open source development com-
munity acts over time as various improvements and new opportunities for
development arrive.

Finally, an alternative to the present framework is a game in which
agents have perfect information about the values and costs of all users.
Assuming agents were identical, the symmetric equilibrium would exhibit
mixed strategies. This approach would then resemble, for example, the
work of Dixit and Shapiro (1986), which considers industry entry and exit.

3 The Number of User-Developers

Some open source projects have a greater number of potential developers in
the community than others do. Reasons for this include differing awareness
about projects and heterogeneity in the underlying value and cost distribu-
tion.!! The number of users in the community influences the equilibrium
probability of development, the amount of redundant development effort,
and social welfare more generally. Here the influence of the population size
on the open source environment is investigated. Both finite and asymptotic
results are given.

Finite results are presented first. It is the case that increasing the size
of the developer base can lead to a lower overall probability of development.
However, any decrease cannot be very large and in any event all agents
prefer having more potential developers.

Suppose that the number of user-developers increases. If individuals con-
tinued to use their original threshold rule, then clearly development would
be more likely. However, when more individuals are present, the incen-
tive to free ride is raised, and any individual will be less likely to develop

"For example, it is to be expected the the underlying distributions should in truth be
conditioned on the primary field of expertise of the user-developers.

the application herself in equilibrium. Whether the overall probability of
development falls or rises as a result of including more agents is therefore
ambiguous.'?

While the movement of the development probability is ambiguous, the
likelihood m, that one of the other n — 1 agents develops must increase
(where subscripts are now used to denote the equilibrium values for a given
population size n). This must be true because if the probability of one of the
other agents developing were to fall with a growth in population, then each
agent would optimally choose to develop more frequently. This would be a
contradiction, since if each agent develops more frequently, the probability
of at least one agent developing in any subset of agents must also increase.

Lemma 1 The equilibrium probability that one of the first n — 1 agents
develops is increasing in n. That is, m, is increasing in n. Also, G, is
ncreasing.

Proof: Recall that an individual agent ¢ is indifferent between developing
and not when ¢; = (1 —m,)" L.
In equilibrium, it is the case that

1 n—1
Tw=1-F@" '=1-F
=1 F (@) =
For each value of = the function F(z)"~! is decreasing in n. Therefore,
the point 7, at which the above condition holds is strictly increasing in n
(since ¢, can never equal ¢g in equilibrium). This fact plus inspection of
the agent’s optimization problem reveals that ¢, is also increasing. |

Conceptually, each agent contributes only a small amount to the prob-
abilistic chance of development when the number of developers is not too
small. Since the previous Lemma shows that the chance of the other agents
developing is increasing, it stands to reason that the overall development
probability can not go down by very much when the size of the developer
base is not too small. The following theorem makes this precise without
relying on any particular distributional assumption.

Theorem 1 If the population of user-developers is n, then any decline in

the development probability resulting from adding one more user-developer

is less (in magnitude) than ﬁ

12An example in which the development probability always falls with the population
size is when the value-to-cost distribution function is given by F(q) = ¢*/4.

10

Proof: Letting p, denote the probability that any given agent develops
in equilibrium when there are a total of n developers, the change in the
development probability is

(1_'Yn+1) _(1_771) =Tn—TYn+l1 = (1_pn)(1_7rn)_(1_pn+1)(1_ﬂ-n+1)
> (1=pp)(1=7mn) = (L=pn1) (X —=mn) = (1 = 70) (Prt1 —Pn) = —pn(l—70)
1

1 n—1 1
— _ o n—1 > : o o n—1 - _ - n -
pelt=p 2 i o= =2 (U0) > o

where the last inequality follows from the fact that ("T_l)n converges mono-

tonically to e~ from below.]

This bound on the possible decrease in the development probability con-
verges rapidly to zero. This suggests that for large projects there is little
chance that growth in the developer base will lead to fewer developments.

The previous Lemma also implies that each agent is better off in expecta-
tion when the population increases. The reason is that the probability that
another agent develops the project increases with n, which means each indi-
vidual is better off (in expectation) unconditional on any realization of his
or her own cost and value. In equilibrium, higher values of n deliver higher
option values of doing nothing, without lowering the return on innovation.

Insofar as social welfare can be expressed as the sum of individual welfare,
society is better off in expectation as well. It is not true, however, that
individuals or society are better off in each state of nature.'3

Theorem 2 Fzxpected social welfare is increasing in n. Moreover, the ex-
pected welfare of each user is increasing in n.

Proof: Denote the expected payoff to agent i, conditional on his or her
type and the total number of agents n, by x;(v;, ¢;,n). Then

x; (v, ¢iyn) = max [V, v; — ¢ < max [ViTp4+1, Vi — | = (v, ¢, n+1)

since m, < Tp41-

13For example, there are states in which the addition of another user results in the
project not being developed when it would have been developed in the absence of the
marginal user. This is true precisely because the threshold §, is rising with n. However,
individuals are better off in states of the world where the marginal user develops and they
themselves do not, but would have otherwise.

11

Hence agent i’s payoff is increasing in n conditional on his or her type.
But since this is true for every type of ¢, his or her ex-ante payoffs Ez; are
also increasing in n. Finally, observe that agent’s payoffs are never negative.

It follows that expected social welfare with n agents can be expressed as

n n n+1
ZE-:Ui(viachn) S ZE$i(viaci7n+ 1) S ZExi<viaci7n+ 1)
i=1 i=1 i=1

where the last term is expected social welfare with n+ 1 agents. This proves
the theorem. [}

3.1 Limiting Results

One of the major arguments for why the open source paradigm should be
successful is that open source code permits an extremely large labor force
(potentially the entire Internet community of programmers) to bring its skill
and insight to bear on a problem.'® The notion that the open source method
can marshal considerable intellectual power seems to be taken seriously by
some major firms. Consider the following excerpt from an internal Microsoft
document, which assesses the threat of open source software (or OSS as it

is referred to below):!°

“The ability of the OSS process to collect and harness the collec-
tive IQ of thousands of individuals across the Internet is simply
amazing....Linux and other OSS advocates are making a progres-
sively more credible argument that OSS software is at least as
robust— if not more— than commercial alternatives.” 6

It is thus natural to explore the behavior of the model as the pool of user-
developers grows large. The limiting probability of innovation is investigated

1411 the case of bug fixing, this notion is captured by Linus’ Law, which states, “Given
enough eyeballs, all bugs are shallow.”

5These so-called ‘Halloween Documents’ can be read at opensource.org.
Their authenticity has been confirmed by Microsoft itself at
www.microsoft.com/ntserver/nts/news/mwarv/linuxresp.asp.

16 A5 a practical matter, it is not clear exactly how successful the open source paradigm
is either in absolute terms or relative to proprietary alternatives. Much evidence is merely
anecdotal. However, Miller, Koski, Lee, Maganty, Murthy, Natarajan, and Steidl (1998)
found that failure rates of commercial versions of UNIX utilities ranged from 15-43% in
contrast to failure rates of 9% for Linux utilities and just 6% for GNU utilities (which are
also open source).

12

first. Then, the issue of the distribution of costs and redundant effort is
considered.

It is important to note that another major argument for why the open
source system should be successful is that it engenders interactions and
synergies between developers. These are explicitly ruled out in this model.

3.1.1 Development Probability

Consider what happens to the probability of development 1 — v, and the
probability 7, that any n — 1 of the n users develops the software when the
population grows large. The following is immediate.

Theorem 3 Both m, and -, have limiting values ™™ and v*, respectively.
In particular

. 1
= lim v, = —

n—0oo QH
l—7"=lim (1 —m,) = —
n—0o0 CIH

Proof: In fact, each of the above limits implies the other, since, by defini-
tion, 1 — 7 = 7an1, Hence, only the first limit will be derived. It has already
been shown that a unique symmetric equilibrium exists for each n. Hence,
all that needs to be demonstrated is that for any € > 0 there exists an N
such that for n > N the equilibrium value of v, lies in (v* — €,7* + ¢€).

Let € > 0 be given. It is clear that 1/(y* + €) < gy and hence for some
Ny it is the case that n > Nj implies (v* + e)(lfn)/” < qg — m for some
m > 0.

Since F(qy) = 1 and F is strictly increasing on its support, it must be
that for n > Ny

1—n

F [(’y* +6)T} <1l-—1p
for some 72 > 0, which implies that
" 1—n]n
Fl(y +e5"]
converges to zero. In particular, there is an Ny such that (2) can not be
satisfied at v* + €, or for any greater value, when n > max|[Ny, No|. This is
so because F is an increasing function and because the map z — z(1=7)/"

is decreasing.
Now consider v* — €. There is some value N3 such that n > N3 implies

that (v* — €)4™™/" > ¢y and hence that F [(fy* — ¢)t=n)/n - F(qu) =1

13

since F' is a distribution function. This implies neither v* — € nor any point
less than it can satisfy (2).

One can now conclude that for n > max[Ni, No, N3] it must be the case
that v, € (v* — €,7" + €). Since € was arbitrary, the result follows.]

This is intuitive because, in the limit, only the agents with the highest
value-to-cost ratios will develop the software. Hence, the asymptotic prob-
ability of no development must be such that it keeps an agent of type qg
indifferent. This type of result also appears in previous works on the public
provision of private goods, e.g. Chamberlin (1974).

This result is robust to many modifications of the model. For example,
if people received slightly higher values when they wrote the program them-
selves or if the underlying distributions were different the conclusion that
the limiting probability of development not equal one would still hold.

On the other hand, the bounded support of the distribution of value-to-
cost ratios is important. If the value-to-cost distribution were unbounded,
then development would take place with arbitrarily high probability as the
population size grew large. To see that this must be so, suppose for the
sake of contradiction that the limiting probability of development were less
than one.!” From an individual agent’s viewpoint, this implies that the
probability that one of the other agents develops is less than one. For an
agent with a sufficiently high value-to-cost ratio, it is suboptimal to not
develop independently. This implies that the probability that an individual
agent develops does not converge to zero, a contradiction.

3.2 Costs and Redundancy

It has already been shown that even an infinite number of “eyeballs” might
not lead to innovation. Here the potential for wasteful duplication of effort
is considered. This issue is considered by Raymond (1998) in response to the
assertion of Brooks (1995) that adding more programmers to most software
projects only delays completion, resulting in unbounded waste in the limit.'®

In agreement with Raymond (1998), it can be shown that redundant
efforts and costs do not grow without bound in the present environment. To

" Technically, this argument should be made using the lim sup of the probability of no
development. It follows then that the limsup converges to zero, so that the limit exists
and equals zero.

18This is a version of Brooks’ Law. The idea is that many tasks can only be performed
sequentially and that, task by task, more programmers need not hasten progress. The
model presented in the present paper clearly is not sequential and thus cannot be taken
literally as a response to Brooks (1995).

14

this end, define p,, to be the probability that any individual in a population
of size n chooses to develop. For a fixed population, the expected number
of developments equals np,.

Theorem 4 The expected number of development efforts converges as the
population grows. Precisely,

lim np, = log(qx)

n—oo
Proof: It has already been shown that v, = (1—p,,)"™ converges to 1/qg and
so continuity of the natural logarithm implies that nlog(1—p,,) converges to
—log(gm). A first-order Taylor expansion of the logarithm around 1 reveals
that

Pn
log(1 — = —
nlog(l—pp) = —ns— o
for some p,, € (0,p,). Since p, converges to zero, it follows that np,, con-
verges to log(qm). [|

The incentive to free ride is strong enough to bound the amount of redun-
dant effort in the limit. Selfish agents willingly choose to restrict redundant
effort. While perhaps a cynical conclusion, this theorem provides positive
support to the open source paradigm. It is also true that total costs are
bounded, and that in the limit only the least cost programmers develop.

Theorem 5 The total expected costs of development borne by the open
source community converge to cr,log(qr).

Proof: It is the case that ¢, converges to qp. This is clear since it has
been previously demonstrated that the limiting probability of development
is less than one, and since that result is incompatible with agents having
non-negligible ex-ante development probabilities in the limit. Moreover, the
limit of ¢, must exist, since it is an increasing bounded sequence. Suppose
for the sake of contradiction that it is not the case that only the agents with
the lowest possible cost develop in the limit. Then, for some ¢ > 0, the
sequence {¢,} with elements defined by ¢, = sup{c:v/c > ¢,} contains an
infinite number of elements that are greater than ¢y, + €. This implies that
Gn < vg/(cr + €) an infinite number of times, which is incompatible with
the fact that ¢, converges to qg = vy /cr. [|

This is in accordance with the perception in the open source community
that it is those who find particular problems easy or interesting who end up

15

solving them. Of course, this theorem is a limiting result; in general, those
who develop should not be expected to be those with the lowest costs.

It is important to note that this result relies heavily upon the rectangular
support of G(c,v). If the region of support were, for example, circular then
it would not be true that the highest possible values of v/¢ corresponded to
the lowest values of c.

Again, the assumption of bounded support for F' is critical. If the sup-
port of F were unbounded, the amount of redundant effort would become
unbounded as n grew. The reason is that users with extreme value-to-cost
ratios would not find it optimal to tolerate even a tiny probability of no
development, and hence would invest their own resources.

It is possible to say a bit more about the distribution of redundant efforts.
Theorem 4 also implies that, regardless of the underlying joint distribution
of values and costs, the (random) number of development efforts follows a
well-defined distribution asymptotically.

Corollary 1 The number of development efforts converges to a Poisson
random variable with mean log(qp).

Proof: For each n, the number of development efforts can be expressed
as the sum of n independent binomial variables with success probability p,.
We have p, — 0 and np,, — log(qp). It is known that the limiting distribu-
tion is therefore Poisson. See, for example, Ash (1972), page 348. |

4 Comparing Open Source to Closed Source

In this section the relative performance of an open source system is compared
to a closed source one and also to a constrained social planner’s solution. To
set a closed source benchmark, imagine that a software company has already
sold a product to n individuals, but has not revealed the source code. There
is a potential product enhancement that the firm can develop at cost ¢. The
innovation has no internal consumption value to the firm. Assume that the
firm will only produce if its expected revenue exceeds the opportunity cost
c of having its engineers work on the program.

Now consider a social planner who wishes to maximize the expected sum
of values less costs in the community. Assume that the social planner must
assign each agent a rule to follow. Each agent’s rule tells the agent whether
to develop or not conditional only on his or her own private value and cost.
These rules must be assigned prior to the determination of any randomness.

16

Thus, the social planner is constrained by the fact that all information is
private.

Attention is also restricted to deterministic, symmetric rules. Given
these restrictions, the planner instructs each agent to develop if and only
if her value and cost pair (v,c) lie in some development region A. The
following theorem describes this region.

Theorem 6 If a social planner is constrained to offer each agent the same
deterministic decision rule, then there are constants a,b > 0 such that each
agent 1 is instructed to develop if and only if

¢ < a+ by

Proof: This can be deduced by considering the action of an agent whose
decision has no net impact on social welfare in expectation (given their
valuation and cost). Consider a single person, say agent 1, on the boundary
of A. If she develops, social welfare is

n
—c1+ v+ EY v — (n—1)pec (3)
i=2

where p. is the probability that any other individual agent’s value and cost
pair lie in A, and ¢* is the expected cost of that agent conditional on being
in A. If this agent instead does not develop, welfare is given by

1= =p)"] <v1 +Ezv;> — (n—1)pec* (4)
=2

Where v} is the valuation of agent ¢ given that at least one of the last
n — 1 agents does in fact develop. Of course, the values p.,c* and v} are
endogenous, in that they depend upon the rule that has been assigned. This
does not influence the present analysis.

Rewrite (3) in the following manner:

n n
—atu+ |1-(1- pc)”_l} EY vf+(1=p)" " EY v —(n—1)pec’
=2 =2

where v;* is the value of agent 7 given that none of the last n — 1 agents
develop. Since agent 1 is presumed to be on the boundary of A, social

17

welfare should be invariant in expectation to her decision. Equating (3)
and (4) yields:

n
(1=p)" i+ (L=p)" ' EY v = (5)
1=2

Letting a = (1 —p.)" ' EY ", v and b = (1 —p.)" "' completes the
proof of this theorem. [|

One more result is easily obtained and will add to the discussion that
follows. The open source scheme exhibits a lower development probability
than that of the social planner.

Theorem 7 When agents obey the socially optimal decision rules, the over-
all probability of innovation is higher than it is in the equilibrium of the open
source regime.

Proof: Let 7; denote the probability that some agent other than ¢ will
develop under the socially optimal scheme, and let m be the corresponding
equilibrium probability under the open environment. Bearing in mind that
the notation of Theorem 6 is such that (1 —p.)"~! = 1—#, observe that (5)
implies that an agent of type (v, ¢) will be instructed to develop whenever

v—c>7v—(1—"7)o
where ¢ > 0. This implies that any agent type who would develop in the
open environment would also develop under the socially optimal scheme if
it were the case that # < 7. In fact, strictly more types would develop so
that, given the smoothness of the underlying distribution, it would follow
that 7« > 7. This contradiction completes the proof. |

Relative to the social optimum, the level of development is too low in
the open environment. Furthermore, the distribution of effort is inefficient
in the sense that some types that develop under the open regime might
not develop under the social planner’s solution. These will be types with
high values and high costs. Facing free riding (and the lower probability
that someone else will develop) in the open regime compels these agents to
innovate themselves. The social planner, however, will not want very high
cost agents to develop. Such agents are compensated, so to speak, by the
fact that the planner instills a regime in which the probability that other
agents develop is higher than in the open regime.

18

A diagram is useful in comparing the three possible systems. Suppose
that valuations are measured on the horizontal axis and costs on the vertical
axis. The decision rules that would be followed by individuals under the
three systems can be shown graphically. Each development region is the
area underneath a particular ray in the value-cost space. The monopoly rule
is a horizontal ray since the firm develops whenever its cost is low relative
to the expected profitability of the project, which is constant (because it
has no internal consumption value for the project). The open source rule is
a ray emanating from the origin at a slope less than one, and the optimal
scheme a ray emanating from a point above the origin at a slope less than
that of the open rule.

Cost Closed Source

First-best

Open Source

Valuation

Figure 1: Comparison of the Three Systems

Some heuristic comments are in order. While it might appear to be a
negative that a profit-driven firm only cares about the monopoly profits it
can extract, the fact that the firm cares about the valuations of the other
consumers at all speaks well of the firm. On the other hand, the resources
of the firm are limited in that it can not access the entire talent pool of the
Internet. This is an assumption of the model, but there are several reasons
why it might be so in reality. First, when source code is closed, it is not even
possible for individuals to know what their costs would be much less for the
monopolist to know. This is certain to complicate contracting efforts. Also,
as a practical matter, most open source programmers are already employed
and choose to work on open source projects in their spare time. Their costs
might include a random opportunity cost component that depends on their
workload at their primary place of employment. Hence, even if it is clear

19

who the best engineer is for a given task, it might not be clear whether he
or she will be available to perform the labor. Third, a firm might believe
that revealing its source code on a wide basis might provide an edge to any
competitors, present or future.

The open source system, in contrast, exploits the potential of all the
users. This can (but need not) result in only low costs being borne.

Another plus for open code is that more information is being used. This
is meant in the following sense. Each agent has access to his or her private
information and could end up writing the software. The monopolist knows
its value (i.e. expected revenue) and cost as well, but none of the individual
users can exploit their own information when the source code is unavailable.
More information is being “conditioned on” (although the information is not
aggregated) when everyone has access to the code.

One might simply say that firms don’t always know what people want,
but people usually do. When source code is unavailable publicly, the human
capital and insight present in the community as a whole cannot be harnessed.

A good example appears to be the Apache web server. This was de-
veloped from the original NCSA web server beginning around 1995. The
people who developed Apache found that many changes to the NCSA were
needed. Evidently, no firms were supplying these changes at prices that
many webmasters were willing to pay. One might think that the dramatic
changes taking place on the worldwide web were such that the webmasters
had vastly superior information about their own needs. Arguably, the open
nature of Apache allowed important developments to occur more rapidly
than would have otherwise been possible.

5 Other Open Source Issues

5.1 An Empirical Puzzle

A puzzle in the open source community is why some obviously useful soft-
ware does not get written (or is not fully developed). For example, while
open source word processors and spreadsheets do exist, it is fair to say that
only recently have they begun to be comparable in quality to, for example,
Microsoft Office.'® On the other hand, hundreds of other free utilities and
applications exist. In this section it is argued that a natural correlation
between the human capital and the production technology of workers will

9For example, the home pages of open projects like Gnumeric and KOffice admit that
a lot more development is needed. This again highlights a limitation of a static model
with a single project rather than a dynamic one with varying degrees of progress.

20

tend to lead to the production of certain types of programs (like computer
utilities and Internet protocols) but not others (like word processors and
spreadsheets).

An argument put forth by Eric S. Raymond?? is that open source pro-
grammers wish to establish a reputation for ingenuity in the greater hacker
community (Raymond 1998). Thus, projects that are considered more ex-
citing are more likely to be developed.

The model developed here admits a simple alternative explanation. Con-
sider two possible applications, an enhancement of a word processor and an
addition to a networking utility. Inasmuch as people who are most likely
to value the networking utility are also most able to write the addition, a
natural negative correlation exists between value and cost. Not surprisingly,
such negative correlation can easily lead to heightened levels of development.

0.20 — /

0.15 e

0.10 -="

0.05

0.00 T x x x x x x \
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Value and Cost Correlation

Figure 2: Correlation Diagram

In Figure 2 the situation is considered when value and cost have a joint
log-normal distribution with correlation coefficient given by p, and two pop-
ulation sizes. Changing the correlation coefficient does not alter either
marginal distribution, but influences the distribution of the value-to-cost

20Fric S. Raymond is a programmer and well known open source software advocate. He
was influential in Netscape’s 1998 decision to release its browser source code.

21

ratio. As the correlation between value and cost falls, the open source com-
munity performs better, as measured by the increase in the development
probability.

Another consideration is that programs geared towards non-specialists
may require extensive and costly usability testing. If those at great ease
with software are writing programs for themselves, it is not surprising that
they might neglect to include certain “friendly” features.

5.2 Modularity and Incremental Development

Many open source projects receive code contributions that are individually
quite small. As a whole, the sum of these contributions might be quite
valuable. Prevalent among open source proponents is the notion that one
reason the open environment can be successful is that there are many small
tasks that can be completed for any particular project. With many small
tasks, the argument runs, it becomes more likely that any individual will
find it worthwhile to contribute, increasing aggregate development.

Here the issue of whether scope for incremental innovation should lead
to heightened development is investigated by extending the basic model.
Two different open environments are considered, one of which is “modular”
and the other of which is “nonmodular.” As will be clear, the modular envi-
ronment admits incremental innovation while the nonmodular environment
does not.

Suppose that there are k tasks or projects. Each user-developer receives
an independent draw from G(c,v) for each of these projects. Define the
modular environment to be one which is a k-replica of the standard model.
That is, individuals simultaneously decide which if any of the projects to
complete. As long as at least one agent chooses to develop a particular
project, all agents receive their valuations for that project.

Define the nonmodular environment to be one in which agents receive
their valuations for a project only if at least one user has individually com-
pleted all k tasks. That is, the entire collection of projects is worthless un-
less a single developer has completed each of them by herself. Hence, each
agent must decide ex-ante whether to develop all or none of the projects.
It is straightforward to show that this implies that the decision rule of each
agent is to develop all k projects if and only if

& .
k Zj:l Uzq

2 j=16

22

is sufficiently large. It turns out to be the case that whether a modular en-
vironment will generate more development in expectation depends critically
on the size of the developer base.

Theorem 8 Define N* as follows:

For any fired n > N* there exists some K such that for all k > K the
expected number of tasks completed in the modular case with n users and
k possible tasks exceeds the number in the corresponding non-modular case.
For any fited n < N*, there exists a K such that for k > K the expected
number of tasks completed in the modular case with n users and k possible
tasks is less than the number in the corresponding non-modular case.

Proof: Let 7 , denote the probability that any of n — 1 users develops
any one given project in the modular case (this is independent of k), and
let Wgn:f ,q denote the probability that the development is made in the non-
modular environment (that is, that all k tasks are undertaken together by
at least one agent of n —1).

To prove the theorem, it need only be shown that when n > N* there

exists a K such that for £ > K it is the case that W:{ﬁod < 74, and that
when n < N* there exists a K such that for £ > K it is the case that
Wﬁr’rlfod > 7 4- For then elementary facts about expectations of sums of

random variables will imply the theorem.

It will be shown that as k grows large the law of zf places arbitrarily large
probability on a neighborhood around Ev/FEec. Having shown this, it will
follow that the nonmodular environment’s limiting equilibrium, obtained by
letting & grow large and holding n fixed, is identical for each n. This will in
turn allow the two environments to be compared for a given population.

Observe that zF can be expressed as

1 k 7
ok Zj:l Ui

i 1 k y
k Zj:l CZ

so that the law of large numbers implies that the corresponding law places
arbitrarily high probability on any given neighborhood of Ev/Ec as k grows
large.

23

The equilibrium of the nonmodular environment converges to one in
which 7 = 1 — Fc/Ev. Since z is converging in probability to Ev/Ec for
each user, any solution to the equation

1 n—1
7T:1—Fk|:]

1—m

must be arbitrarily close to 1 — Ec/Ewv, since the distribution function Fj(z¥)
is converging to a function that places an atom at Ev/FEc. Therefore, for
fixed n, wgﬁ’fo

Next, observe that) ; > ngx’fod if and only if n > N*. The proof is

simple. If
1 n—1
l—-nm>F [1 }

— T

q converges to 1 — Ec/Ev as k grows large.

then it must be that 7} ; > 7, whereas the opposite conclusion holds oth-
erwise. Letting m =1 — Ec¢/FEwv, it is clear by directly solving for n that

log (£<
n:1+7g(EEZ =N~
log (F (£¢))
will exactly satisfy the above inequality. This proves the theorem. |

When the number of potential developers is large enough the modular
environment will outperform the non-modular one. It is better to work with
a large number of upper tails that correspond to smaller projects than to
work with a small number of averages that correspond to larger projects.

However, when the number of potential developers is small the modular
environment does better in terms of development. The reason is that devel-
opers know that the project has no functionality unless all of the components
are present. There may be parts of the whole that are high cost or low value
to a given user. That user might nonetheless be willing to put “extra effort”
in to be sure that the aggregate product, which she does value, will exist.
Thus non-modularity will sometimes temper the free riding present in the
open source development system.

Raymond (1998) asserts that good open source projects need to be de-
veloped initially by a small group and only later released to the general
community for further improvement. Heuristically, developers need to have
something sizable to “play with” before the open source model can be ex-
pected to do well.

24

5.3 The Completeness of Open Source Software

Some people are reluctant to experiment with open source software because
there is an impression that such software tends to be less complete than
corresponding closed source applications. It often seems that proprietary
software is easier to learn, has more features, better documentation, and
is more user friendly on the whole. In this section, the modular framework
introduced above will be adapted to provide a theoretical explanation of this
observation.

Imagine that there is not very much cost variation across projects, so that
they are all of similar difficulty to the same programmer. Formally, suppose
that the cost of development varies across developers, but not across projects
holding the developer fixed. As the number of components k grows large,
the chance that an open source project develops all possible projects is very
small. On the other hand, if a profit-maximizing firm chooses to develop
any of the projects, it will develop all of them.

Theorem 9 In the modular environment, the probability that an open source
community develops all k of the possible projects approaches zero as k grows
large. Howewver, a profit-maximizing firm that chooses to develop at all will
develop each of the k possible projects.

Proof: The probability that any one of the developments is made by the
open source community is independent of k. Call this probability (1—+) < 1.
It is obvious that the probability of all developments occuring is (1 —)"
which clearly converges to zero as k becomes infinite.

On the other hand, a firm will choose to develop any particular com-
ponent if the expected profitability exceeds costs. Under the maintained
assumptions that all developments yield the same expected profits, and that
the firm’s costs don’t vary across developments, it follows that it is profitable
to develop all the projects if it is profitable to develop any one of them. W

Admittedly, only the simplest demand functions are being considered.
Nonetheless, the intuition seems solid: Firms care about expectations that
could be highly similar across different, small features of a program. They
are likely to develop many portions of a program if they develop any.

6 Conclusion

The open source software movement is not new. However, only with the
striking success of Linux, coupled with the decisions of major firms such as

25

IBM and Sun Microsystems to open their source code has national attention
been attracted.

It is striking that a paradigm for costly investment based upon the ab-
sence of property rights has produced such a wide variety of useful and
reliable software. A simple model of open source software has been pre-
sented to facilitate understanding of the phenomenon, and to enable effi-
ciency comparisons between it and the traditional, profit-driven method of
development.

It has been shown that the superior ability of the open source method
to access the Internet talent pool, and to utilize more private information,
provides an advantage over the closed source method in some situations.
Nonetheless, free riding implies that some valuable projects will not be pro-
duced, even when the community of developers becomes large. However,
this same free riding also curbs the amount of redundant efforts in the limit.

Potential explanations for several stylized facts have been presented, in-
cluding why some simple programs are not written while other very complex
programs are, and why proprietary programs tend to be more complete than
open source programs. Also, the advantage of the possibility of incremental
development has been shown to depend on whether the developer base ex-
ceeds a critical mass or not; this provides a theoretical explanation for why
open source is a good development model when a base product has already
been completed but not a good means of producing the base product itself.

The open source movement is gaining attention. Many questions con-
cerning the movement remain unanswered. In this paper the seemingly prior
question of how well an open source community will function given that it
exists has been addressed. The answers provided hopefully will aid in the
investigation of other aspects of open source software.

References

AsH, R. B. (1972): Real Analysis and Probability. Academic Press, New
York.

BERGSTROM, T., L. BLUME, anp H. VARIAN (1986): “On the Private
Provision of Public Goods,” Journal of Public Economics, 29.

BLiss, C., aND B. NALEBUFF (1984): “Dragon-slaying and Ballroom Danc-

ing: The Private Supply of a Public Good,” Journal of Public Economics,
25.

26

Brooks, F. P. (1995): The Mythical Man-Month: FEssays on Software
Engineering. Adison Wesley, Reading, MA.

CHAMBERLIN, J. (1974): “Provision of Collective Goods as a Function of
Group Size,” American Political Science Review, 68.

DixiT, A., anp C. SHAPIRO (1986): “Entry Dynamics with Mixed Strate-
gies,” in The FEconomics of Strategic Planning: Essays in Honor of Joel
Dean, ed. by L. Thomas, III. Lexington Books, Lexington, MA.

HECKER, F. (1998): “Setting Up Shop: The Business of Open-Source Soft-
ware,” http://people.netscape.com /hecker /setting-up-shop.html.

LERNER, J., AND J. TIROLE (2000): “The Simple Economics of Open Source
Software,” NBER Working Paper 7600.

MILLER, B. P., L. FREDRIKSON, AND B. S0 (1990): “An Empirical Study
of the Reliability of Unix Utilities,” Communications of the ACM, 33.

MiLLER, B. P., D. Koski, C. P. LEg, V. MAGANTY, R. MURTHY,
A. NATARAJAN, AND J. STEIDL (1998): “Fuzz Revisited: A Re-
examination of the Reliability of Unix Utilities and Services,” University
of Wisconsin Computer Science Working Paper.

PALFREY, T. R., aAND H. ROSENTHAL (1984): “Participation and the Pro-
vision of Discrete Public Goods: A Strategic Analysis,” Journal of Public
Economacs, 24.

Raymonp, E. S. (1998): “The Cathedral and the Bazaar,”
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar.html.

STALLMAN, R. M. (1996): GNU Emacs Manual, version 19.35. Free Soft-
ware Foundation, Boston, MA.

27

