Computer Support for Discovering OSS Processes

Chris Jensen and Walt Scacchi

Institute for Software Research

Bren School of Information and Computer Sciences

University of California, Irvine
Irvine, CA USA 92697-3425

{cjensen, wscacchi}@ics.uci.edu

ABSTRACT

Large scale open source software (OSS) projects offer a wide
range of documentation of the software processes that have
enabled their success. Discovering these processes has been
shown to be difficult to achieve. This paper describes our
experiences with providing computer support for discovering OSS
processes from project data. We discuss challenges of collecting
and analyzing data from multiple types of project artifacts and
how to address them.

1. INTRODUCTION

OSS projects have been shown capable of creating large, widely
adopted, high quality, and arguably secure software systems.
While research interest in OSS projects remains avid, much of this
research examines software development issues, joining and
participation, and project governance. Few researchers have
examined these issues from a process perspective. What exactly
is a process and how are processes discovered? Software process
research defines a process as a sequence of partially ordered steps
intended to reach a goal (e.g. release a version of a software
product, transition to a different role within a project, etc.). [1]. A
plethora of process languages define possible orderings (control
flow) and what precisely constitutes a step (the constituents
sometimes referred to as process entities). These languages are
most frequently used to prescribe what a process should be: what
steps should be performed and in what order. There is
comparatively little research providing descriptions of specific
software processes in specific projects: what steps were performed
in a particular process and in what order. Similarly, there is little
research on how to discover and model process descriptively.

Process discovery generally entails collecting data that informs us
about the process under study, composing evidence of the process
as individual process steps, and putting those steps in order. Over
the past several years, we have been looking at approaches to
discovering and modeling OSS processes. Our overall strategy is
ethnographic, applying a reference model [2] of known OSS
activities, resources, tools, and roles-- the process entities we use
in our models-- to identify evidence of process steps from publicly
available project artifacts. We have utilized this strategy in the
study of multiple types of processes in multiple projects. In
particular, we have focused our efforts on requirements and
release, role migration, and governance processes in the NetBeans
project and the Apache HTTP server project. In doing so, we have
identified several challenges in data collection and analysis and
our approach to discovery has evolved to address them.

The first discovery approach we used was applied to the
requirements and release processes of the NetBeans and Apache
projects and conducted in a purely manual fashion: browsing
project websites and noting instances that served as record of
software requirements being presented, discussed, and asserted
and releases being coordinated [3]. To date, we have identified
over fifteen types of project artifacts that provide evidence of
software processes, including threaded email archives,
issue/defect reports, source code, and documentation [4]. Given
the large number of artifacts in a typical OSS project web
repository, this approach quickly proved intractable. Without
computer support there is simply too much data to analyze in
order to produce a plausibly valid process model. Thus, our work
to provide computer assistance for process discovery has focused
on identifying process information from project artifacts and
constructing process steps.

In this paper, we discuss two projects we have worked on to
provide computer support for process discovery. Both rely on the
reference model to provide a mapping between project data and
process concepts. Both also enlist the aid of search technology to
facilitate the process data elicitation. Since process discovery is a
knowledge elicitation activity [5], it made sense to apply a tool
geared towards retrieving artifacts with desired knowledge to the
research problem. The widespread development and adoption of
search technology encouraged this strategy, more so because data
evidencing each process step is commonly spread across multiple
artifacts/web documents.

For our first project, we tailored an open source search engine
(Apache.org's Nutch [6] web crawler and Lucene search engine)
to perform detailed analysis of a local set of project artifacts from
the Apache HTTP and NetBeans projects. Our goal was to
construct high fidelity models using a mix of qualitative and
quantitative analysis of the data. However, we encountered
several challenges in data collection and analysis. We discuss
these next and follow this with a discussion of a tool we have
recently built in response as a way forward in computer-supported
process discovery.

2. PROCESS DISCOVERY WITH LUCENE

Under this scheme, the reference model provided process concepts
used to construct search queries from an index of project artifacts.
Process fragments were identified from the query ‘“hits” and
assembled into atomic steps, ordered based on contextual clues in
the selected artifacts (e.g. date stamps from email messages,
versioning repositories, etc.). While the querying stage was easily
scripted, it quickly became clear from the results that constructing

process steps and putting them in order could not be done reliably
without human intervention. Nevertheless, the tool could inform
these tasks by providing time and date information, as well as
links to documents referenced by data relating to a particular
process step.

The objective of using a customized search engine on locally
stored data was to provide document-specific analysis of project
data in a rigorous fashion, benefiting from the similarities in the
document structure (both in terms of file format as well as link
structure). The data being local, it could be massaged into a more
parsable format and computationally analyzed without imposing
on project Web resources (bandwidth). The Lucene/Nutch tool set
was chosen as it was particularly well suited to analyzing large
numbers of artifacts of varying types, such as is needed for
process discovery, was a mature and well regarded project and
because it had an active developer and user community that could
be consulted if we required technical advice.

With approval from the NetBeans community, we were able to
collect project data by crawling their website. Data from Apache
was obtained from the source code repository, which also versions
documents on the project website. Both methods have advantages
and disadvantages. The web crawl had limits set upon it by the
project in terms of which pages it could retrieve. Consequently,
we were unable to crawl pages from the mailing list archive, one
of the most salient data sources. Unlike content retrieved from
versioning repositories, however, crawled documents contained
project web database content, which was not available for pages
retrieved from versioning repository snapshots. Repository
snapshots, on the other hand, provided a greater range of
document types that we could parse with greater precision.
Crawled data were mostly HTML files. We grew concerned that
the disparity in available data from the two projects would hinder
our ability to perform truly comparative case analysis. As with all
data snapshots, there were also issues of up-to-datedness of the
data and its storage to consider.

The ability of search technology to assist in retrieval of process
evidence presented a second problem: noisy data. Put simply,
search results are imperfect. Only a fraction of the returned
results contain useful process evidence. Search results also
included duplicates: multiple artifacts depicting the same process
evidence. Although multiple indicators of process evidence can
reinforce process model validity, we came across some cases of
data duplication that, if undetected, could have misrepresented the
process (e.g. the same document being stored in multiple places in
the repository). Perhaps worse than duplicate data, process models
are affected by missing or externally located (outside a project
repository) data. Gaps in process data, whether due to technical
restrictions on data collection such as those described above or
otherwise, affect process participants as much as process
researchers. As the OSS phenomenon has caught on, more and
more organizations have begun contributing to OSS projects,
leading to breakdowns in decision-making transparency and
questions of project leadership and control [7, 8].

Unlike projects in the FLOSSMOLE and FLOSSMETRICS
repositories, Apache and NetBeans each use separate
infrastructure for their project repositories. =~ While certain
document types (e.g. mbox email archives and message forums)
offer useful metadata that can significantly enhance analysis
precision (for example, by providing date fields useful for process
step ordering), this precision comes at a cost. We had hoped to

avoid constructing analysis techniques specific to particular
repository document and development artifact types. The
volatility of document structure meant that any classifying scheme
created would only be applicable to one type of community
repository infrastructure. Even within a community, this
infrastructure is not guaranteed to be static. Considering the
breadth of artifact types, any such classification scheme would be
both complex and fragile.

The fragility of project artifact formats is a known problem for
those working with OSS repositories, as reported by maintainers
of both the FLOSSMOLE repository and the SourceForge
Research Data Archive (SRDA) at Notre Dame [9] at a recent
workshop on Free/OSS repositories and research infrastructures
[10]. The issue is more poignant for analysis of data from
disparate infrastructures. It became clear that creating document
type-specific analysis was necessary in certain cases (to parse
mbox archives used by Apache into discrete messages, for
example, since the existing parsers either did not provide
sufficient granularity or had fallen out of maintenance).

Ultimately, the method's greatest promise- deep analysis of project
artifacts- proved too difficult. We simply lacked the resources in
our small project team to perform in-depth analysis of constantly
evolving data sets spanning multiple document types. This led us
to a more lightweight solution. We discuss this solution next.

3. PROCESS DISCOVERY WITH FIREFOX
AND ZOTERO

Our current strategy for providing computer support for process
discovery returns to using each project's own search engine to
locate process information. We have operationalized the reference
model as an OWL ontology with the Protégé ontology editor [11],
using only the OWL class and individual constructs to store
process concepts and their associated search queries respectively.
Secondly, we built a Firefox plugin, Ontology [12], to display the
reference model ontology in the Firefox web browser. Next, we
enlisted the Zotero citation database Firefox plugin [13] to store
process evidence elicited from project data, integrating the two
plugins such that each datum added to the citation database from a
project artifact is automatically tagged with the selected reference
model entities.

The use of a citation database as a research data repository may
seem unintuitive. Zotero, however, has proven well suited for our
needs. Like many Firefox plugins, Zotero can create records
simply from highlighted sections of a web document, though the
creation of arbitrary entries (not gleaned from document text
selections) is also possible. It can also save a snapshot of the
entire document for later review, which is useful given the high
frequency of changes of some web documents- changes that
evidence steps in a software processes. The tag, note, and date
fields for each entry are useful for recording reference model
associations and memos about the entry for use in constructing
process steps and ascertaining their order.

The plugin integration greatly facilitates the coding of process
evidence and provides traceability from raw research data to
analyzed process models. As the tool set is browser-based, it is
not limited to analysis of a particular data set, whether local or
remote. Moreover, the tool set does not limit users to a single
ontology or Zotero database, thereby allowing users to construct
research models using multiple ontologies describing other (e.g.

non-OSS process) phenomenon and reuse the tool set for analysis
of additional data sets. Thus, it may be easily appropriated for
grounded theory research in other fields of study.

The elicitation of process evidence is still search driven. Rather
than use one highly customized search engine for all examined
data repositories, the search task has been shifted back to the
organizations of study. This decision has several implications in
comparison with the previous approach, both positive and
negative. Using an organization's own search engine limits our
ability to extract document-type specific metadata, however
among the organizations we have studied, their search tools
provide greater coverage of document and artifact types than
Lucene handled at that time. Furthermore, this approach does not
suffer the data set limitations imposed by web crawler exclusion
rules. The ability to query the data set in a scripted fashion has
been lost, yet some scientists would see this as a gain. The use of
computer-assisted qualitative data analysis software (CAQDAS)
historically has put into question the validity of both the research
method and results [14,15].

We have only just begun exploring Zotero's capability as a
research data repository, yet already there is much promise for
further advancement. Zotero's design offers hooks into the
database and triggers for database manipulation actions (e.g.
adding a record to the database). We used this hook to tag records
with reference model information when new records are added.
Yet, plugins could use these triggers and hooks to externally
manipulate Zotero data to insert additional metadata into Zotero
records, provide advanced qualitative and quantitative analysis
beyond the built-in timeline functionality. One such advancement
we have discussed is automatic highlighting of reference model
concepts and date/time indicators in web document text with the
option to add such references to the Zotero database. This
operation would provide further relief for dealing with the large
number of project artifacts in need of analysis.

Zotero is an actively developed project and there is ongoing work
to add features such as distributed database access, enabling users
in multiple locations to edit a shared Zotero database. Resource
sharing, in particular, enables Zotero to transition from being an
individual knowledge base to a community knowledge base for
researchers, OSS project members, and prospective project
members. Lastly, Zotero is an open source project, itself, and may
be modified accordingly.

4. CONCLUSIONS

The WOPDASD workshop has sought tools to obtain data from
multiple data sources. In developing computer support for OSS
process discovery, we have examined various tradeoffs trying to
examine the breadth of artifacts used with depth of analysis. Our
first attempt required much more computer-assistance than was
feasible. Our current research direction poses a compromise
between computer assistance and human interactivity. We do not
believe it to be a perfect balance between computer assistance and
human interaction. Nevertheless, it has shown itself both useful
and usable in decreasing the effort required to discover and model
OSS processes from multiple project data sources and provides a
basis to improve upon.

5.REFERENCES

[1] P. Feiler and W. Humphrey. Software Process Development
and Enactment: Concepts and Definitions. Second
International Conference on the Software Process: Continuous
Software Process Improvement, 1993, 28-40

[2] Jensen, C. & Scacchi, W. Guiding the Discovery of Open
Source Software Processes with a Reference Model Third IFIP
International Conference on Open Source Systems, 11 June,
2007. Limerick, Ireland.

[3] Jensen, C. and Scacchi, W., Simulating an Automated
Approach to Discovery and Modeling of Open Source
Software Development Processe, Workshop on Software
Process Simulation and Modeling (ProSim03), Portland, OR,

[4] Scacchi, W. Free/Open Source Software Development:
Recent Research Results and Methods, in M. V. Zelkowitz
(ed.), Advances in Computers, 69, 243-295, 2007.

[5] Becker-Kornstaedt, U. F. Bomarius, S. K. (ed.) Towards
Systematic Knowledge Elicitation for Descriptive Software
Process Modeling. Proceedings of the International
Conference on Product Focused Software Process
Improvement Kaiserslautern, Germany, September 10-13,
2001 Lecture Notes in Computer Science, Springer, 2001,
2188, 312-325

[6] The Apache Nutch Project, available online at
http://lucene.apache.org/nutch [last accessed 23 June, 2008]

[7] Jensen, Chris, Scacchi, Walt, Collaboration, Leadership,
Control, and Conflict Negotiation in the NetBeans.org
Software Development Community, Hawaii International
Conference Systems Science, vol. 38, Kona, HI, 5 Jan., 2005

[8] O’Mahony, S. The governance of open source initiatives:
what does it mean to be community managed? Journal of
Management and Governance, 2007, 11(2): 139-150

[9] SourceForge Research Data Archive, available online at
http://zerlot.cse.nd.edu/mywiki/index.php?title=Main_Page
[last accessed 23 June, 2008]

[10] NSF Workshop on FOSS Repositories and Research
Infrastructures, 11-12 February, 2008, Irvine, CA

[11] The Protégé Ontology Editor Project, available online at
http://protege.stanford.edu/ [last accessed 23 June, 2008]

[12] The Firefox Ontology Plugin project available online at
http://rotterdam.ics.uci.edu/development/padme/browser/ontol
ogy [last accessed 23 June, 2008]

[13] The Zotero Project, available online at
http://www.zotero.org/ [last accessed 23 June, 2008]

[14] Bringer, J. D.; Johnston, L. H. and Brackenridge, C. H.
Using Computer-Assisted Qualitative Data Analysis Software
to Develop a Grounded Theory Project Field Methods, 2006,
18(3): 245-266

[15] Kelle, U. Theory Building in Qualitative Research and
Computer Programs for the Management of Textual Data
Sociological Research Online, 1997, 2(2) available online at
http://www.socresonline.org.uk/socresonline/2/2/1.html [last
accessed 23 June 2008]

