
it 5/2013

Special Issue ���

Open Source Community Processes:
Implications on Micro and Macro
Level
Auswirkungen von Prozessen in Open Source Gemeinschaften auf Mikro- und
Makro-Ebene

Stefan Koch∗, Bogazici University, Istanbul, Turkey

∗ Correspondence author: stefan.koch@boun.edu.tr

Summary In this paper, we will discuss the existence and
form of open source community processes, whether they differ
between projects, and whether they have any implications on
both micro and macro level. We will take a look at how dif-
ferent processes can impact the work and the resulting quality
within projects, as well as on macro or project level outcomes
like success or efficiency. We will also present as well as validate
a research model to explain process adoption and implica-

tions. ��� Zusammenfassung Dieser Artikel thema-
tisiert die Prozesse in Open Source Gemeinschaften. Wir disku-
tieren sowohl Existenz wie auch Form solcher Prozesse, und
fokusieren auf die Auswirkungen unterschiedlicher Prozesse auf
sowohl Qualität und Zusammenarbeit innerhalb von Projek-
ten, aber auch auf Attribute auf Projekt-Ebene wie den Erfolg.
Weiter präsentieren wir ein Modell zur Erklärung von Prozess-
design sowie -auswirkungen.

Keywords ACM CCS → Software and its engineering → Software creation and management → Collaboration in software
development → Open source model; ACM CCS → Software and its engineering → Software creation and management →
Software development process management; ACM CCS → Software and its engineering → Software notations and tools →
Software configuration management and version control systems ��� Schlagwörter Open Source, Softwareentwicklung,
Softwarequalität, Verteilte Zusammenarbeit, Aufwand, Effizienz

1 Introduction
Open source software has become more and more im-
portant, with this now stretching beyond the mere use
of well-known projects in both private and commercial
settings [9]. Open source software is of special interest
also due to its development processes and organization
of work. In many ways it is seen as constituting a new pro-
duction mode, in which people are no longer collocated,
and self-organization is prevalent. One of the first opin-
ion pieces on this model was written by Eric S. Raymond,
‘The Cathedral and the Bazaar’, in which he contrasts the
traditional type of software development of a few peo-
ple planning a cathedral in splendid isolation with the

new collaborative bazaar form of open source software
development [31]. In his theoretical description, a large
number of developer-turned users come together without
monetary compensation to cooperate under a model of
rigorous peer-review and take advantage of parallel de-
bugging that leads to innovation and rapid advancement
in developing and evolving software. In order to allow
for this to happen and to minimize duplicated work, the
source code needs to be accessible, and new versions need
to be released in short cycles.

In this paper, we will discuss in Sect. 2 open source
community processes resulting from self-organizing
projects, and whether they differ between projects in ma-

it – Information Technology 55 (2013) 5 / DOI 10.1515/itit.2013.1010 © Oldenbourg Wissenschaftsverlag 189
Unauthenticated | 98.26.131.255
Download Date | 12/3/13 2:13 AM

mailto:stefan.koch@boun.edu.tr

Special Issue

turity or division of labour. We will take a look at whether
these processes have any implications on both the micro
level like modules, as well as the macro or project level,
e. g. how different processes can impact the work and the
resulting quality within projects, as well as outcomes like
success or efficiency in Sect. 3. We will adress the question
of which characteristics lead to process adoption, and its
implications by presenting as well as validating a research
model in Sect. 3.3, and conclude with directions for fu-
ture research in Sect. 4.

2 Open Source Community Processes
and Organization of Work

Quite often open source software development is under-
stood as a new production mode, lacking collocation of
members as well as any centralized management, or de-
fined processes in any way, based on self-organization [7].
While there is one seminal description of the bazaar
style of development by Raymond [31], it should be
noted that reality has been found in many cases to dif-
fer from this theoretical description, and significantly
between projects [33]. The distribution of effort and out-
put between developers has been found to be heavily
skewed, and there is both evidence of clearly defined
processes, for example strict release processes in several
projects [16], as well as a considerable level of commer-
cial involvement [32]. In addition to that, emergent but
not necessarily written, modeled and defined governance
structures, roles and processes in general do exist. In
addition, most projects fail to attract a community of
developers and do not achieve progress or success in any
way. We will try to establish a model for process adoption
and implications in this paper.

O’Mahony and Ferraro [29] specifically focused on this
emergence of governance, finding that members develop
a shared basis of formal authority but limit it with demo-
cratic mechanisms that enabled experimentation with
shifting conceptions of authority over time. Barcellini
et al. [2] find community consensus as well as implicit
rules to govern design dynamics, as well as specific par-
ticipants (“top hierarchy”) active in framing. In a second,
related study [1], the authors find several key participants
acting as boundary spanners between user and developer
communities. They therefore argue that OSS design may
be considered as a form of “role emerging design”, i. e.
design organized and pushed through emerging roles and
through a balance between these roles, with the commu-
nities providing a suitable socio-technical environment to
enable such role emergence. Within open source projects,
different levels and roles generally exist. Von Krogh
et al. [37] explicitly focus on joining projects, and found
that following certain joining scripts, helped by special-
ization and volunteering feature gifts, leads to a higher
chance of gaining access to the developer community.

Several ways have been discussed to describe differ-
ent open source development processes, e. g. Crowston
et al. [6] operationalize a process characteristic based on

the speed of bug fixing, Michlmayr used a construct of
process maturity [27], while also concentration indices
have been used to characterize development forms [23].
We find that there is considerable variance in the practices
actually employed, as well as the technical infrastructure
adopted to enforce them, or in turn prescribing and shap-
ing them. It has been hypothesized that the advent of
the Internet and especially the coordination and com-
munications tools are at least a precondition for this
development. On a conceptual level, Hemetsberger and
Reinhardt [14] draw on the concept of co-configuration,
which is is a participatory model that integrates users as
active subjects in the shaping and reshaping of products
and who eventually become experts themselves. They use
the term of coat-tailing work systems that tie everyday ac-
tions to the overall activity of the group, and underscore
the importance of technological, cultural and mental ar-
tifacts to construct such a system.

Numerous studies of projects and communities have
proposed metrics like commits, the number of distinct
programmers involved in a file or project, or the Gini
concentration coefficient to study open source work prac-
tices. One of the most consistent results is a heavily
skewed distribution of effort between participants. For
example, Mockus et al. [28] have shown that the top 15
of nearly 400 programmers in the Apache project added
88% of the total lines-of-code. In the GNOME project,
the top 15 out of 301 programmers were only responsi-
ble for 48%, while the top 52 persons were necessary to
reach 80% [24], with clustering hinting at the existence
of a still smaller group of 11 programmers within this
larger group. A similar distribution for the lines-of-code
contributed to the project was found in a community of
Linux kernel developers [15], or in the Orbiten Free Soft-
ware survey [11], where the first decile of programmers
was responsible for 72% of the total code.

A second major result regarding organization of work
is a low number of people working together on file
level. For example, one study found that only 12.2%
of the files have more than three distinct authors [23].
Most of the files have one (24.0%) or two (56.1%)
programmers and only 3% have more than five dis-
tinct authors, in accordance with other studies on file
or project level [11; 18; 28]. We find that these results
are in line with seeing open source development as
a more component-oriented approach, as compared to
agile methods which are more feature-oriented. Simi-
lar distribution can also be found on project level in
large scale studies: For example, previous research based
on several thousand projects found a vast majority of
projects having only a very small number of program-
mers (67.5% have only 1 programmer). Only 1.3% had
more than 10 programmers [18].

Another aspect that cannot be underestimated with
regard to the implications for existence and form of com-
munity processes is the increased commercial interest.
This has also lead to changes in many projects, which now

190
Unauthenticated | 98.26.131.255
Download Date | 12/3/13 2:13 AM

Open Source Processes: Micro and Macro Implications ���

include contributors who get paid for their contributions.
This can have repercussions on motivation and partici-
pation [30], and is also reflected in several surveys: For
example, Lakhani and Wolf [25] found that 13% of re-
spondents received direct payments, and 38% spent work
hours on open source development with their supervisor
being aware of the fact. Ghosh [10] reports a group of
31.4% motivated by monetary or career (mostly for sig-
naling competence) concerns. Hars and Ou [12] found
a share of 16% being directly paid, Hertel et al. [15] report
20% of contributors receiving a salary for this work on
a regular basis in a survey of Linux kernel developers.

3 Implications on Micro and Macro Level
3.1 Implications for Quality
The quality resulting from open source development and
its assurance is a major concern, and a hugely debated
topic. We will therefore highlight a few results which
link elements of open source community processes to
the quality achieved, as measured by diverse metrics from
software engineering like McCabe’s cyclomatic complex-
ity or Chidamber and Kemerer’s object-oriented metrics,
which try to capture different aspects related to coding
and design quality, e. g. complexity, which in turn have
been shown to have a major impact on aspects like main-
tainability.

First focusing on the micro-level within projects, one
study found that a high number of programmers and
commits, as well as a high concentration is associated
with problems in quality on class level, mostly to viola-
tions of size and design guidelines, thus being related
to higher bug counts as well as problems in mainte-
nance [23]. If the architecture is not modular enough,
a high concentration might show up as a result of this,
as it can preclude more diverse participation. The other
explanation is that classes that are programmed and/or
maintained by a small core team are more complex due
to the fact that these programmers ‘know’ their own code
and do not see the need for splitting large and complex
methods.

On project level, there is a distinct difference [23]:
Those projects with high overall quality ranking have
more authors and commits, but a smaller concentration
than those ranking poorly. Thus, on class level a negative
impact of more programmers was found, while on project
level a positive effect. This underlines a central state-
ment of open source software development, that more
people within a project will lead to higher quality and
more progress. If possible, these resources should, from
the viewpoint of product quality, be structured in small
teams. Ideally, on both levels, the effort is not concen-
trated on too few of the relevant participants. Underlining
these results, MacCormack et al. [26] find that a produc-
t’s design mirrors the organization developing it, in that
a product developed by a distributed team such as the
Linux kernel was more modular compared to Mozilla
developed by a collocated team. Alternatively, the design

also reflects purposeful choices made by the developers
based on contextual challenges, in that Mozilla was suc-
cessfully redesigned for higher modularity at a later stage.

Finally, the involvement of developers with a commer-
cial interest seems to affect the way of work, for example
a large amount of commercial interest has led to a gov-
ernance structure which puts great value on control and
stability by requiring technical improvement proposals
and an associated process for major changes in the Ope-
nACS project [8]. Packages dominated by commercial
background tend to include less developers overall and
less volunteers, and also tend to be changed less often
and by the same group of people [8]. Again, this is quite
contrary to the open source development model, and
could create serious problems related to quality as well as
long-term maintainability.

3.2 Implications for Project Effort and Efficiency
When we try to estimate the effort that is expended in
open source communities, we find that it seems to be
much less than in a comparable commercial setting [20].
This difference might be due to several reasons. First,
open source development organization might constitute
a more efficient way of producing software, mostly due to
self-selection outperforming management intervention.
Participants might be able to determine more accurately
whether and where they are able to work productively
on the project overall, or on particular tasks. In add-
ition, overhead costs for planning, budegting, controlling
and other related tasks are very much reduced. A second
explanation might be that the difference is caused by
non-programmer participation, i. e. people participating
by discussing on mailing lists, reporting bugs, maintain-
ing web sites and the like. This could be interpreted
as supporting the idea of open source communities fol-
lowing processes similar to the ‘chief programmer team
organization’ or ‘surgical team’ [3], where system devel-
opment is divided into tasks each handled by a chief
programmer who has responsibility for the most part of
the actual design and coding, supported by a larger num-
ber of other specialists such as documentation writers or
testers.

For focusing on the implications on efficiency and suc-
cess of community processes, one major problem is that
conceptualizing these aspects is difficult for open source
communities. Many researchers have worked on concep-
tualizing the success of such projects [5; 6; 35], suggesting
a huge number of indicators, using, for example search
engine results, or measures like number of downloads, or
even subjective answers to surveys. The first element to
be explored for any connection to these aspects naturally
is the potentially large number of participants. Follow-
ing the reasoning of Brooks [3], an increased number of
people working together will decrease productivity due
to communication costs. Interestingly, this effect has not
turned up in prior studies [18; 19; 34], respectively only
within the group of core developers [4]. This leads to

191
Unauthenticated | 98.26.131.255
Download Date | 12/3/13 2:13 AM

Special Issue

the conclusion that Brooks’s Law seems not to apply
to open source software development, maybe because of
very strict modularization, which increases possible divi-
sion of labor while reducing the need for communication.
Also the low number of programmers working together
on single files can be taken as a hint for this. Similarly,
a very inequal distribution of effort is not connected to
efficiency [21], so this aspect of community processes
does not seem to incur a penalty.

Closely linked to efficiency in a project is its rate of
progress and growth. For open source software systems,
several works have explicitly dealt with this topic. Most of
them have found super-linear growth, which contradicts
the prior theory of software evolution, e. g. for Linux or
KDE. With a large sample of projects, one study came to
the conclusion that while in the mean the growth rate is
linear or decreasing over time according to the laws of
software evolution, a significant percentage of projects is
able to sustain super-linear growth [19]. There is a posi-
tive relationship between the size of a project, the number
of participants and the inequality in the distribution of
work within the development team with the presence of
super-linear growth patterns.

Finally, the infrastructure employed for communica-
tion and coordination naturally shapes the processes in
a project. For example, Michlmayr [27] has used a sam-
ple of projects to uncover whether the process maturity,
based on version control, mailing lists and testing strate-
gies, has had any influence on the success of open source
projects, and could confirm this. Within SourceForge the
impact of adoption of different tools offered by as well as
tool diversity on project efficiency has been analyzed with
surprising results [22]: In a data set of successful projects,
actually negative influences of tool adoption were found,
while the results were more positive in a random data
set. Some projects, especially larger ones, might be using
tools hosted in other places. Another explanation is that
tools for communicating with users and potential co-
developers can become more of a hindrance in successful
projects, as they could increase the load to a degree that
it detracts attention and time. In addition, these projects
in general have a higher number of developers, so maybe
projects with problems in communication and coordi-
nation due to team size adopt tools to a higher degree,
which can not completely solve the problem after a cer-
tain point. In addition, tool adoption might increase user
involvement, which in turn could influence project design
and fit with user expectations. This could also lead to an
actual reduction in planned functionality, if it does not
add value to the user base, as well as optimization in code.
Therefore, the size of the software, which is one output
aspect considered, could actually be reduced, leading to
a perceived lower efficiency.

3.3 Model for Process Adoption and Implications
Finally, we will try to provide a model explaining pro-
cess adoption and its implications. We propose that the

adoption of processes will be mostly driven by the size
of the community, as well as their diversity. We also
add the age of a project as an explanatory variable for
size and diversity of the community, as these will gen-
erally be time-dependent aspects. If the members of the
community are more widely distributed with regard to
background, but also language or location, the need for
processes to govern and facilitate interactions becomes
much greater. We also presume that the adoption of tools
like source code versioning or bug tracking is closely
related to this adoption of more formalized processes.
On the one hand, formalization of processes will lead
to tool adoption, but also tool adoption prescribes and
necessitates the adoption of some form of process. For
example, bug tracking tools generally assume or prescribe
some form of bug handling process. The main hypothe-
sis then is that the adoption of processes and tools will
be related to project success. We explicitly add a direct
impact of diversity and size of community on the success
as well to see both direct and indirect effects. Increased
diversity in a team, besides some negative effects covered
above, can have positive effects due to increased creativ-
ity, problem-solving ability, marketing to diverse groups,
or effectiveness [13; 30].

For this research we chose to use data available from
SourceForge.net, the largest hosting platform for free
and open source projects. The necessary data was col-
lected for each project in the data set from the respective
homepage (with some exceptions, e. g. pertaining to the
source code). We selected the 30 most most down-
loaded projects, but complemented with 100 randomly
selected projects. It has to be noted that using data from
SourceForge.net raises several issues of validity, for which
Howison and Crowston [17] give an overview. For the
constructs used above, we will employ the following op-
erationalizations: The age of the project is measured in
years since project registration. For the size of the com-
munity, we use the number of developers of the project.
For the diversity, we aggregate three different aspects:
If the license is something else then GNU-style, this is
going to lead to greater diversity within the develop-
ment community due to the public perception of this
license as well as greater chances for commercial in-
volvement, as is if the intended audience is not limited
to developers and/or system administrators. Finally we
check whether the number of translations is more than
two, and aggregate all three aspects from binary vari-
ables by summing up. For process and tool adoption,
we check whether source code control system, tracker,
mailing list, forum, tasks and wiki are used. The suc-
cess is operationalized by the number of downloads as
in many previous studies, as this measure that is pre-
sumed among other factors to be dependent on aspects
like functionality, size and quality. For a detailed dis-
cussion of the methodology and resulting threats to
validity, especially construct validity, the reader is refered
to [22].

192
Unauthenticated | 98.26.131.255
Download Date | 12/3/13 2:13 AM

Open Source Processes: Micro and Macro Implications ���

Figure 1 Research model with
results from structural equation
modeling (showing standardized
coefficients, ** p < 0.01).

We tested the proposed model using structural equa-
tion modeling (SEM). The results are shown in Fig. 1.
As can be seen, not all proposed relationships hold. Age
of a project does have a significant effect on team size,
but not diversity. Process and tool adoption is driven
only by size, not diversity. A possible explanation might
be that open source teams are locally distributed even
without additional effects as covered by our diversity
construct, which leads to a need for tools and processes
once a certain size is passed. For success, only diversity
showed a clear impact. As we operationalized this using
the number of downloads, it seems that the appeal to
a wider range of users is mostly driven by the creativity
of the group, not the size or processes.

4 Conclusion and Future Research
We have tried to highlight some aspects of open source
community processes and how they impact aspects of
the projects, both on the micro level like modules, as
well as the macro or project level. We have shown that
the processes within open source communities can dif-
fer significantly, and that different forms of organization
within projects, e. g. different levels of concentration on
a core team, can have significant impacts. That means an
assessment of these processes should be part of a project
evaluation, e. g. for adoption or reuse in a commercial
context. Several assessment schemes like Open Business
Readiness Rating (OpenBRR), Open Source Maturity
Model, QSOS, or OpenBQR have been developed, and
some contain aspects of this [36]. Finally, we have tried to
develop and validate a novel model for both antecedents
of process adoption as well as impact on success. We
found that it is mostly the size of the community driving
adoption, but that the main determinant of success as
measured by downloads is team diversity, which is a new
construct proposed for the first time. This draws further
attention to issues of attraction and team composition,
and would call for future work on these topics within
open source communities for example related to the way

projects construct their norms and cultures, and whether
this fosters diversity.

References

[1] Barcellini, F., Detienne, F., and Burkhardt, J. M. (2008). User and
developer mediation in an Open Source Software community:
Boundary spanning through cross participation in online dis-
cussions. International Journal of Human-Computer Studies, 66,
pp. 558–570.

[2] Barcellini, F., Detienne, F., Burkhardt, J. M., and Sack, W. (2008).
A socio-cognitive analysis of online design discussions in an Open
Source Software community. Interacting with Computers, 20,
pp. 141–165.

[3] Brooks Jr., F. P. (1995). The Mythical Man-Month: Essays on
Software Engineering. Anniversary ed., Addison-Wesley, Reading,
MA.

[4] Capiluppi, A. and Adams, P. J. (2009). Reassessing Brooks’ law
for the free software community. In Open Source Ecosystems:
Diverse Communities Interacting (pp. 274–283). Springer Berlin
Heidelberg.

[5] Crowston, K., Annabi, H., and Howison, J. (2003). Defining Open
Source Software Project Success. In Proceedings of ICIS 2003,
Seattle, WA.

[6] Crowston, K., Howison, J., and Annabi, H. (2006). Information
systems success in free and open source software development:
theory and measures. Software Process: Improvement and Prac-
tice, 11(2), 123–148.

[7] Crowston, K., Li, Q., Wei, K., Eseryel, Y., and Howison, J. (2007).
Self-organization of teams for free/libre open source soft-
ware development. Information and Software Technology, 49,
pp. 564–575.

[8] Demetriou, N., Koch, S., and Neumann, G. (2007). The Develop-
ment of the OpenACS Community. In Lytras, M. and Naeve, A.
(eds.) Open Source for Knowledge and Learning Management:
Strategies Beyond Tools, Hershey, PA: Idea Group.

[9] Fitzgerald, B. (2006). The Transformation of Open Source Soft-
ware. MIS Quarterly, 30(3), pp. 587–598.

[10] Ghosh, R. A. (2005). Understanding free software developers:
Findings from the FLOSS study. In Feller, J., Fitzgerald, B.,
Hissam, S. A., and Lakhani, K. R., editors, Perspectives on Free and
Open Source Software, pages 23–46. MIT Press, Cambridge, MA.

[11] Ghosh, R. A. and Prakash, V. V. (2000). The Orbiten Free Software
Survey. First Monday, 5(7).

[12] Hars, A. and Ou, S. (2001). Working for free? – Motivations for
participating in Open Source projects. In Proceedings of the 34th
Hawaii International Conference on System Sciences, Hawaii.

193
Unauthenticated | 98.26.131.255
Download Date | 12/3/13 2:13 AM

Special Issue

[13] Harvey, C. P. and Allard, M. J. (2012). Understanding and Man-
aging Diversity (5th ed.). New Jersey: Pearson Education, Inc.

[14] Hemetsberger, A. and Reinhardt, C. (2009). Collective Develop-
ment in Open-Source Communities: An Activity Theoretical
Perspective on Successful Online Collaboration. Organization
Studies, 30(9), pp. 987–1008.

[15] Hertel, G., Niedner, S., and Hermann, S. (2003). Motivation of
software developers in open source projects: An internet-based
survey of contributors to the Linux kernel. Research Policy, 32(7),
pp. 1159–1177.

[16] Holck, J. and Jorgensen, N. (2004). Do not check in on red:
Control meets anarchy in two open source projects. In Koch,
S., editor, Free/Open Source Software Development, pages 1–26.
Idea Group Publishing, Hershey, PA.

[17] Howison, J. and Crowston, K. (2004). The perils and pitfalls of
mining SourceForge. In: Proc. of the International Workshop on
Mining Software Repositories. Edinburgh, Scotland, pp. 7–11.

[18] Koch, S. (2004). Profiling an open source project ecology and its
programmers. Electronic Markets, 14(2), pp. 77–88.

[19] Koch, S. (2007). Software Evolution in Open Source Projects –
A Large-Scale Investigation. Journal of Software Maintenance and
Evolution, 19(6), pp. 361–382.

[20] Koch, S. (2008). Effort Modeling and Programmer Participation
in Open Source Software Projects. Information Economics and
Policy, 20(4), pp. 345–355.

[21] Koch, S. (2008). Measuring the Efficiency of Free and Open
Source Software Projects Using Data Envelopment Analysis. In
Sowe, S. K., Stamelos, I., and Samoladas, I. (eds.): Emerging Free
and Open Source Software Practices, pp. 25–44, Hershey, PA: IGI
Publishing.

[22] Koch, S. (2009). Exploring the Effects of SourceForge.net Coor-
dination and Communication Tools on the Efficiency of Open
Source Projects using Data Envelopment Analysis. Empirical
Software Engineering, 14(4), pp. 397–417.

[23] Koch, S. and Neumann, C. (2008). Exploring the Effects of Process
Characteristics on Product Quality in Open Source Software
Development. Journal of Database Management, 19(2), pp. 31–57.

[24] Koch, S. and Schneider, G. (2002). Effort, Cooperation and Coor-
dination in an Open Source Software Project: Gnome. Information
Systems Journal, 12(1), pp. 27–42.

[25] Lakhani, K. R. and Wolf, R. G. (2005). Why hackers do what they
do: Understanding motivation and effort in free/open source
software projects. In Feller, J., Fitzgerald, B., Hissam, S. A., and
Lakhani, K. R., editors, Perspectives on Free and Open Source
Software, pages 3–22. MIT Press, Cambridge, MA.

[26] MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2006). Exploring
the Structure of Complex Software Designs: An Empirical Study of
Open Source and Proprietary Code. Management Science, 52(7),
pp. 1015–1030.

[27] Michlmayr, M. (2005). Software Process Maturity and the Success
of Free Software Projects. In Zielinski, K. and Szmuc, T. (eds.):
Software Engineering: Evolution and Emerging Technologies,
pp. 3–14, Amsterdam, The Netherlands: IOS Press.

[28] Mockus, A., Fielding, R., and Herbsleb, J. (2002). Two case studies
of open source software development: Apache and Mozilla. ACM
Transactions on Software Engineering and Methodology, 11(3),
pp. 309–346.

[29] O’Mahony, S. and Ferraro, F. (2007). The Emergence of Gover-
nance in an Open Source Community. Academy of Management
Journal, 50(5), pp. 1079–1106.

[30] Pelled, L. H. Eisenhardt, K. M., and Xin, K. R. (1999). Exploring
the black box: An analysis of work group diversity, conflict, and
performance. Administrative Science Quarterly, 11, pp. 1–28.

[31] Raymond, E. S. (1999). The Cathedral and the Bazaar. Cambridge,
Massachusetts: O’Reilly & Associates.

[32] Roberts, J. A., Hann, I.-H., and Slaughter, S. A. (2006). Under-
standing the Motivations, Participation, and Performance of Open
Source Software Developers: A Longitudinal Study of the Apache
Projects. Management Science, 52(7), pp. 984–999.

[33] Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., and Lakhani, K.
(2006). Understanding Free/Open Source Software Development
Processes. Software Process: Improvement and Practice, 11(2),
pp. 95–105.

[34] Schweik, C. M., English, R. C., Kitsing, M., and Haire, S. (2008).
Brooks’ versus Linus’ law: an empirical test of open source
projects. In Proceedings of the 2008 international conference on
Digital government research (pp. 423–424). Digital Government
Society of North America.

[35] Stewart, K. J., Ammeter, A. P., and Maruping, L. M. (2006). Im-
pacts of Licence Choice and Organisational Sponsorship on User
Interest and Development Activity in Open Source Software
Projects. Information Systems Research, 17(2), pp. 126–144.

[36] Stol, K. J. and Babar, M. A. (2010). A comparison framework for
open source software evaluation methods. In Open Source Soft-
ware: New Horizons (pp. 389–394). Springer Berlin Heidelberg.

[37] Von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003). Community,
joining, and specialization in open source software innovation:
a case study. Research Policy, 32(7), pp. 1217–1241.

Received: March 23, 2013

Prof. Dr. Stefan Koch is Professor and Chair at
Bogazici University. His research interests include
user innovation, the open source development
model, the evaluation of costs and benefits from
information systems, and ERP systems. He has
published over 20 papers in peer-reviewed jour-
nals, and also serves as Editor-in-Chief of the
International Journal on Open Source Software &
Processes.

Address: Department of Management, Bogazici
University, 34342 Bebek, Istanbul, Turkey,
e-mail: stefan.koch@boun.edu.tr

194
Unauthenticated | 98.26.131.255
Download Date | 12/3/13 2:13 AM

mailto:stefan.koch@boun.edu.tr

Ein Unternehmen von De Gruyter

www.degruyter.com/oldenbourg

Unauthenticated | 98.26.131.255
Download Date | 12/3/13 2:13 AM

http://www.degruyter.com/oldenbourg

